文档库 最新最全的文档下载
当前位置:文档库 › 如何用matlab建立环境模型及源代码

如何用matlab建立环境模型及源代码

如何用matlab建立环境模型及源代码
如何用matlab建立环境模型及源代码

环境建模

机器人的采摘环境,根据机械手末端识别技术,将识别的树叶,树枝等障碍物栅格化,不足一格的近似为一格,建立二维环境模型。采摘环境的建立:建立环境地图的方法主要有栅格法、自由空间法、广义锥法、链接图法、几何信息法等。【基于蚁群算法的移动机器人路径规划技术的研究刘杰闫清东】

3.1.1 可视图法

可视图法将环境中的任意障碍物描述成不规则多边形,机器人或者机械手描述为一个质点,并把起始点、目标点以及障碍物简化成的不规则多边形的顶点连接起来,同时去除和障碍物相交的直线,那么剩下的直线都是与障碍物无碰的,机器人在这些直线上选择路径就不会与障碍物发生碰撞,要搜索避障路径,只需要在这些直线上通过一些搜索算法确定路径点即可。但是,随着起始点和目标点位置的改变,可视图法就必须根据环境来重新定义,这样增加了计算量,降低了灵活性。

3.1.2 自由空间法

在自由空间中一般采用凸区法、三角形法、广义锥法等描述障碍物,并构造连通图进行路径规划。首先,它把环境空间中的障碍物简单描述成自由空间中的不规则多边形,然后,利用某些图论方法建立连通图,最后在建立好的连通图上搜索合适的路径点以至形成一条可行走的路径。这种方法优点是在确定工作环境空间以后,无论起始点和目标点的位置怎么改变,环境模型也不需要重新建立,其缺点是随着障碍物增加,算法的计算时间几何级变长,而且往往搜索到的路径都不是最优的。同时,自由空间法一般应用于二维平面空间中进行路径规划,在三维空间中很难建立环境模型,如果非要应用到三维空间中,计算量将是二维空间的无数倍。

3.2 栅格法

栅格法建立环境地图的原理是M.B.Metea首先提出的,在平面而为坐标中,用0

或者1表示障碍物的方法来建立环境地图,将自由空间和障碍物分别表示为栅格块的集合。用栅格方法表示二维的环境信息十分简便有效,应用也很广,因此,本文采用栅格法对环境进行建模。空白栅格表示自由空间也就是机器人能够自由通过的地方,而阴影栅格表示的是障碍物空间【基于栅格法的矿难搜索机器人全局路径规划与局部避障朱磊,樊继壮,赵杰,吴晓光,刘罡】

栅格法是将环境空间分割成许许多多的单元格,假设一个单元格中处于障碍物范围,那么这个单元格就作为障碍栅格存在,不是障碍栅格的就作为自由栅格存在。这个方法将环境划分的较为简单,但是算法的计算量会随着单元格的数量的增加而指数级上升,不能满足某些特定的时间要求。栅格划分的多少决定了环境信息的清晰程度,栅格划分多了,环境分辨率高,在障碍物较多的时候容易找到最优路径,但是计算量大,容易受到外界因素干扰,路径规划需要的时间长;栅格划分少了,环境信息比较模糊,算法搜索时间短,但是在障碍物较多时不容易发现最优路径,因此,栅格数量的多少是栅格法需要考虑的重要因素之一。

【M.B.Metea, Route planning for iiintelligent autonomous land vehicles using hierarchical terrain representation [C].In:Proc of IEEE IntConf on Robotics and Automation,1987:1947~1952】。

3.3 matlab仿真建立环境模型

采用栅格法将机器人活动的二维平面区域划分为一个N行N列的棋盘空间。机器人在栅格之间运动,每次从当前位置移动到临近的一个栅格上。每个栅格长度设定为一个距离单位。机器人当前所处位置用所在的栅格二维坐标P(x,y)表示,其中,x∈{1,2,?,N),y∈{1,2,?,N)。栅格的划分尺度依据机器人的尺寸而定,应能容纳机器人,并离栅格的边界留有适当间距。障碍物用所占据的栅格表示,当不满一个栅格时按一个栅格计算。这样使得在栅格之间运动的机器人可

