文档库 最新最全的文档下载
当前位置:文档库 › 2018年高考数学专题复习构造函数解决高考导数问题

2018年高考数学专题复习构造函数解决高考导数问题

2018年高考数学专题复习构造函数解决高考导数问题
2018年高考数学专题复习构造函数解决高考导数问题

构造函数解决高考导数问题

1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

B .)43,23[e -

C .)43,23[e

D .)1,23[e

2. (2016·课标全国II 卷理)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =.

3.(2016·北京理)(本小题13分)

设函数f (x)=x a x e -+bx ,曲线y =f (x)在点(2,f (2))处的切线方程为y =(e -1)x +4, (I )求a ,b 的值; (II) 求f (x)的单调区间.

4.(2017·全国III 卷文)(12分) 已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3

()24f x a

≤--.

5. (2016?四川卷文)(本小题满分14分)

设函数f (x)=ax 2-a -ln x ,g (x )=1x -e

e x ,其中a ∈R ,e =2.718…为自然对数的底数.

(Ⅰ)讨论f (x)的单调性; (Ⅱ)证明:当x >1时,g (x )>0;

(Ⅲ)确定a 的所有可能取值,使得f (x)>g (x )在区间(1,+∞)内恒成立.

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--.

(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.

7.(2017·天津文)(本小题满分14分)

设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;

(Ⅱ)已知函数()y g x =和x y e =的图像在公共点(x 0,y 0)处有相同的切线,

(i )求证:()f x 在0x x =处的导数等于0;

(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.

8.(2016·江苏)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12

①求方程f (x )=2的根;

②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.

9.(2016·山东理) (本小题满分13分) 已知()2

21

()ln ,x f x a x x a R x -=-+

∈. (I )讨论()f x 的单调性;

(II )当1a =时,证明()3

()'2

f x f x +>对于任意的[]1,2x ∈成立.

10. (2017·江苏文)(本小题满分16分) 已知函数()3210f

x =x ax bx (a ,b R)+++>∈有极值,且导函数()f x '的极值点

是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;

(3)若()f x ,()f x '这两个函数的所有极值之和不小于7

-2

,求a 的取值范围.

构造函数解决高考导数问题答案

1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

B .)43,23[e -

C .)43,23[e

D .)1,23[e

【答案】D

【解析】由题意,存在唯一的整数x 0,使得f (x 0)<0,即存在唯一的整数x 0,使0x e (2x 0-1)<a (x 0-1).

设g (x )=e x (2x -1),h (x )=a (x -1).g ′(x )=e x (2x -1)+2e x =e x (2x +1),

从而当x ∈????-∞,-12时,g (x )单调递减;当x ∈????-1

2,+∞时,g (x )单调递增. 又h (x )=a (x -1)必过点(1,0),g (0)=-1,当g (0)=h (0)时,a =0-(-1)

1-0=1.

而g (-1)=-3e ,当g (-1)=h (-1)时,a =0-???

?-3

e 1-(-1)=3

2e ,

要满足题意,则3

2e

≤a <1,选D.

【点评】关键点拨:把“若存在唯一的整数x 0,使得f (x 0)<0”转化为“若存在唯一的整数x 0,使得0x e (2x 0-1)<a (x 0-1)”.

测训诊断:本题难度较难,主要考查导数知识的应用.考查转化与化归思想.

2.(2016·课标全国II 卷理)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =. 【答案】1-ln2

【解析】设y =kx +b 切y =ln x +2的切点为(x 1,y 1),切y =ln(x +1)的切点为(x 2,y 2).由导数的几何意义和切点的特征可知?????kx 1

+b =ln x 1+2=y 1,k =1

x 1,①?????kx 2+b =ln (x 2+1)=y 2,k =1x 2+1

.② 由①消去x 1,y 1整理可得b =1-ln k ,③ 由②消去x 2,y 2整理可得b =-ln k +k -1.④

联立③④可得1-ln k =-ln k +k -1,∴k =2,∴b =1-ln k =1-ln2.

