文档库 最新最全的文档下载
当前位置:文档库 › 三角函数中辅助角公式的应用

三角函数中辅助角公式的应用

三角函数中辅助角公式的应用
三角函数中辅助角公式的应用

辅助角公式在高考三角题中得应用

对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx =

++++a b x a a b

x b a b 222

2

2

2

(sin cos )·

·

上式中的

a a b

2

2

+与

b a b

2

2

+的平方和为1,故可记a a b

2

2

+=cos θ,

b a b

2

2

+=sin θ,

)x s i n (b a )s i n x c o s c o s x (s i n b a y 2

2

22θ++=θ+θ+=

由此我们得到结论:asinx+bcosx=

a b x 22++sin()θ,(*)其中θ由

a a b

b a b

2

2

2

2

+=+=cos ,

sin θθ来确定。通常称式子(*)为辅助角公式,它可以将多

个三角式的函数问题,最终化为y=Asin(?+ωx )+k 的形式。下面结合近年高考三角题,就辅助角公式的应用,举例分类简析。 一. 求周期

例1 求函数y x x x =+

-+244

32cos()cos()sin π

π

的最小正周期。 解:

)

6

x 2sin(2x 2cos x 2sin 3x

2sin 3)2

x 2sin(x

2sin 3)4x sin()4x cos(2y π

+=+=+π

+=+π

+π+= 所以函数y 的最小正周期T=π。

评注:将三角式化为y=Asin(?+ωx )+k 的形式,是求周期的主要途径。 二. 求最值

例2. 已知函数f(x)=cos 4x-2sinxcosx-sin 4x 。若x ∈[,

]02

π

,求f(x)的最大值和最小值。

解:f(x)=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=--224

sin()x π

由02

4

24

34

≤≤

≤≤

x x π

π

π

π?-

-

。 当24

4

x -

=-

π

π

,即x=0时,sin()24

x -

π

最小值-

22

; 当24

23

8

x x -

=

π

π,即时sin()24x -π取最大值1。

从而f(x)在[,

]02

π

上的最大值是1,最小值是-2。

三. 求单调区间

例 3. 已知向量→,→a

x x b

x =+=+(cos

,tan())(sin()2224224ππ

,tan())x 24-π,令

b

a )x (f →→?=,求函数f(x)在[0,π]上的单调区间。

解:f x a

b

()=→·→

)4

x sin(2x cos x sin 1

2x

cos 22x cos 2x sin 22

x tan

11

2x tan 2x tan 12x tan 1)2

x cos 222x sin 22(2x cos 22)

4

2x tan()42x tan()42x sin(2x cos 222π

+=+=-+=+--++

+=π

-π++π+=· 先由04

4

54

≤≤≤≤

x x ππ

π

π?

+。 反之再由

π

π

π

π

π

π

ππ

π4

4

2

04

2

4

544

≤≤

≤≤

≤≤

≤≤x x x x +

?+

?。 所以f(x)在[]04

π

上单调递增,在[

π4

,上单调递减。

评注:以向量的形式给出条件或结论,是近两年来三角命题的新趋势,但最终仍要归结

为三角式的变形问题。而化为y=Asin(ωx+?)+k 的形式,是求单调区间的通法。

四. 求值域

例4. 求函数f x k x k x x ()cos(

)cos()sin()=+++--++61326132233

2πππ

(,)x R k Z ∈∈的值域。

解:

)2

x 2sin(4]

6

sin )x 23cos(6cos )x 23[sin(4)

x 23sin(32)x 23cos(2)x 23

sin(32)x 23k 2cos()x 23k 2cos()x (f π

+=π

+π+π+π=+π

++π=+π

+-π-π++π+

π= 所以函数f(x)的值域是[-4,4]。 五. 图象对称问题

例6. 如果函数y=sin2x+acos2x 的图象关于直线x=-

π

8

对称,那么a=( )

(A )2 (B )-2 (C )1 (D )-1

解:可化为y a x =++122sin()θ。 知x =-

π

8

时,y 取得最值±12+a ,即

sin ()cos ()()()2828122111

2

1121012

2

22

2-+-=+?-+=+?-+=+?++=?=-ππ

a a a a a a a a a D ±±选()。

六. 图象变换 例7 已知函数。R x ,1x cos x sin 2

3cos 21y 2∈++=

该函数的图象可由y x x R =∈sin ()的图象经过怎样的平移和伸缩变换得到?