环境。根据基本采摘环境,将环境划分为32?32像素的栅格,通过32?32的[0 1]矩阵G与之相对应,建立环境中的障碍物和自由空间。

如果该元素为1,则该栅格为黑色:

if G(i,j)==1

x1=j-1;y1=32-i;

x2=j;y2=32-i;

x3=j;y3=32-i+1;

如果该元素为0,则该栅格为白色:

else

x1=j-1;y1=32-i;

x2=j;y2=32-i;

x3=j;y3=32-i+1;

x4=j-1;y4=32-i+1

用matlab进行仿真,如图所示:

栅格法建立机器人采摘环境模型

栅格法具有创建地图容易,方便于维护和修改等特点而在路径规划中广泛用

于建立环境模型。

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

云模型matlab程序

1.绘制云图 Ex=18 En=2 He=0.2 hold on for i=1:1000 Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); plot(x(i),y(i),'*') end Ex=48.7 En=9.1 He=0.39 hold on for i=1:1000 Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); plot(x(i),y(i),'*')

end 2.求期望、熵及超熵 X1=[51.93 52.51 54.70 43.14 43.85 44.48 44.61 52.08]; Y1=[0.91169241573 0.921875 0.96032303371 0.75737359551 0.76983848315 0.7808988764 0.78318117978 0.9143258427]; m=8; Ex=mean(X1) En1=zeros(1,m); for i=1:m En1(1,i)=abs(X1(1,i)-Ex)/sqrt(-2*log(Y1(1,i))); end En=mean(En1); He=0; for i=1:m He=He+(En1(1,i)-En)^2; end En=mean(En1) He=sqrt(He/(m-1)) 3.平顶山so2环境: X1=[0.013 0.04 0.054 0.065 0.07 0.067 0.058 0.055 0.045]; Y1=[0.175675676 0.540540541 0.72972973 0.878378378

DEA的Matlab程序(数据包络分析)

模型((P C2R)的MATLAB程序 clear X=[]; %用户输入多指标输入矩阵X Y=[]; %用户输入多指标输出矩阵Y n=size(X',1); m=size(X,1); s=size(Y,1); A=[-X' Y']; b=zeros(n, 1); LB=zeros(m+s,1); UB=[]; for i=1:n; f= [zeros(1,m) -Y(:,i)']; Aeq=[X(:,i)' zeros(1,s)]; beq=1; w(:,i)=LINPROG(f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU;的最佳权向量w; E(i, i)=Y(:,i)'*w(m+1:m+s,i); %求出DMU i的相对效率值E ii end w %输出最佳权向量 E %输出相对效率值E ii Omega=w(1:m,:) %输出投入权向量。 mu=w(m+1:m+s,:) %输出产出权向量。 模型(D C2R)的MATLAB程序 clear X=[]; %用户输入多指标输入矩阵X Y=[]; %用户输入多指标输出矩阵Y n=size(X',1); m=size(X,1); s=size(Y,1); epsilon=10^-10; %定义非阿基米德无穷小 =10-10 f=[zeros(1,n) -epsilon*ones(1,m+s) 1]; %目标函数的系数矩阵: 的系数为0,s-,s+的系数为- e, 的系数为1; A=zeros(1,n+m+s+1); b=0; %<=约束; LB=zeros(n+m+s+1,1); UB=[]; %变量约束; LB(n+m+s+1)= -Inf; %-Inf表示下限为负无穷大。 for i=1:n; Aeq=[X eye(m) zeros(m,s) -X(:,i) Y zeros(s,m) -eye(s) zeros(s,1)]; beq=[zeros(m, 1 ) Y(:,i)]; w(:,i)=LINPROG (f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU的最佳权向量w; end w %输出最佳权向量 lambda=w(1:n,:) %输出 s_minus=w(n+1:n+m,:) %输出s- s_plus=w(n+m+1:n+m+s,:) %输出s+ theta=w(n+m+s+1,:) %输出

