文档库 最新最全的文档下载
当前位置:文档库 › 外文翻译英文

外文翻译英文

外文翻译英文
外文翻译英文

Utilization of urban sewage sludge: Chinese perspectives Purpose Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing.

Methods Sludge treatment systems consist of thickening, dewatering,and several different alternative main treatments(anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs.

Results The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse.

Conclusion It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.

1 Introduction

In 2008, it is estimated that 57 billion tons of municipal wastewater was discharged in China, 58% of which came from municipal domestic sewage, while the production of municipal wastewater and dewatered sewage in China increased approximately 5% per year on average from 1998 to 2009 as shown in Fig.1.Sewage sludge as an inevitable by-product of wastewater treatment process presents a number of environmental concerns.

Wastewater treatment processes concentrate various pollutants such as heavy metals, organic micro-pollutants, and pathogens into sludge. Sludge disposal can thereby result in the release of toxins into the environment and subsequently into the food chain. On the other hand, it has been estimated that depending on technology choice, approximately 30~60% of sewage treatment plant operating costs are related to sludge treatment activities. Therefore, the management of sewage sludge in an economically and environmentally acceptable way is a matter of increasing importance.

Fig. 1 Production of municipal wastewater and dewatered sewage sludge in China

An ideal way to solve the issue of sludge waste is to minimize its production in biological wastewater treatment processes, rather than rely on post-treatment. When mechanical wastewater treatment is used, a diversity of approaches for sewage sludge treatment processes and end use exists, each with different associated costs and environmental impacts. Strategies on end uses of biosolids have traditionally been based on cost, regulatory, environmental, and public acceptance considerations. In recent years, several methods have been used to evaluate their economic and environmental acceptability. Hospido et al considered land application as an acceptable option for anaerobic digested sludge by evaluating environmental and economic costs of three

scenarios (land application, incineration, and pyrolysis of dried sludge), but the environmental impact of construction was ignored. Also little detailed economic analysis information is available for other alternative scenarios. Barber used a model comparing the environmental impacts and economic costs of different alternative treatment and disposal scenarios. Nevertheless, the transport costs associated with the full range of biosolids management options were not discussed, which may be one of the limiting factors of sludge land application in China. Few investigations have been reported on the environmental and economic impacts of pyrolysis and gasification scenario, partly due to their high cost and scarce application in practice. Therefore, more detailed papers should be investigated for an overall comparison of different treatment and end use of urban sewage sludge, to determine which combinations are more sustainable.

There are 1,258 municipal wastewater treatment plants(WWTPs) in China. The method of sewage sludge disposal is carried out using four processes: 45% of the sludge produced is being utilized in agriculture, 3.5% is being incinerated, 34.5% is landfilled including 3.5% with domestic waste, while 3.5% is used in some other areas (Fig. 2). There are political and economic incentives to increase the agriculture application of sludge since it contains large amounts of organic matter and nutrients, such as N and P. However, the reduced availability of land, increased public comprehension of pathogen risk, the potential for food chain contamination by heavy metals, and the risk of uncertainty surrounding organic micropollutants act to limit sludge land application. Landfill is also decreasing because of technology, economic capacity, and new legislation. Incineration due to significant dry solid volume reduction and energy recovery from the sludge can contribute to a sustainable biosolids strategy, but environmental pollution and the cost should be

carefully treated. Other disposal options such as pyrolysis, gasification,combustion,and co-combustion of sewage sludge with other materials and use as an energy source in the production of cement or building materials have been intensively investigated. These processes which can recover energy from sewage sludge will probably become the future trends of development.

Fig. 2 Ways of sludge disposal and utilization in China (2010)

Based on the above considerations, it can be expected that studies for the treatment of sewage sludge shall focus on the following aspects: safe handling, resource recovery, and low economic costs. In all these respects, the recovery of sustainable energy from sewage sludge will be of obvious importance. Another issue of concern is to reduce toxins in sewage sludge before the final treatment and minimize the negative impacts on human and ecosystem health. The aim of this paper is to discuss the current situation and future outlook for sewage sludge treatment and disposal and estimate the environmental and economic impacts of various options from sewage sludge. It also provides some reference for decision makers to better manage sewage sludge.