解:y x x =

+++14123

4

21(cos )sin

=

++=++12262654122654(sin cos cos sin )sin()x x x πππ。

可将函数y=sinx 的图象依次进行下述变换: (1)向左平移

π6,得到y=sin(x+6

π

)的图象; (2)将(1)中所得图象上各点横坐标变为原来的21倍,纵坐标不变,得y=)6x 2sin(π

+的图象;

(3)将(2)中所得图象上各点纵坐标变为原来的21倍,横坐标不变,得y=21sin(2x+6

π)的图象;

(4)将(3)中所得图象向上平移

45个单位长度,得到y=21sin(2x+6π)+45

的图象。 综上,依次经过四步变换,可得y=1x cos x sin 2

3x cos 212++的图象。 七. 求值

例8. 已知函数f(x)=x sin 32-+sinxcosx 。设α∈(0,π),f(

2α)=2

341

-,求sin α的值。 解:f(x)=x 2sin 2

1

)x 2cos 1(23+--

=sin 23)3x 2(-π+。

由f(

2

α

)=sin(3π+α)-=-412323,

得sin(3π+

α)=41。 又α∈(0,π))3

4,3(3π

π∈π+α?。 而sin

41>233=π, 故α+),2

(3ππ∈π,则 cos(α+3π)=415-。

sin α=sin[3)3(π-

π

+α] =sin 3

sin )3cos(3cos )3(ππ+α-ππ+α =

2

3)415(2141?--? =85

31+。

评注:化为一种角的一次式形式,可使三角式明晰规范。在求sin α时,巧用凑角法:α=(α+

3π)-3π,并且判断出α+3π的范围,进而求出cos(α+3

π

)的确切值,使整个求值过程方向明确,计算简捷。

八. 求系数 例9. 若函数f(x)=

)2x

cos(2x sin a )

x 2

sin(4x 2cos 1-π-+π+的最大值为2,试确定常数a 的值。 解:f(x)=

cos 2x sin a x cos 4x cos 22+2

x

=x sin 2

a x cos 21+

=)x sin(4

a 412

?++,

其中角?由sin ?=2

2

a

1a cos ,a

11+=

?+来确定。

由已知有44

a 412

=+,解得a=15±。 九. 解三角不等式

例10. 已知函数f(x)=sin 2x+sin2x ,x ]2,0[π∈,求使f(x)为正值的x 的集合。 解:f(x)=1-cos2x+sin2x =1+)4

x 2sin(2π-。

由f(x)>0,有sin (2x-,2

2

)>4-

π 则得2k π-4

5k 2<4x 2<4π

+

ππ-π

, 故k π<x <k π+

)Z k (4

3∈π

。 再由x ∈[0,2π],可取k=0,1,得所求集合是 ?

??π

ππ47<x<,43<<x 0x 或。

三角函数常用公式

数学必修4三角函数常用公式及结论 、三角函数与三角恒等变换 2 2 2 5、 升幕公式 1 ± Sin2 a = (sin a± COS a ) 1 + COS2 a =2 COS a 1- COS2 a = 2 sin a 6、 两角和差的三角函数公式 sin ( a±3 ) = sin a COS 3 土 COS a sin 3 COS ( a±3 ) = COS a COS 3 干 sin a sin 3 tan tan tan 1 tan tan 7、两角和差正切公式的变形: tan a± tan 3 = tan ( a±3 ) (1 干 tan a tan 3 ) 2、同角三角函数公式 sin 2 2 . g a + COS a = 1 tan Sin cos 3、二倍角的三角函数公式 sin2 a = 2sin a cos a cos2 2 2 a =2cos a -1 = 1-2 Sin a : 2 2 =COS a - Sin a tan 2 2ta n 1 tan 2 4、 2 CO S 1 cos 2 2 2 1 cos2 sin ------------------ 2 1 tan =tan45 tan = tan ( 1 tan 1 tan 45 tan --- a ) 1 tan 1 tan tan 45 tan 1 tan 45 tan =tan ( — - a ) 4