云模型简介及个人理解matlab程序

云模型简介及个人理解m a t l a b程序 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。在众多的不确定性中,和是最基本的。针对和在处理不确定性方面的不足,1995年我国工程院院士教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。自李德毅院士等人提出云模型至今,云模型已成功的应用到、、、智能控制、等众多领域. 设是一个普通集合。 , 称为论域。关于论域中的模糊集合,是指对于任意元素都存在一个有稳定倾向的随机数,叫做对的隶属度。如果论域中的元素是简单有序的,则可以看作是基础变量,隶属度在上的分布叫做隶属云;如果论域中的元素不是简单有序的,而根据某个法则,可将映射到另一个有序的论域上,中的一个且只有一个和对应,则为基础变量,隶属度在上的分布叫做隶属云[1] 。 数字特征

云模型表示自然语言中的基元——语言值,用云的数字特征——期望Ex,熵En和超熵He表示语言值的数学性质 [3] 。 期望 Ex:云滴在论域空间分布的期望,是最能够代表定性概念的点,是这个概念量化的最典型样本。 熵 En:“熵”这一概念最初是作为描述热力学的一个状态参量,此后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度。在云模型中,熵代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定。一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围。用同一个数字特征来反映随机性和模糊性,也必然反映他们之间的关联性。 超熵 He:熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。反映了每个数值隶属这个语言值程度的凝聚性,即云滴的凝聚程度。超熵越大,云的离散程度越大,隶属度的随机性也随之增大,云的厚度也越大。

(图论)matlab模板程序

(图论)matlab模板程序

第一讲:图论模型 程序一:可达矩阵算法 %根据邻接矩阵A(有向图)求可达矩阵P(有向图) function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; %将不为0的元素变为1 P; 程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵 W表示程序运行结束后的结果 f=0表示把邻接矩阵转换为关联矩阵 f=1表示把关联矩阵转换为邻接矩阵 %无向图的关联矩阵和邻接矩阵的相互转换 function W=incandadf(F,f) if f==0 %邻接矩阵转换为关联矩阵 m=sum(sum(F))/2; %计算图的边数 n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; %给边的始点赋值为1 W(j,k)=1; %给边的终点赋值为1 k=k+1; end end end elseif f==1 %关联矩阵转换为邻接矩阵 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; %存在边,则邻接矩阵的对应值为1 W(a(2),a(1))=1;

end else fprint('Please imput the right value of f'); end W; 程序三:有向图关联矩阵和邻接矩阵互换算法 %有向图的关联矩阵和邻接矩阵的转换 function W=mattransf(F,f) if f==0 %邻接矩阵转换为关联矩阵 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 %由i发出的边,有向边的始点 W(i,k)=1; %关联矩阵始点值为1 W(j,k)=-1; %关联矩阵终点值为-1 k=k+1; end end end elseif f==1 %关联矩阵转换为邻接矩阵 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); %有向边的两个顶点 if F(a(1),i)==1 W(a(1),a(2))=1; %有向边由a(1)指向a(2) else W(a(2),a(1))=1; %有向边由a(2)指向a(1) end end else fprint('Please imput the right value of f'); end W;

云模型简介及个人理解matlab程序文件

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。在众多的不确定性中,随机性和模糊性是最基本的。针对概率论和模糊数学在处理不确定性方面的不足,1995年我国工程院院士李德毅教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。自李德毅院士等人提出云模型至今,云模型已成功的应用到自然语言处理、数据挖掘、 设是一个普通集合。 , 称为论域。关于论域中的模糊集合,是指对于任意元素都存在一个有稳定倾向的随机数,叫做对的隶属度。如果论域中的元素是简单有序的,则可以看作是基础变量,隶属度在上的分布叫做隶属云;如果论域中的元素不是简单有序的,而根据某个法则,可将映射到另一个有序的论域上,中的一个且只有一个和对应,则为基础变量,隶属度在上的分布叫做隶属云[1] 。 数字特征 云模型表示自然语言中的基元——语言值,用云的数字特征