2 Composition of sewage sludge in China

The composition and characteristics of sewage sludge depend on several factors, such as the origin of the wastewater, the purification treatment of the wastewater, stabilization treatment, time and storage conditions, or the coagulant agents used. Generally, sewage sludge is composed of organic compounds, macronutrients, and a wide range of micronutrients, non-essential trace metals, organic micropollutants, and microorganisms. It should be stated that some parameters are important when considering the ultimate disposal of the processed sludge and energy reuse from the sludge during treatment. Dry matter has an effect on fuel requirements, exhaust gas production at the incineration process, and the cost of sludge transportation. V olatile matter, a measure of the sludge organic content, is the most important parameter regarding the energetic use of sewage sludge. Other factors, such as harmful organic compounds, micropollutants, nutrients, and heavy metal, cannot be neglected. According to Hua et al., polynuclear aromatic hydrocarbons have become one of the primary pollutants in sludge of Zhejiang WWTPs instead of heavy metals, which has a great influence on agriculture application of sewage sludge. Emerging contaminants such as pharmaceuticals, personal care products, illicit drugs, flame retardants, and perfluorinated compounds should be focused on, due to their endocrine-disrupting properties. N and P are essential resources especially with respect to P. Natural P deposits of sufficient quality are becoming scare, prompting rapid price increase. As a result, large quantities of sludge are applied to farmland. Heavy metal content which is very sensitive to the wastewater source decides whether sewage sludge can be applied to land or not. The threshold value of heavy metal for sludge end use should meet the Pollutants Control Standard of Sludge.

3 Sewage sludge treatment process and anaerobic digestion

Sludge treatment process Biosolids management was divided into categories for sludge treatment and end use, which are likely to be realized by different entities—the wastewater treatment plant and the recipient of treated sludge. Sludge treatment systems generally consist of thickening, dewatering, and several alternative main treatments, such as anaerobic digestion, aerobic digestion, drying, composting, and incineration, which are critical in determining biosolids quality and post-treatment options. Anaerobic digestion or composting is used to meet regulatory requirement for pathogen and remnant organic materials reduction prior to land application. Although incineration can significantly decrease dry solid volume and effectively attain a 100% reduction of pathogens and viruses, it produces dioxins, furans, and fly ash, as incurring as higher running/operational costs. Drying is a necessary process prior to thermal utilization of sewage sludge. The moisture content should meet standards regulated by Chinese legislation after sludge treatment.

Life cycle assessment as an environmental information analysis tool to aid planners in the wastewater treatment plant has been extensively applied to sludge treatment. Hong et al carried out a quantified environmental and economic analysis of six alternative scenarios: dewatering, dewatered sludge composting, dewatered sludge drying, dewatered sludge incineration, incinerated ash melting, and dewatered sludge melting, each with and without digestion. The results show that sewage sludge digestion leads to the lower economic and environmental impacts, while dewatered sludge melting is an environmentally optimal and economically affordable method. Murry et al. did an integrated study, comparing nine alternative treatment schemes and arranged them in order of environmental and economic impacts. They proposed that anaerobic digestion (no lime) is overall the most preferable sludge treatment option whereas incineration, particularly coal-fired, is the most costly. A

common feature of these methods was the utilization of the resource embodied in sludge; for example, heat drying with compost takes advantage of embodied nutrients, anaerobic digestion, and incineration of sewage sludge takes advantage of embodied energy. Overall, in order to decrease the environmental and economic impacts during sludge treatment, maximizing potential offsets, including the efficiency of the thickening process, energy capture from anaerobic digestion, and the electricity production rate generated from biogas, is required.

Anaerobic digestion Anaerobic digestion is considered an essential process in a modern WWTP due to reduction of sludge volume, generation of energy-rich biogas, and production of a nutrient-rich final product. Compared with other technologies, it is the most efficient method to capture energy from biosolids with high water content. Barber reported that the conversion of methane produced from anaerobic digestion to electricity and heat is the main contributor to renewable energy within the WWTP. In the EU, 50% of sewage treatment plants have anaerobic digestion, 18% incorporate aerobic digestion, and 4% lime stabilization, whereas 24% of the plants undertake no sludge stabilization. The same tendency is observed in China, but no detailed available information was reported. However, its application has often been limited by very long retention times and low overall degradation efficiency. In order to increase biodegradability and enhance anaerobic digestion with lower retention time and higher biogas production, various sludge pretreatment techniques have been applied in sludge digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), alkali, and combined pretreatment.