【点评】关键点拨:关于函数的切线问题,我们要利用导数的几何意义,构建等量关系.还需注意切点既在函数图像上,也在切线上.对于切点不明确的,需要设出切点,再合理表达

求解.

测训诊断:(1)利用导数的几何意义求解切线问题,是高中导数知识的重要部分,应熟练掌握基本题型,在此基础上加强综合题的训练.(2)本题有一定深度,难度,考查了学生的知识迁移能力和数据处理能力,争取得分.

3.(2016·北京理)(本题满分13分)

设函数f (x)=x a x e -+bx ,曲线y =f (x)在点(2,f (2))处的切线方程为y =(e -1)x +4, (I )求a ,b 的值; (II) 求f (x)的单调区间.

解:(1)因为f (x)=xe a -x +bx ,所以f ′(x)=(1-x )e a -x

+b .

依题设,有?????f (2)=2e +2,f ′(2)=e -1,即?????2e a -2

+2b =2e +2,-e a -2+b =e -1.

解得a =2,b =e .

(2)由(1)知f (x)=xe 2-x +ex ,

由f ′(x)=e 2-x (1-x +e x -1)及e 2-x

>0知,f ′(x)与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1

.令g ′(x )=0,得x =1.

所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;

当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x)>0,x ∈(-∞,+∞). 故f (x)的单调递增区间为(-∞,+∞).

【点评】测训诊断:(1)本题难度易,主要考查导数的几何意义和函数单调区间的求解. (2)本题若失分,多是对导致的概念理解不清或计算出错.

4.(2017·全国III 卷文)(12分) 已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3

()24f x a

≤-

-.

解:(1))0()

1)(12(1)12(2)('2>++=+++=x x

x ax x x a ax x f

当0≥a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增 当0

单调递增,在),21

(+∞-a

单调递减. (2)由(1)知,当0

()()ln 1224f x f a a a

??=-=--- ??? 1311

()(2)ln()12422f a a a a

-

--=-++-, 令t t y -+=1ln (021>-

=a t ),令011

'=-=t

y ,解得1=t ∴y 在)1,0(单调递增,在),1(+∞单调递减. ∴max (1)0y y y ≤==, 即)243()(max +-≤a x f ,∴243)(--≤a

x f .

5.(2016?四川卷文)(本题满分14分)

设函数f (x)=ax 2-a -ln x ,g (x )=1x -e

e x ,其中a ∈R ,e =2.718…为自然对数的底数.

(Ⅰ)讨论f (x)的单调性; (Ⅱ)证明:当x >1时,g (x )>0;

(Ⅲ)确定a 的所有可能取值,使得f (x)>g (x )在区间(1,+∞)内恒成立.

解:(1)f ′(x)=2ax -1x =2ax 2

-1

x

(x >0).

当a ≤0时,f ′(x)<0,f (x)在(0,+∞)内单调递减. 当a >0时,由f ′(x)=0得x =

1

2a

. 当x ∈?

??

?

0,

12a 时,f ′(x)<0,f (x)单调递减; 当x ∈

????12a ,+∞时,f ′(x)>0,f (x)单调递增. (2)证明:令s (x )=e x -1-x ,则s ′(x )=e x -1-1.

当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -e e x >0.

(3)由(2)知,当x >1时,g (x )>0.

当a ≤0,x >1时,f (x)=a (x 2-1)-ln x <0.

故当f (x)>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0

2a

>1.

由(1)有f ????12a 0. 所以此时f (x)>g (x )在区间(1,+∞)内不恒成立. 当a ≥1

2

时,令h (x )=f (x)-g (x )(x >1),

则h ′(x )=2ax -1x +1x 2-e 1-x

>x -1x +1x 2-1x =x 3-2x +1x 2>x 2

-2x +1x 2

>0.

因此,h (x )在区间(1,+∞)内单调递增.

又因为h (1)=0,所以当x >1时,h (x )=f (x)-g (x )>0,即f (x)>g (x )恒成立. 综上,a ∈???

?1

2,+∞. 【点评】关键点拨:第(1)问中对a 的讨论是关键,第(3)问中恒成立求参数化归为函数求最值,最值的求解是难点.