——期望Ex,熵En和超熵He表示语言值的数学性质[3] 。 期望 Ex:云滴在论域空间分布的期望,是最能够代表定性概念的点,是这个概念量化的最典型样本。 熵 En:“熵”这一概念最初是作为描述热力学的一个状态参量,此后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度。在云模型中,熵代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定。一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围。用同一个数字特征来反映随机性和模糊性,也必然反映他们之间的关联性。 超熵 He:熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。反映了每个数值隶属这个语言值程度的凝聚性,即云滴的凝聚程度。超熵越大,云的离散程度越大,隶属度的随机性也随之增大,云的厚度也越大。 1.绘制云图 Ex=18

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计 四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 摘要:网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。通过运用Matlab软件和NodeXL网络分析软件,计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 关键字:最近邻耦合网络;ER随机网络;WS小世界网络;BA无标度网络;Matlab;NodeXL。

四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 1.概述 1.网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2.最近邻耦合网络的概述 如果在一个网络中,每一个节点只和它周围的邻居节点相连,那么就称该网络为最近邻耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的N个节点,其中每K个邻居节点相连,这里K是一个偶数。这类网络的一个重要特征个节点都与它左右各/2 就是网络的拓扑结构是由节点之间的相对位置决定的,随着节点位置的变化网络拓扑结构也可能发生切换。 NCN的Matlab实现: %function b = ncn(N,K) %此函数生成一个有N个节点,每个节点与它左右各K/2个节点都相连的最近邻耦合网络 %返回结果b为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

基于云模型的粒计算方法研究

第6章从云模型理解模糊集合的争论与发展

第1章基于云模型的粒计算方法应用 云模型是一个定性定量转换的双向认知模型,正向高斯云和逆向高斯云算法实现了一个基本概念与数据集合之间的转换关系;本文基于云模型和高斯变换提出的高斯云变换方法给出了一个通用的认知工具,不仅将数据集合转换为不同粒度的概念,而且可以实现不同粒度概念之间的柔性切换,构建泛概念树,解决了粒计算中的变粒度问题,有着广阔的应用前景。 视觉是人类最重要的感觉,人类所感知的外界信息至少有80%以上都来自于视觉[130]。图像分割[131]是一种最基本的计算机视觉技术,是图像分析与理解的基础,一直以来都受到人们的广泛关注。目前图像的分割算法有很多,包括大大小小的改进算法在内不下千种,但大致可以归纳为两类[132]。第一类是采用自顶向下的方式,从数学模型的选择入手,依靠先验知识假定图像中的部分属性特征符合某一模型,例如马尔科夫随机场、引力场等,利用模型描述图像的邻域相关关系,将图像低层的原始属性转换到高层的模型特征空间,进而建模优化求解所采用模型的参数,通常是一个复杂度非常高的非线性能量优化问题。在特征空间对图像建模,其描述具有结构性、分割结果也一般具有语义特征,但是由于对数据的未知性、缺乏足够先验知识的指导,导致模型的参数选择存在一定的困难。第二类是采用自底向上的方式,从底层原始数据入手,针对图像灰度、颜色等属性采用数据聚类的方法进行图像分割,聚类所采用的理论方法通常包括高斯变换、模糊集、粗糙集等;或者预先假设图像的统计特性符合一定的分类准则,通过优化准则产生分割结果,例如Otsu方法的最大方差准则[133][134]、Kapur方法的最大熵准则[135][136]等。这类方法虽然缺乏语义信息表达,但是直接在数据空间建模,方法更具普适性和鲁棒性。 随着计算机视觉研究的深入,简单的图像分割已经不能满足个性化的需求,有时候人们恰恰兴趣的是图像中亦此亦彼的那些不确定性区域,基于云模型的粒计算方法是一种不确定性计算方法,发现图像中存在的不确定性区域是它的一个重要能力。如何模拟人类自然视觉中的认知能力进行图像分割一直以来都是一个难点问题,而基于高斯云变换的可变粒计算正是用来模拟人类认知中的可变粒计算过程,因此可以利用高斯云变换对自然视觉认知能力中选择性注意能力进行形式化。武汉大学秦昆教授等曾基于云综合、云分解等云运算实现图像分割,正如第5章中的分析结果,基于内涵的概念计算方法随着层次的提升,概念脱离原始数据会增加误分率,甚至失效,而且无法实现自适应地概念数量和粒度优化。