Currently, combined sludge digestion with other processes to achieve maximum utilization has attracted more and more attention. Using energy released by microbial decomposition to complete water evaporation in the process of biological drying is a promising method for dewatering sludge. There are some advantages in this process such as low-cost and energy consumption since no fossil fuel is depleted in such systems. Moreover, CO2 emission can also be significantly reduced, while the remaining sludge can be converted into amino acid salt with a content of 90% amino acid after acidification. An effective project like this has already been applied in Qinhuangdao City, China.

4 Ways of sludge disposal and utilization

4.1 Main disposal methods in China

Landfill Landfill is economical and low energy consumption due to its low-technology processes. However, it is a significant source of CH4and N2O, which are greenhouse gases with a high global warming potential. Leachate containing P and heavy metal can threaten surface and ground waters, and none of the nutrient or energy content is recovered from landfill. Biosolid management technologies for very small towns, with limited technical and financial resources, may justifiably consider investing in biofiltration or methane trapping and flaring at their local landfill.

Land application Land application of sewage sludge has a great incentive in view of its fertility and soil conditioning properties. It has been shown that the use of sewage sludge derived soil amendments can improve soil physical properties, such as porosity, aggregate stability, bulk density, water retention and movement, and sequester carbon in the soil, thereby reducing atmospheric CO2content and global warming potential. The environmental offset in electricity and fuel consumption is also great when sludge is used

in place of synthetic fertilizers.

Land application of sewage sludge is convenient and low requirements. Various stabilized biosolids such as slurry, dewatered cake, and dried pellets can be applied to land. However, sludge utilization can be limited due to its heavy metal, organic micropollutants, and pathogen content. Heavy metal concentrations depending on the relative contributor of industrial wastewaters to the overall flow can be decreased from sludge via source control. Pathogens are removed by pretreatment such as thermophilic anaerobic digestion, or composting.

Land application is available only when the sludge quality meets the local criteria with respect to pathogens and heavy metal content. In addition, the doses and rates of sludge application should also be carefully considered. Reports show that excessive application of sludge has increased the bioavailability of heavy metals, which might pose a serious risk to human health. While long-term application of sewage sludge can result in leaching of P and heavy metals, the risks of which are greater than the transfer of heavy metals into plant tissue and the food chain in the case of crops.

In addition, recovery of N and P should also be taken seriously. It is generally accepted that with the rapid urbanization in China, increasing amounts of N and P are entering the cities through food consumption. It is estimated that N and P contained in urban sewage sludge were 31,500 and 23,600 tons, respectively, in 2009. With increasing urbanization, the improvement of sewage treatment systems and nutrient use efficiency in food production systems, it is anticipated that nutrients contained in the urban waste stream are likely to increase dramatically in China in the next 10–20 years. Although the absolute amounts of N and P in sewage sludge are not great as compared to chemical fertilizers

applied to agricultural land in China, their emission to the environment will have serious impacts on water quality and ecosystem health. P, as a nonrenewable resource, is becoming depleted, and production of P fertilizer is increasingly more expensive, thus threatening food security globally. Therefore, recovery of nutrients from sewage sludge in a sustainable way is becoming an important challenge for environmental engineers.

4.2 Thermochemical processes for sludge

Incineration Incineration of sewage sludge is a process in which its organic matter is completely transformed into CO2 and H2O under high-temperature and aerobic conditions, while inorganic compounds remain in the ash. It is an effective way to dispose of sludge with advantages such as large reduction of sludge volume, thermal destruction of toxic organic compounds, and minimization of odor generation. The final sludge volume after incineration is approximately 10% of that after mechanical dewatering. The energy produced in the incineration process can be used for drying the mechanically dewatered sludge cake prior to the incineration process or can be used for the production of electricity. The amount of energy produced strongly depends upon the water content of the sludge and performance of the incineration.