测训诊断:(1)本题难度较大,主要考查分类讨论求单调区间、构造函数证明不等式、不等式恒成立求参数取值范围问题.(2)考生失分主要体现两点:①分类讨论不全面;②在第(3)问中不等式恒成立求参数范围转化为函数求最值时,计算过程出现失误.

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--.

(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 解:(1)f (x)的定义域为(0,+∞),

当a =4时,f (x)=(x +1)ln x -4(x -1),f ′(x)=ln x +1

x -3,f ′(1)=-2,f (1)=0.

所以曲线y =f (x)在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x)>0等价于ln x -a (x -1)

x +1

>0.

设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a

(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.

当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,即g ′(x )>0,

g (x )在(1,+∞)上单调递增,因此g (x )>0;

当a >2时,令g ′(x )=0得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.

由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减, 因此g (x )<0,此时不满足题意. 综上,a 的取值范围是(-∞,2].

【点评】关键点拨:第一问,给定参数a =4,函数f (x)就确定,从而可求出切点为(1,0),再结合导数的几何意义,得到斜率k =f ′(1)=-2,利用点斜式即可求出切线方程.第二问是恒成立问题,可适当转化,另外要注意函数的端点值,这样可以减少讨论的步骤. 测训诊断:(1)利用导数解决相关问题,往往都有一定的深度和广度,本题考查较常规,容易上手,但也不易得满分;(2)导数题区分度较大,要根据自身情况,量力而行,不轻易放弃,规范步骤,把会做的做好,也会有所收获.

7.(2017·天津文)(本小题满分14分)

设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;

(Ⅱ)已知函数()y g x =和e x y =的图像在公共点(x 0,y 0)处有相同的切线,

(i )求证:()f x 在0x x =处的导数等于0;

(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 解:(I )由3

2

4()63()f x x a x x a b =--+-,可得

2()3123(4)3()((4))f x x x a a x a x a '=---=---, ()0,4||14.f x x a x a a a a '===≤-令解得或-.由,得<

当x 变化时,()f x ',()f x 的变化情况如下表:

∴()f x 的单调递增区间为(-∞,a ),(4-a ,+∞)单调递减区间为(a ,4-a ).

(II) (i )因为()(()())x

g x e f x f x ''=+由题意得0

00()()x

x g x e g x e

?=??'=?? 所以0000000(),(()())x x x x f x e e e f x f x e ?=?

?'+=??

00()1()0f x f x =??'=?解得

所以()f x 在0x x =处的导数等于0.

(ii )因为()x g x e ≤,00[11],x x x ∈-+,由0x e >,可得()1f x ≤. 又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点, 由(I )知0x a =.另一方面,由于||1a ≤,故14a a +<-, 由(I )知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立, 从而()x

g x e ≤在00,[11]x x -+上恒成立.

由32()63()14a a f a a a a b =---+=,得32

261b a a =-+,11a -≤≤.

令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-, 令()0t'x =,解得2x =(舍去)或0x =.

因为(1)7t -=-,(1)3t =-,(0)1t =,故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.

8.(2016·江苏理)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12

①求方程f (x )=2的根;

②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解: (1)因为a =2,b =1

2,所以f (x)=2x +2-x

.

①方程f (x)=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0,所以(2x -1)2

=0,于是2x =1,解

得x =0.

②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x)]2

-2.

因为f (2x )≥mf (x)-6对于任意x ∈R 恒成立,且f (x)>0, 所以m ≤[f (x )]2+4

f (x )对于任意x ∈R 恒成立.

而[f (x )]2+4f (x )=f (x)+4

f (x )≥2

f (x )·4

f (x )=4,且[f (0)]2

+4f (0)=4,

所以m ≤4,故实数m 的最大值为4.

(2)因为函数g (x )=f (x)-2有且只有1个零点,

而g (0)=f (0)-2=a 0+b 0

-2=0,

所以0是函数g (x )的唯一零点.