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

matlab图论程序算法大全

精心整理 图论算法matlab实现 求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 for while for for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路

for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 while if elseif if if pd=0; 值 t=n; if elseif if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end%如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用

正向云发生器代码(matlab)

正向云发生器matlab代码 %正向云算法:由数字特征到定量数据表示 %直接在程序中固定EX/EN/HE的值 Ex=0; En=1; He=0.2; n=2000; X = zeros(1,n); %产生一个1*n型矩阵,其元素都为0 Y = zeros(1,n); X= normrnd ( En, He, 1, n); %产生一个1*n型正态随机数矩阵,EX为期望,ENN为方差for i=1:n Enn=X(1,i); X(1, i) = normrnd ( Ex, Enn, 1) ; %产生一个正态随机数,EX为期望,ENN为方差(1*1型) Y(1, i) = exp ( - (X(1, i) - Ex) ^2 / (2* Enn^2) ) ; end plot(X(1,:),Y(1,:),'r.'); %画图语句 %倘若X(1,i)是确定的随机数时,本代码是自己输入确定值 %保存为.m文件时,文件名要是字母名,不要中文名 disp('- - - - -云发生器程序开始- - - - -'); Ex = input('输入期望值Ex:'); En = input('输入熵值En:'); He = input('输入超熵值He:'); n = input('输入需重复计算次数:'); X = zeros(1,n); %产生一个1*n型矩阵,其元素都为0 Y = zeros(1,n); X= normrnd ( En, He, 1, n); %产生一个1*n型正态随机数矩阵,EX为期望,He为方差Xi = input('输入随机数X(1,i):'); %手动输入固定随机数X for i=1:n

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

图论举例MATLAB

例1 某公司在六个城市621,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。(∞表示无直接航路),请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。 ? ? ??? ? ? ? ? ?????????∞∞∞∞∞∞ 055252510550102025251001020402010015252015050102540500 用矩阵n n a ?(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、2index 、 d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。其中分量 ?? ?=顶点未标号 当第顶点已标号 当第i i i pb 01)(; )(2i index 存放始点到第i 点最短通路中第i 顶点前一顶点的序号; )(i d 存放由始点到第i 点最短通路的值。 求第一个城市到其它城市的最短路径的Matlab 程序如下: clear; clc; M=10000; a(1,:)=[0,50,M,40,25,10]; a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); a=a+a'; pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0;temp=1; while sum(pb)=2

云模型实现图形-MATLAB程序

一维云模型 程序: clc clear Ex=170;En=5;He=0.5; n=5000; for i=1:n Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); end plot(x,y,'.r') title('5000个男生身高的一维云图') ylabel('确定度'); xlabel('身高值'); axis([150,190,0,1]) grid on 一维: clear vars;clc;close all; Ex1=-8; En1=0.7; He1=0.2; n1=200; Ex2=2.2; En2=2; He2=0.5; n2=800; Ex3=18; En3=4; He3=0.7; n3=1500; En1_t = normrnd(En1,He1,n1,1); data1 = normrnd(Ex1,En1_t,n1,1);

mu1 = exp(-0.5*((data1-Ex1)./En1_t).^2); En2_t = normrnd(En2,He2,n2,1); data2 = normrnd(Ex2,En2_t,n2,1); mu2 = exp(-0.5*((data2-Ex2)./En2_t).^2); En3_t = normrnd(En3,He3,n3,1); data3 = normrnd(Ex3,En3_t,n3,1); mu3 = exp(-0.5*((data3-Ex3)./En3_t).^2); figure(1); plot(data1,mu1,'.b',data2,mu2,'*r',data3,mu3,'+k'); axis equal; 二维云模型 程序: clc clear Ex1=170;En1=5;He1=0.5; Ex2=65;En2=3;He2=0.2; n=5000; for i=1:n

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码 求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd算法: 设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号. ①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向② ②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③. ③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②. 最短路线可由r ij得到. 例1求图6-4中任意两点间的最短路. 图6-4 解:用Warshall-Floyd算法, MA TLAB程序代码如下: n=8;A=[0 2 8 1 Inf Inf Inf Inf 2 0 6 Inf 1 Inf Inf Inf 8 6 0 7 5 1 2 Inf 1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6 Inf Inf 2 9 Inf 4 0 3 Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞ D=A; %赋初值 for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值 for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)