在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式 . 3.三角形中三内角的三角函数关系 (ABC ) O sin A sin (B C ), cos A cos (B C ), ta nA tan (B C ).(注:二倍角的关系) ― A B C A O sin cos( ),cos — 2 2 2 5.几个重要的结论 O A B si nA si nB,cosA cosB ; O 三内角成等差数列 B 600, A C 1200 si n ( n — a ) = sin a, cos ( n — a )= —cos a, tan ( n — a )= —tan a; si n ( n + a ) = — Sin a cos ( n + a ): = —cos a ta n ( n + a )= :tan a sin (2 n — a ) = — sin a cos (2 n — a )= cos a tan (2 n — a )= —tan a si n ( —a ) = — sin a cos ( — a )= cos a ta n ( — a )= -tan a si n ( —a )= cos a cos ( — a )= sin a 2 2 si n ( _+ a ) = cos a cos ( _+ a ) = —sin a 2 2 11.三角函数的周期公式 函数y sin( x ) , x € R 及函数y cos( x ),x € R(A, w , 为常数, 且 2 A M 0,w> 0)的周期T ;函数 10、三角函数的诱导公式 “奇变偶不变,符号看象限。 y tan( x ) , x k ,k Z (A, w , 为常数,且 A M 0,3> 0)的周期T —. 2 解三角形知识小结和题型讲解 解三角形公式。 1. 正弦定理 a b c si nA si nB si nC 2. 余弦定理 a 2 b 2 c 2 2bccosA b 2 a 2 c 2 2ac cos B c 2 a 2 b 2 2ab cosC 2R (R 是 ABC 的外接圆半径) cos A b 2 2 c 2 a 2bc cosB 2 a 2 c b 2 2ac cosC 2 a b 2 2 c 2ab sin (B C), 2

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数辅助角公式化简(1)

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π??=-+ ???, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34π π?? -????上的单调性. 2.已知函数()4sin cos 33f x x x π? ? =++ ???. (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数()4tan sin cos 323f x x x x π π???? =--- ? ?????. (1)求()f x 的最小正周期; (2)求()f x 在区间,44π π?? -????上的单调递增区间及最大值与最小值. 4.设函数()23 3cos sin cos 2f x x x x =+-. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ?? ?? ?? =-+-+ ? ? ??????? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -????上的值域. 6.已知函数()21 3sin cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间. 7.已知函数()4cos sin 16f x x x π??=+- ???,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ??-????上的最大值和最小值. 8.设函数()()sin 3cos ?cos 2tan x x x f x x π??+- ???=. (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ???上的单调性. 9.已知函数()223sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π??=-+ ???. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ??= ???, 1a =, 3bc =,求b c +的值. 12.已知函数.

任意角的三角函数知识点复习

任意角的三角函数 任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐 标为(,)x y ,它与原点的距离为(0)r r ==>,那么 sin y r α= ;cos x r α=;tan y x α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。 求解三角函数值 一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角 ) Z (tan )2tan()Z (cos )2cos() Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。 练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。 例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6 π - ,

练: .____________tan600o 的值是 D 3.D 3.C 3 3 .B 33.A -- 例3.确定下列三角函数值的符号: (1)cos 250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3 π . 练: 确定下列三角函数值的符号 (1)cos250?; (2)sin()4 π -; (3)tan(672)?-; (4)tan 3π. 例4 若θ是第二象限角,则( ) A.sin 2 θ >0 B.cos 2 θ <0 C.tan 2 θ >0 D.cot 2 θ<0 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交 与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

三角函数常用公式表

1 1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; 2)、与 终边相同的角,连同角 在内,都可以表示为集合 { | k 360 ,k Z } ( 3)、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限, 就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。 2)、度数与弧度数的换算: 180 弧度, 1 弧度 (180) 57 18 3)、弧长公式: l | |r 是角的弧度数) x 2 P (x 0 y y ) 2 y sin cos y r x r tan cot y x x y sec csc r x r y + y + y + y + O x O x + O + x (3)、 特殊角的三角函数值 sin cos tan 的角度 0 30 45 60 90 120 135 150 180 270 360 的弧度 0 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 10 2 2 2 2 2 2 cos 1 3 2 1 0 1 2 3 1 01 2 2 2 2 2 2 tan 3 1 3 3 1 3 0 —0 3 3 扇形面积: 0 x 各象限的符号: 3、三角函数 2)、 4式 1)平方关系: 2)商数关系: 倒数关 系: 3) S 1lr 2 (1)、定 义: 2| |r 2 如图) sin 2 cos 2 1 tan sin tan cot cos 1 tan 2 2 sec cot cos sin sin csc 1 cot 2 2 csc cos sec cot 4)同角三角函数的常见变 形: 活用 1” ) ①、 sin 2 2 cos sin 1 cos 2 2 cos 2 sin cos 1 sin 2 ; ② tan cot cos 2 sin 2 sin cos sin2 2 , cot tan cos 2 sin 2 sin cos 2cos2 2cot2 sin2