因为g ′(x )=a x

ln a +b x

ln b ,又由01知ln a <0,ln b >0,

所以g ′(x )=0有唯一解x 0=log b a

????-ln a ln b . 令h (x )=g ′(x ),则h ′(x )=(a x

ln a +b x

ln b )′=a x

(ln a )2

+b x

(ln b )2

从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.

若x 0<0,则x 0

x 02

g (log a 2)=a log 2a +b log 2a -2>a log 2

a -2=0,且函数

g (x )在以x 0

2和log a 2为端点的闭区间

上的图像不间断,所以在x 0

2和log a 2之间存在g (x )的零点,记为x 1.

因为0

2<0,

所以x 1<0,与“0是函数g (x )的唯一零点”矛盾.

若x 0>0,同理可得,在x 0

2和log a 2之间存在g (x )的非0的零点,矛盾. 因此,x 0=0.

于是-ln a

ln b =1,故lg a +ln b =0,所以ab =1. 【解析】

【点评】关键点拨:注意分离参数方法在解与函数有关的不等式求参问题中的应用;根据函数零点个数求参数值时,注意应用零点存在定理,利用换元法求解时一定要注意新元的取值范围.

测训诊断:(1)本题难度大,主要考查指数函数、基本不等式、利用导数研究初等函数的单调性及零点问题,考查学生综合运用数学思想分析问题、解决问题的能力以及运算求解能力,

意在让学生得分.(2)本题若出错,一是思路受阻;二是运算错误.

9.(2016·山东理) (本题满分13分) 已知()2

21

()ln ,x f x a x x a R x -=-+

∈. (I )讨论()f x 的单调性;

(II )当1a =时,证明()3

()'2

f x f x +>对于任意的[]1,2x ∈成立 解:(1)f (x)的定义域为(0,+∞),

f ′(x)=a -a x -2x 2+2x 3=(ax 2

-2)(x -1)

x 3

. 当a ≤0时,x ∈(0,1)时,f ′(x)>0,f (x)单调递增,

x ∈(1,+∞)时,f ′(x)<0,f (x)单调递减.

当a >0时,f ′(x)=a (x -1)x 3??

??x -2a ??

??x +

2a .

0<a <2时,

2

a >1,

当x ∈(0,1)或x ∈??

??

2a ,+∞时,f ′(x)>0,f (x)单调递增,

当x ∈????

1,

2a 时,f ′(x)<0,f (x)单调递减.

a =2时,

2

a =1,在x ∈(0,+∞)内,f ′(x)≥0,f (x)单调递增. a >2时,0<

2

a <1,

当x ∈????

0,2a 或x ∈(1,+∞)时,f ′(x)>0,f (x)单调递增, 当x ∈?

???

2a ,1时,f ′(x)<0,f (x)单调递减.

综上所述,

当a ≤0时,f (x)在(0,1)内单调递增,在(1,+∞)内单调递减;

当0<a <2时,f (x)在(0,1)内单调递增,在??

??1,

2a 内单调递减,在????

2a ,+∞内单调

递增;

当a =2时,f (x)在(0,+∞)内单调递增;

当a >2时,f (x)在??

??0,

2a 内单调递增,在????

2a ,1内单调递减,在(1,+∞)内单调递增.

(2)由(1)知a =1时,

f (x)-f ′(x)=x -ln x +2x -1x 2-????1-1x -2x 2+2x 3=x -ln x +3x +1x 2-2

x 3-1,x ∈[1,2]. 设g (x )=x -ln x ,h (x )=3x +1x 2-2

x 3-1,x ∈[1,2],则f (x)-f ′(x )=g (x )+h (x ). 由x ∈[1,2],得g ′(x )=x -1

x ≥0,

可得g (x )≥g (1)=1,当且仅当x =1时取得等号. 又h ′(x )=-3x 2

-2x +6

x 4

. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]内单调递减. 因为φ(1)=1,φ(2)=-10,

所以?x 0∈(1,2),使得x ∈[1,x 0)时,φ(x )>0,x ∈(x 0,2]时,φ(x )<0. 所以h (x )在[1,x 0)内单调递增,在(x 0,2]内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=1

2, 当且仅当x =2时取得等号. 所以f (x)-f ′(x )>g (1)+h (2)=3

2,

即f (x)>f ′(x )+3

2对于任意的x ∈[1,2]成立.