Incineration as an attractive disposal method has been applied worldwide. For example, the amount of sludge being incinerated in Denmark has already reached 24% of the sludge produced, 20% in France, 15% in Belgium, and 14% in Germany, while in USA and Japan the percentage has increased to 25% and 55%, respectively. The main problems for combustion of sludge are high running cost and environmental impacts. Environmental problems relate to the accumulation of heavy metals in ashes and exhaust gases to the atmosphere. The former can be solved by using incineration ash as raw materials in cement

manufacturing, during which process heavy metals are immobilized in cement. Exhaust gases consist of dioxins, furans, and other pollutants (CO2, NO x, N2O, and SO x). Emissions of dioxins and furans are not generally a problem if temperatures above 600°C are kept and flue gases are rapidly cooled below 400°C. N2O can effectively be eliminated by increasing the combustion temperature to 880°C. Addition facilities such as electrostatic precipitators, wet scrubber system, etc. are also needed to comply with the strict exhaust gas emission standards. Large investment for the purification of flue gases may raise social objections.

Co-combustion of sewage sludge with other natural resources (coal, lignite, or wood) or municipal solid waste is also an alternative method for the management of sewage sludge. Environmentally and economically, technology scenarios for co-combusting of biosolids meet Waste Incineration Directive emission criteria and provide a net energy gain, but absence of policy and legal clarity, supply chain insecurity, and market immaturity hinder the development of co-combustion.

Incineration is suitable for cities; for example, Hangzhou has switched to incineration as the preferred option in sewage management, where land is very valuable. To avoid the high operation cost for sludge incineration and also to improve the energy recovery efficiency, exploiting new types of sewage sludge incinerators, implementation of a combined heat and power production unit at incineration plants, and the use of the polluted drying gas in the incineration process are feasible. It is expected that incineration will play an increasingly important role in sewage management in China in the coming decade. Pyrolysis Pyrolysis is a thermal decomposition of organic substances in the absence of air or in an oxygen-deficient atmosphere. The products of pyrolysis are biogas (non

condensable), bio-oil (condensable volatiles), and carbonaceous bio-char residue all of which have a potential end use and can be maximized by modulating the process conditions. Compared to incineration, pyrolysis has some potential advantages. One advantage is that the conversion of the combustible gases into electrical power can be achieved more efficiently.In addition, the formation and emission of toxic organic compounds, such as dioxins, NO x, and SO x, can be avoided in pyrolysis with low oxygen concentration.

Using steam pyrolysis to treat sludge is currently a practice being conducted in China, for example, in the city of Shenzhen. After treatment, the moisture content of sludge is reduced from 80% to 50%, resulting in the final sludge volume decreasing by 60%. During this process, pathogen and odor can be thoroughly removed. The treatment sludge can be made into organic fertilizer, which can be used for horticulture and forestry cultivation. It is a proof of concept for the sustainable development of the circular economy.

Other technologies, such as production of bio-oil from the pyrolysis of sewage sludge, have attracted attention due to the non-renewable nature and the increasing price of fossil fuel. Because the mechanism of such a process is complex, many parameters such as temperature, sewage sludge types, retention time, and the catalysts used affect bio-oil production. Literature concerning the production of bio-oil from sludge has demonstrated that the temperature and volatile solid content were the primary factors affecting oil and char yields. The maximum oil yield was achieved with primary sludge at 500°C, and the optimum pyrolysis temperature for waste activated sludge was 400°C. It is also stated that the optimal pyrolysis temperature for bio-oil production is 450°C. Experimental studies on pyrolysis liquids obtained from different sewage sludge have come to very interesting

conclusions: High sewage sludge ash content favored the decrease in the char yield and the generation of nonvolatile gases, while the sewage sludge with less content of oxygen-containing compounds would favor the quality of the pyrolysis liquids. It elucidates some recommendable characteristics in order to use sewage sludge as pyrolysis feedstock. Metal oxide catalysts can have different influence on pyrolysis. The presence of Fe2O3 and ZnO probably inhibited the decomposition of organic matters in demineralized sludge samples to generate more solid residues, while Al2O3,CaO,and TiO2 promoted the degradation of organic matters to produce less solid residues. Al2O3 and TiO2 may decrease pyrolysis time, while CaO, Fe2O3, and ZnO may prolong pyrolysis time. It is therefore important to formulate optimal catalysts for such systems.

However, the acceptance of this technology may be limited by the low economic value of the product, as well as the relative complexity of the processing equipments. The economic viability of pyrolysis may be improved if the yield of oil were enhanced or if value-added products such as adsorbents could be produced from the pyrolysis chars.