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

3知识讲解_任意角的三角函数_基础

任意角的三角函数 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题。 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α= ≠. 要点诠释: 三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=。 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正。 要点三:诱导公式一 终边相同的角的同一三角函数的值相等 sin(2)sin k απα+?=,其中k Z ∈ cos(2)cos k απα+?=,其中k Z ∈ tan(2)tan k απα+?=,其中k Z ∈ 要点诠释: 该组公式说明了终边相同的角的同一三角函数的值相等这个结论。要注意在三角函数中,角和三角函

数值的对应关系是多值对应关系,即给定一个角,它的三角函数值是唯一确定的(除不存在的情况);反之,给定一个三角函数值,有无穷多个角和它对应. 要点四:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边(或其反向延长线)相交于点T (或T '),则有向线段0M 、0N 、AT(或AT ')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段. 要点诠释: 三条有向线段的位置: 正弦线为α的终边与单位圆的交点到x 轴的垂直线段; 余弦线在x 轴上; 正切线在过单位圆与x 轴的正方向的交点的切线上; 三条有向线段中两条在单位圆内,一条在单位圆外. 【典型例题】 类型一:三角函数的定义 例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值。 【思路点拨】先根据点P (-4a ,3a )求出OP 的长;再分a >0,a <0两种情况结合任意角的三角函数的定义即可求出结论 【答案】35,45-,34-或35-,45,34 - 【解析】 5||r a ==。 若a >0,则r=5a ,α是第二象限角,则 33sin 55 y a r a α= ==, 44cos 55 x a r a α-===-, 33tan 44 y a x a α===--, 若a <0,则r=-5a ,α是第四象限角,则 3sin 5α=-,4cos 5α=,3tan 4α=-。 【总结升华】 本题主要考查三角函数的定义和分类讨论的思想。三角函数值的大小与点在角的终边上的位置无关,只与角的大小有关。要善于利用三角函数的定义及三角函数的符号规律解题。 举一反三: 【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值。 【答案】1221,22 --

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

三角函数辅助角公式化简

精选文库 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

精选文库 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2 x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α αα α2tan 1tan 22tan -= 45 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()βαβ αβαtan tan 1tan tan tan ±=± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=αα tan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=αα tan 45tan 1tan 45tan ?+-?= tan (4π -α) 8

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2π-α) = cos α cos (2 π-α) = sin α sin (2π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π ω=. 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○1).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○2),2sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○1B A B A B A cos cos ,sin sin <>?>; ○2三内角成等差数列00120,60=+=?C A B 2(ABC ) sin sin sin a b c R R A B C ===?是的外接圆半径2 222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 2 22 222 cos 2 cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-=

最最完整版--三角函数公式大全

三角函数与反三角函数 第一部分三角函数公式 ·两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) ·辅助角公式: Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A) Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B) ·万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) ·降幂公式 sin^2α=(1-cos(2α))/2=versin(2α)/2 cos^2α=(1+cos(2α))/2=covers(2α)/2 tan^2α=(1-cos(2α))/(1+cos(2α)) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ -tanγ·tanα) ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB

三角函数辅助角公式化简

三角函数辅助角公式化简

8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? + - ? ?? = . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2 π?? ?? ? 上的单调性. 9.已知函数()22 3sin cos 2cos 1 f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数 . (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求 实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π? ?=-+ ? ? ?. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02 A f ?? = ??? , 1a =, 3 bc =b c +的值.

12.已知函数. (1)求函数的单调增区间; (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使取最大值时的集合;(2)已知中,角的边分别为,若,求的最小值. 14.已知()()1 3sin cos cos 2 f x x x x ωωω =+-,其中0 ω>,若() f x的最小正周期为4π. (1)求函数() f x的单调递增区间; (2)锐角三角形ABC中,() 2cos cos a c B b C -=,求() f A的取值范围. 15.已知a r=(sinx,cosx),b r=(cosφ,sinφ)(|φ|<).函数 f(x)=a r ?b r 且f( 3 π -x)=f(x). (Ⅰ)求f(x)的解析式及单调递增区间;

相关文档
相关文档 最新文档