【点评】刷有所得:求函数的单调区间,应在函数定义域的限制之下,讨论函数导数值的符号.若函数的导数含参数,应分类讨论,分类的标准是根据函数导数对应方程的根与定义域的关系.证明函数不等式f (x)>g (x ),主要有两种方法:一是构造函数h (x )=f (x)-g (x ),将问题转化为函数h (x )=f (x)-g (x )的最小值大于0;二是证明f (x)m i n >g (x )max .

测训诊断:本题难度大,主要考查利用导数研究函数的单调性、极值,考查函数与方程、分类讨论、转化与化归的数学思想,考查分析解决问题的能力、推理能力.若错.一是求函数单调区间时忽视函数的定义域为(0,+∞);二是在第(1)问中不能准确地对参数a 进行分类讨论;三是(2)中的求解在构造函数f (x)-f ′(x)=x -ln x +3x +1x 2-2x 3-1后不能将函数分解为g (x )=x -ln x 与h (x )=3x +1x 2-2

x 3-1两个函数,而是将等式右边的式子作为一个整体构造函数,从而不能求得其最值.

10. (2017·江苏文)(本小题满分16分) 已知函数()3210f

x =x ax bx (a ,b R)+++>∈有极值,且导函数()f x '的极值点

是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;

(3)若()f x ,()f x '这两个函数的所有极值之和不小于7

-2

,求a 的取值范围. 解:(1)因为2()32f x x ax b '=++,令()620f x x a ''=+=,解得3

a

x =-

, 所以()03a

f -=,所以2239a b a

=

+, 因为2

4120a b ?=->,所以3a >. (2)263214539813b a a a a ??

=

-+ ???

-, 23

459(27)

813y t t t a =-+=>令 因为对称轴135

278

t =

<, 所以min (27)0y y >=,所以b 2>3a .

(3)由(1)可设()f x 的极值点的横坐标为1x ,2x ;()f x '极值点为3

a x =-, 由(1)得12122,3

a

x x x x b +=-

= ∴332212121212()()()()()2f x f x x x a x x b x x +=++++++

22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++

342220273

3ab a a f ??

=

-+=-= ???

2127()()(),332a a f x f x f b '++-=-≥-

即22237

932

a a a +-≥- 解得36a <≤.

2018年高考数学二轮复习第一部分专题一第五讲导数的应用第五讲导数的应用(一)习题

第五讲 导数的应用(一) 限时规范训练 A 组——高考热点强化练 一、选择题 1.曲线y =e x 在点A 处的切线与直线x +y +3=0垂直,则点A 的坐标为( ) A .(-1,e -1 ) B .(0,1) C .(1,e) D .(0,2) 解析:与直线x +y +3=0垂直的直线的斜率为1,所以切线的斜率为1,因为y ′=e x ,所以由y ′=e x =1,解得x =0,此时y =e 0 =1,即点A 的坐标为(0,1),选B. 答案:B 2.已知函数f (x )=x 2 +2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )在原点附近的图象大致是( ) 解析:因为f ′(x )=2x -2sin x ,[f ′(x )]′=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A. 答案:A 3.曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π2 解析:因为f (x )=x ln x ,所以f ′(x )=ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π 4 .

答案:B 4.若函数f (x )=2x 3 -3mx 2 +6x 在(2,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,2) B .(-∞,2] C.? ????-∞,52 D.? ????-∞,52 解析:因为f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,令f ′(x )≥0,即6x 2 -6mx +6≥0,则m ≤x +1x ,又因为y =x +1x 在(2,+∞)上为增函数,故当x ∈(2,+∞)时,x +1x >52,故m ≤5 2,故选D. 答案:D 5.函数f (x )=12x 2 -ln x 的最小值为( ) A.12 B .1 C .0 D .不存在 解析:f ′(x )=x -1x =x 2 -1 x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得00, -2+3=-2b 3a ,-2×3=c 3a , f 3=27a +9b +3c -34=-115, 解得a =2. 答案:C 7.(2017·沈阳模拟)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时, xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞)