5 Perspectives

This paper reviews present and future directions of sewage sludge management in China. Up until now, most of the sewage sludge produced in the process of wastewater treatment has been used in agriculture or disposed of in landfills, or via incineration. Sewage sludge is rich in resources including nutrients and energy. Given the vast population and rapid urbanization in China, sewage sludge represents a major issue in environment and resource management. To resolve this issue, we propose that a holistic approach should be taken to manage sewage sludge in China, and future research and commercialization should focus on the following aspects:

? Life-cycle analysis of food and water consumption in urbanized regions to provide a full account of nutrient flow within urban ecosystems and to calculate the value of sewage sludge within a given boundary/region

? Diverse resource recovery systems (for nutrients, bioenergy, and raw substances for building materials) should be developed and applied for sewage sludge management, and in many cases, these systems should be integrated and optimized depending on the quality of sewage sludge and the scale of the region producing sewage sludge. Cost–benefit analysis should also be conducted so that the best technology available can be selected for different scenarios

? Novel and environmentally friendly materials derived from sewage sludge, such as PHA, are appealing, and the potential of different bacterial species and recombinant strains should be explored further in the context of increased PHA yield and productivity

? For sustainable management of sewage sludge, frameworks for risk assessment should be developed for different options of resource recovery, and the risks should be communicated to the public

? New energy policies and regulations such as the climate change levy and enforcing source control to municipal sewers are critical in determining the sustainability of the future in sludge management

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

外文翻译 - 英文

The smart grid Smart grid is the grid intelligent (electric power), also known as the "grid" 2.0, it is based on the integration, high-speed bidirectional communication network, on the basis of through the use of advanced sensor and measuring technology, advanced equipme nt technology, the advanced control method, and the application of advanced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly and use the security target, its main features include self-healing, incentives and include user, against attacks, provide meet user requirements of power quality in the 21st century, allow all sorts of different power generation in the form of access, start the electric power market and asset optimizatio n run efficiently. The U.S. department of energy (doe) "the Grid of 2030" : a fully automated power transmission network, able to monitor and control each user and power Grid nodes, guarantee from power plants to end users among all the nodes in the whole process of transmission and distribution of information and energy bi-directional flow. China iot alliance between colleges: smart grid is made up of many parts, can be divided into:intelligent substation, intelligent power distribution network, intelli gent watt-hourmeter,intelligent interactive terminals, intelligent scheduling, smart appliances, intelligent building electricity, smart city power grid, smart power generation system, the new type of energy storage system.Now a part of it to do a simple i ntroduction. European technology BBS: an integration of all users connected to the power grid all the behavior of the power transmission network, to provide sustained and effective economic and security of power. Chinese academy of sciences, institute of electrical: smart grid is including all kinds of power generation equipment, power transmission and distribution network, power equipment and storage equipment, on the basis of the physical power grid will be modern advanced sensor measurement technology, network technology, communication