灰色系统预测GM(1,1)模型及其Matlab实现

灰色系统预测GM(1,1)模型及其Matlab 实现 预备知识 (1)灰色系统 白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。 (2)灰色预测 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。 目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。 1 灰色系统的模型GM(1,1) 1.1 GM(1,1)的一般形式 设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列: X (1)={X (1)(k ),k =1,2,…,n} 其中 X (1) (k )= ∑ =k i 1 X (0)(i) =X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程: dt dX )1(十) 1(aX =u (2) 即GM(1,1)模型。 上述白化微分方程的解为(离散响应): ∧ X (1)(k +1)=(X (0)(1)- a u )ak e -+a u (3) 或 ∧ X (1)(k )=(X (0)(1)- a u ))1(--k a e +a u (4)

图论matlab程序

第一讲:图论模型 程序一:可达矩阵算法 function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; P; 程序二:关联矩阵和邻接矩阵互换算法 function W=incandadf(F,f) if f==0 m=sum(sum(F))/2; n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; W(a(2),a(1))=1; end else fprint('Please imput the right value of f'); end W;

程序三:有向图关联矩阵和邻接矩阵互换算法 function W=mattransf(F,f) if f==0 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else W(a(2),a(1))=1; end end else fprint('Please imput the right value of f'); end W;

-word版本hslogic_利用云模型估计车速

1.在隧道内放置多个地感线圈(间距相同),车辆通过时、对通过的相邻两个线圈(或单线圈)的脉冲信号数据进行实时采集,首先利用云模型算法(正向云与逆向云算法结合)或其他,计算得到车速的估计值,将车速估计结果与行车时间作为车辆行驶位置判定的依据,再采用云推理得到车辆行驶位置的估计值,对所估计的结果验证,实现对车辆位置的实时精确估计。 2.最后还想验证一下估计结果的准确度 3.做一下参数寻优,对比结果 4.补充要求:我想用脉冲频率波形数据哦,因为有个原始波形的图更好的。。 (我当时说给你一篇论文,用那个上面的数据。。不知道能不能用。。。见附带的论文) 二、课题解决思路简介 基于"隧道内放置多个地感线圈",主要是汽车通过多个线圈,产生不同时刻的脉冲,然后计算每个脉冲之间的时间差,来获得车速的计算。 这里,我们主要需要的数据时每个线圈之间的距离参数以及每个脉冲之间的时间间隔,然后我们通过云模型来算法得到车速的估计值。根据得到的车速,我们可以得到最后的位置。 然后,我们可以根据论文最后一章的分析方法来分析最后结果的准确度。 对于参数优化,主要是针对云模型的初始参数,我们使用随机数,然后通过PSO进行迭代优化,从而获得最佳的参数,并估算得到最佳的值。 最后,将普通算法得到的结果和PSO优化之后的结果进行对比,从而验证优化算法的优势。 最后,你需要的是脉冲频率波形,这个,我们在设计的时候,进行处理,可以保证。 三、课题设计介绍和仿真说明 3.1正向云和逆向云 首先介绍一下基本的云模型,正向云和逆向云,其基本的理论如下所示: 云模型的发生器就是指云的生成算法,发生器的形式可以有很多种,一般都采用软件的形式加以实现。云的发生器大体上可以分为正向云发生器和逆向云发生器。正向发生器是指从定性到定量之间的转换模型,即由云的三个数字特征产生云滴的具体过程。图1为正向云模型发生器示意图。

超全图论matlab程序

超全的图论程序 关注微信公众号“超级数学建模”,教你做有料、有趣的数模人 程序一:可达矩阵算法 function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; P; 程序二:关联矩阵和邻接矩阵互换算法 function W=incandadf(F,f) if f==0 m=sum(sum(F))/2; n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; W(a(2),a(1))=1; end else fprint('Please imput the right value of f'); end W;

程序三:有向图关联矩阵和邻接矩阵互换算法 function W=mattransf(F,f) if f==0 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else W(a(2),a(1))=1; end end else fprint('Please imput the right value of f'); end W;

相关文档