北大附中高考数学专题复习导数与微分经点答疑(四)

学科:数学 教学内容:导数与微分经点答疑(四) 11.什么是高阶导数? 我们知道函数2x y =的导数是x 2y ='.而导数x 2y ='仍是可导的,它的导数是()2y =''.这种导数的导数()''y 就称为对y 对x 的二阶导数.一般地我们有: 函数y =f (x )的导数()x f y '='仍是x 的函数,若函数()x f y '='的导数存在,则称 ()x f y '='的导数为y =f (x )的二阶导数.记作即或22dx y d y '' ().dx dy dx d dx y d y y 22??? ??=' '=''或 相应地,把y =f (x )的导数()x f '叫作函数y =f (x )的一阶导数. 同样,若二阶导数()x f y ''=''的导数存在,则称其导数为y =f (x )的三阶导数.记作 ()即或,dx y d x y 33''' ()()()()().dx y d dx d dx y d y y ,x f x f ,y y 22333???? ??=''''''=''''''='''或又记作 …… 一般地,若n -1阶导数()()()x f y 1n 1n --=的导数存在,则称其导数为y =f (x )的n 阶 导数.记作()()即或n n n n dx y d x f ,y ()()()()()()()().dx y d dx d dx y d x f x f ,y y 1n 1n n n n 1n 1n n ??? ? ??==''=----或 这里的n 称为导数()x f n 的阶数.二阶及二阶以上的导数统称为高阶导数. 若y =f (x )具有n 阶导数,也常说成函数f (x )为n 阶可导. 由以上高阶导数的定义可以看出,要求n 阶导数,需要求出n -1阶导数,要求n -1

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

2018年高考数学—导数专题

导数 (选修2-2P18A7改编)曲线y=sin x x在x= π 2处的切线方程为() A.y=0 B.y=2π C.y=- 4 π2 x+ 4 π D.y= 4 π2 x 解析∵y′=x cos x-sin x x2,∴y′|x= π 2=- 4 π2 , 当x=π 2时,y= 2 π , ∴切线方程为y-2 π =- 4 π2? ? ? ? ? x- π 2 ,即y=- 4 π2 x+ 4 π . (2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析因为f(x)=(2x+1)e x, 所以f′(x)=2e x+(2x+1)e x=(2x+3)e x, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析y′=a- 1 x+1 ,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0

解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴?????y 0=x 0ln x 0, y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x ,∴y ′=1+1 x ,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由?????y =2x -1,y =ax 2 +(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1. 设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由?????2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得???x 0=-12,a =8. 答案 8 (2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

校级:高考数学试题导数内容探究

高考数学试题导数内容探究 现代中学数学组陈永生 导数是研究函数的工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值;以导数为工具,通过观察、分析三次函数图像的变化趋势,寻找临界状况,并以此为出发点进行推测、论证,实现对考生创造能力的考查是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商知识结合起来,以解答题形式综合考察利用导数研究函数的单调性、极值、最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏。解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与划归思想。 《课程标准》中导数的内容有:导数概念及其几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题举例、(理科)定积分与微积分基本定理。文、理科考查形式略有不同。理科基本以一个解答题的形式考查。文科以一个选择题或填空题和一个解答题为主。从新课程高考分析,对导数的要求一般有三个层次:第一层次是主要考查导数的概念、求导公式和求导法则;第二层次是导数的简单应用,包括求切线方程、求函数的单调区间, 求函数的极值;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机的结合在一起,设计综合试题。本文以高考试题为例,谈谈高考导数的热点问题,供鉴赏。 一、函数,导数,不等式综合在一起,解决单调性,参数的范围等问题。解决单调性问题转化为解含参数的一元二次不等式或高次不等式的问题;求解参数的取值范围问题转化为不等式的恒成立,能成立,恰成立来求解。进一步转化求函数的最值或一元二次不等式在给定区间上(或实数集 )上的恒成立问题来解决,从而达到考查分类与整合、化归与转化的数学思想。

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

相关文档
相关文档 最新文档