文献综述,外文翻译,论文网站

文献综述怎么写 1) 什么是文献综述? 文献综述是研究者在其提前阅读过某一主题的文献后,经过理解、整理、融会贯通,综合分析和评价而组成的一种不同于研究论文的文体。 2) 文献综述的写作要求 1、文献综述的格式 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,而文献综述介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。 前言,要用简明扼要的文字说明写作的目的、必要性、有关概念的定义,综述的范围,阐述有关问题的现状和动态,以及目前对主要问题争论的焦点等。前言一般200-300字为宜,不宜超过500字。 正文,是综述的重点,写法上没有固定的格式,只要能较好地表达综合的内容,作者可创造性采用诸多形式。正文主要包括论据和论证两个部分,通过提出问题、分析问题和解决问题,比较不同学者对同一问题的看法及其理论依据,进一步阐明问题的来龙去脉和作者自己的见解。当然,作者也可从问题发生的历史背景、目前现状、发展方向等提出文献的不同观点。正文部分可根据内容的多少可分为若干个小标题分别论述。 小结,是结综述正文部分作扼要的总结,作者应对各种观点进行综合评价,提出自己的看法,指出存在的问题及今后发展的方向和展望。内容单纯的综述也可不写小结。 参考文献,是综述的重要组成部分。一般参考文献的多少可体现作者阅读文献的广度和深度。对综述类论文参考文献的数量不同杂志有不同的要求,一般以30条以内为宜,以最近3-5年内的最新文献为主。 2、文献综述规定 1. 为了使选题报告有较充分的依据,要求硕士研究生在论文开题之前作文献综述。 2. 在文献综述时,研究生应系统地查阅与自己的研究方向有关的国内外文献。通常阅读文献不少于30篇,且文献搜集要客观全面 3. 在文献综述中,研究生应说明自己研究方向的发展历史,前人的主要研究成果,存在的问题及发展趋势等。 4. 文献综述要条理清晰,文字通顺简练。 5. 资料运用恰当、合理。文献引用用方括号[ ]括起来置于引用词的右上角。 6. 文献综述中要有自己的观点和见解。不能混淆作者与文献的观点。鼓励研究生多发现问题、多提出问题、并指出分析、解决问题的可能途径,针对性强。 7. 文献综述不少于3000字。 3、注意事项 ⒈搜集文献应尽量全。掌握全面、大量的文献资料是写好综述的前提,否则,随便搜集一点资料就动手撰写是不可能写出好的综述。 ⒉注意引用文献的代表性、可靠性和科学性。在搜集到的文献中可能出现观点雷同,有的文献在可靠性及科学性方面存在着差异,因此在引用文献时应注意选用代表性、可靠性和科学性较好的文献。 ⒊引用文献要忠实文献内容。由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。引用文献不过多。文献综述的作者引用间接文献的现象时有所见。如果综述作者从他人引用的参考文献转引过来,这些文献在他人

(完整版)冲压类外文翻译、中英文翻译冲压模具设计

附件1:外文资料翻译译文 冲压模具设计 对于汽车行业与电子行业,各种各样的板料零件都是有各种不同的成型工艺所生产出来的,这些均可以列入一般种类“板料成形”的范畴。板料成形(也称为冲压或压力成形)经常在厂区面积非常大的公司中进行。 如果自己没有去这些大公司访问,没有站在巨大的机器旁,没有感受到地面的震颤,没有看巨大型的机器人的手臂吧零件从一个机器移动到另一个机器,那么厂区的范围与价值真是难以想象的。当然,一盘录像带或一部电视专题片不能反映出汽车冲压流水线的宏大规模。站在这样的流水线旁观看的另一个因素是观看大量的汽车板类零件被进行不同类型的板料成形加工。落料是简单的剪切完成的,然后进行不同类型的加工,诸如:弯曲、拉深、拉延、切断、剪切等,每一种情况均要求特殊的、专门的模具。 而且还有大量后续的加工工艺,在每一种情况下,均可以通过诸如拉深、拉延与弯曲等工艺不同的成形方法得到所希望的得到的形状。根据板料平面的各种各样的受应力状态的小板单元体所可以考虑到的变形情形描述三种成形,原理图1描述的是一个简单的从圆坯料拉深成一个圆柱水杯的成形过程。 图1 板料成形一个简单的水杯

拉深是从凸缘型坯料考虑的,即通过模具上冲头的向下作用使材料被水平拉深。一个凸缘板料上的单元体在半径方向上被限定,而板厚保持几乎不变。板料成形的原理如图2所示。 拉延通常是用来描述在板料平面上的两个互相垂直的方向被拉长的板料的单元体的变形原理的术语。拉延的一种特殊形式,可以在大多数成形加工中遇到,即平面张力拉延。在这种情况下,一个板料的单元体仅在一个方向上进行拉延,在拉长的方向上宽度没有发生变化,但是在厚度上有明确的变化,即变薄。 图2 板料成形原理 弯曲时当板料经过冲模,即冲头半径加工成形时所观察到的变形原理,因此在定向的方向上受到改变,这种变形式一个平面张力拉长与收缩的典型实例。 在一个压力机冲程中用于在一块板料上冲出一个或多个孔的一个完整的冲压模具可以归类即制造商标准化为一个单工序冲孔模具,如图3所示。

计算机网络-外文文献-外文翻译-英文文献-新技术的计算机网络

New technique of the computer network Abstract The 21 century is an ages of the information economy, being the computer network technique of representative techniques this ages, will be at very fast speed develop soon in continuously creatively, and will go deep into the people's work, life and study. Therefore, control this technique and then seem to be more to deliver the importance. Now I mainly introduce the new technique of a few networks in actuality live of application. keywords Internet Network System Digital Certificates Grid Storage 1. Foreword Internet turns 36, still a work in progress Thirty-six years after computer scientists at UCLA linked two bulky computers using a 15-foot gray cable, testing a new way for exchanging data over networks, what would ultimately become the Internet remains a work in progress. University researchers are experimenting with ways to increase its capacity and speed. Programmers are trying to imbue Web pages with intelligence. And work is underway to re-engineer the network to reduce Spam (junk mail) and security troubles. All the while threats loom: Critics warn that commercial, legal and political pressures could hinder the types of innovations that made the Internet what it is today. Stephen Crocker and Vinton Cerf were among the graduate students who joined UCLA professor Len Klein rock in an engineering lab on Sept. 2, 1969, as bits of meaningless test data flowed silently between the two computers. By January, three other "nodes" joined the fledgling network.

外文翻译computerprogram英文.doc

Computer Program 1 Introduction Computer Program, set of instructions that directs a computer to perform someprocessing function or combination of functions. For the instructions to be carried out, a computer must execute a program, that is, the computer reads the program, and then follow the steps encoded in the program in a precise order until completion. A program can be executed many different times, with each execution yielding a potentially different result depending upon the options and data that the user gives the computer. Programs fall into two major classes: application programs and operating systems. An application program is one that carries out somefunction directly for a user, such as word processing or game-playing. An operating system is a program that manages the computer and the various resources and devices connected to it, such as RAM,hard drives, monitors, keyboards, printers, and modems,so that they maybe used by other programs. Examples of operating systems are DOS, Windows 95, OS\2, and UNIX. 2 Program Development Software designers create new programs by using special applications programs, often called utility programs or development programs. A programmer uses another type of program called a text editor to write the new program in a special notation called a programming language. With the text editor, the programmer creates a text file, which is an ordered list of instructions, also called the program source file. The individual instructions that make up the program source file are called source code. At this point, a special applications program translates the source code into machine language, or object code— a format that the operating system

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

变电站_外文翻译_外文文献_英文文献_变电站的综合概述

英文翻译 A comprehensive overview of substations Along with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life. Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。Therefore, power transmission and distribution is critical. Substation is to enable superior power plant power plants or power after adjustments to the lower load of books is an important part of power transmission. Operation of its functions, the capacity of a direct impact on the size of the lower load power, thereby affecting the industrial production and power consumption.Substation system if a link failure, the system will protect the part of action. May result in power outages and so on, to the production and living a great disadvantage. Therefore, the substation in the electric power system for the protection of electricity reliability,

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

员工激励的文献综述、外文翻译.doc

一、激励理论的背景 在经济发展的过程中,劳动分工与交易的出现带来了激励问题。激励理论是行为科学中用于处理需要,动机,目标和行为四者之间关系的核心理论。行为科学认为人的动机来自需要,由需要确定人们的行为目标,激励则作用于人内心活动,激发,驱动和强化人的行为。哈佛大学维廉詹姆士研究表明:在没有激励措施下,下属一般仅能发挥工作能力的20%~30%,而当他受到激励后,其工作能力可以提升到80%~90%,所发挥的作用相当于激励前的3到4倍。日本丰田公司采取激励措施鼓励员工提建议,结果仅1983年一年,员工提了165万条建议,平均每人31条,它为公司带来900亿日元利润,相当于当年总利润的18%。由于激励的效果明显,所以各种组织为了提高生产效率,有些专家学者就开始了对激励理论的研究之中,探索激励的无穷潜力。 二、国外研究现状 国外对于激励理论有了大量的研究并获得了丰硕的成果。总体来说,可以分为两类激励理论。一类是以人的心理需求和动机为主要研究对象的激励理论,熟称“内容型激励理论”。另一类是以人的心理过程和行为过程相互作用的动态系统为研究对象的激励过程理论,它也被称作是“行为型激励理论”。 1 内容型激励理论 1.1 奠瑞的人类人格理论 这种理论认为,在面临着动态且不断变化的环境时,人们都是自适应的。它把需求分成了两种类型,即生理需求和心理需求。前者与人体基本生理过程的满足感有关,而后者所关注的是情绪上和精神上的满足感。 1.2 马斯洛的“需要层次”理论 美国心理学家马斯洛(A.H.Maslow)进一步发展了莫瑞的研究,在1954年出版的《动机与人格》一书中对该理论作了进一步的阐释。马斯洛认为人的需要可以划分为五个层次,从低到高依次为生理需要,安全需要,社交需要,尊熏需要,自我实现需要,且这五个层次的顺序,对每个人都是相同的。只有当较低层次的需要获得了基本满足后,下一个较高层次的需要才能成为主导需要。 1.3 赫茨伯格的激励—保健双因素理论 美国心理学家赫茨伯格因素理论打破了这一假设。他于1959年在《工作的激励》一书中提出了保健——激励因素理论,简称双因素理论。即保健因素和激励因素。保健因素可以用来体现高水平员工的不满意,激励因素可以用来体现高水平员工的满意度。他认为只有激励因素才能促发员工积极性,提高生产效率。 2 行为型激励理论 2.1 洛克的目标设置理论 2O世纪6O年代末,埃德温·A·洛克和他的同事们花了许多年的时间研究目标对于人类行为和绩效的效果。他们的研究导致了目标设置理论的创立并不断地得到验证,提出:指向一共同目标的工作意向是工作效率的主要源泉。他还提出了具体的设置目标的步骤。 2.2 亚当斯的公平理论 美国心理学家亚当斯(J.s.Adams)对员工受激励程度的大小与他人之间的关系进行研究,并在《工人关于工资不公平的内心冲突同其生产率的关系》(1962年与罗森合写),《工

博物馆 外文翻译 外文文献 英文文献

第一篇: 航空博物馆与航空展示公园 巴特罗米耶杰·基谢列夫斯基 飞翔的概念、场所的精神、老机场的建筑---克拉科夫新航空博物馆理性地吸取了这些元素,并将它们整合到一座建筑当中。Rakowice-Czyzyny机场之前的旧飞机修理库为新建筑的平面和高度设定了模数比例。在此基本形态上进一步发展,如同裁切和折叠一架纸飞机,生成了一座巨大的建筑。其三角形机翼是由混凝土制成,却如同风动螺旋桨一样轻盈。这个机翼宽大通透,向各个方向开敞。它们的形态与组织都是依据内部功能来设计的。机翼部分为3个不平衡的平面,使内外景观在不断变化中形成空间的延续性,并且联系了建筑内的视觉焦点和室外的展览区。 新航空展示公园的设计连接了博物馆的8栋建筑和户外展览区,并与历史体验建立联系。从前的视觉轴线与通道得到尊重,旧的道路得到了完善,朝向飞机场和跑道的空间被限定出来。每栋建筑展示了一个主题或是一段飞行史。建筑周围伸展出巨大的平台,为特殊主题的室外展览提供了空间。博物馆容纳了超过150架飞机、引擎、飞行复制品、成套的技术档案和历史图片。这里的特色收藏是飞机起源开始的各种飞行器,如Jatho1903、Grade1909、莱特兄弟1909年的飞机模型和1911年的鸽式单翼机。 The first passage: Museum for aviation and aviation exhibition park Bartiomiej Kislelewski The idea of flying, the spirit of place, the structure of the historic airfield – the new Museum of Aviation in Krakow takes up these references intellectually and synthesizes them into a building. The old hangars of the former airport Rakowice Czyzyny set the modular scale for the footprint and the height of the new building. Developed from this basic shape, as if cut out and folded like a paper airplane, a large structure has been generated, with triangular wings made of concrete and yet as light as a wind-vane propeller. The wings are generously glazed and open in all directions. Their form and arrangement depend on the interior uses. In the floor plans of the wings, the three offset

机械设计外文翻译(中英文)

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

大数据外文翻译参考文献综述

大数据外文翻译参考文献综述 (文档含中英文对照即英文原文和中文翻译) 原文: Data Mining and Data Publishing Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the party

running the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy. Although data mining is potentially useful, many data holders are reluctant to provide their data for data mining for the fear of violating individual privacy. In recent years, study has been made to ensure that the sensitive information of individuals cannot be identified easily. Anonymity Models, k-anonymization techniques have been the focus of intense research in the last few years. In order to ensure anonymization of data while at the same time minimizing the information

相关文档
相关文档 最新文档