文档库 最新最全的文档下载
当前位置:文档库 › 斜拉索索力识别精度的提高方法

斜拉索索力识别精度的提高方法

斜拉索索力识别精度的提高方法
斜拉索索力识别精度的提高方法

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥得概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索与索塔三种构件组成。它就是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉与主塔受压为主得桥梁。斜拉索作为主梁与索塔得联系构件,将主梁荷载通过拉索得拉力传递到索塔上,同时还可以通过拉索得张拉对主梁施加体外预应力,拉索与主梁得结点可以视为主梁跨度内得若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁得受力性能,显著提高了桥梁得跨越能力。根据主梁所用建筑材料得不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥得主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义得混凝土斜拉桥,从此,混凝土斜拉桥进入了人们得视野。 混凝土斜拉桥得主梁与索塔一般由混凝土材料构成,为了提高主梁与索塔得适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔与主梁以受压为主,可以充分利用钢丝或钢绞线优异得受拉能力与混凝土良好得受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁得抗裂能力。从设计方面瞧,既要考虑结构总体布置、结构体系选择得合理性,又要考虑釆用何种方法寻求成桥索力得最优解,还要考虑施工得便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理得施工流程,设法寻求合理得施工初拉力,还要做好施工过程中施工参数得动态控制与调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何与材料非线性以及施工方法等因素对设计与施工得影响。 二、斜拉桥索力优化方法 斜拉桥就是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节得特点,我们可通过对拉索索力得调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理得成桥状态,国内外许多学者都做了大量得研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态得索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束得索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束得索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥得最合理得成桥状态本来也没有一个统一得标准,所以很难说哪一种方法一定优于另外得方法。下面将各种方法得原理介绍如下: ①刚性支承连续梁法 这种方法就是使用最早得方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力得竖向分力

胶带保持力和胶黏剂类产品粘力保持力测试试验方法以及使用

胶带保持力和胶黏剂类产品粘力保持力测试试验方法以及 使用仪器 1 概述 本产品按照中华人民共和国国家标准GB/T4851-1998之规定制造,适用于压敏胶粘带等产品进行持粘性测试试验。 1.1 工作原理:把贴有试样的试验板垂直吊挂在试验架上,下端挂规定重量的砝码,用一定时间后试样粘脱的位移量或试样完全脱离所需的时间来测定胶粘带抵抗拉脱的能力。 1.2 仪器结构:主要由计时机构、试验板、加载板、砝码、机架及标准压辊等部分构成。 1.3 技术指标:砝码—1000±10g(含加载板重量) 试验板—60(L)*40(B)*1.5(D)mm(与加载板相同) 压辊荷重:2000±50g 橡胶硬度:80°±5°(邵尔硬度) 计时器—99小时59分钟60秒 工位—6工位 净重—12.5kg 电源—220V 50Hz 外形尺寸—600(L)*240(B)*400(H)mm 2操作方法 2.1水平放置仪器,打开电源开关,并将砝码放置在吊架下方槽内。

2.2不使用的工位可按“关闭”键停止使用,重新计时可按“开启/清零”键。 2.3 除去胶粘带试卷最外层的3~5 圈胶粘带后,以约300 mm/min的速率解开试样卷(对片状试样也以同样速率揭去其隔离层),每隔200mm左右,在胶粘带中部裁取宽25 mm,长约100 mm的试样。除非另有规定,每组试样的数量不少于三个。 2.4 用擦拭材料沾清洗剂擦洗试验板和加载板,然后用干净的纱布将其仔细擦干,如此反复清洗三次。以上,直至板的工作面经目视检查达到清洁为止。清洗以后,不得用手或其他物体接触板的工作面。 2.5 在温度23℃±2℃,相对湿度65%±5%的条件下,按图2规定的尺寸,将试样平行于板的纵向粘贴在紧挨着的试验板和加载板的中部。用压辊以约300 mm/min的速度在试样上滚压。注意滚压时,只能用产生于压辊质量的力,施加于试样上。滚压的次数可根据具体产品情况加以规定,如无规定,则往复滚压三次。 2.6 试样在板上粘贴后,应在温度 23℃±2℃,相对湿度 65%±5%的条件下放置20 min。然后将试验。板垂直固定在试验架上,轻轻用销子连接加载板和砝码。整个试验架置于已调整到所要求的试验环境下的试验箱内。记录测试起始时间。 2.7 到达规定时间后,卸去重物。用带分度的放大镜测出试样下滑的位移量,精确至0.1mm;或者记录试样从试验板上脱落的时间。时间数大于等于1h的,以min为单位,小于1h的以s为单位。 3 试验结果处理 试验结果以一组试样的位移量或脱落时间的算术平均值表示。

索力测量

索力测量 索力测试方法有:1.电阻应变法2.拉索伸长量测定法3.索拉力垂度关系测定法4.张拉千斤顶测定法5.压力传感器测定法6.振动测定法等。 振动法测索力原理:方法是实测拉索的固有频率,利用索的张力和固有频率的关系计算索力。 扣索、系杆及吊杆索力是设计中重要参数。施工阶段扣索、系杆及吊杆的索力状况及索力误差分布是评估、判断施工阶段结构内力状况、安全状况及施工质量的重要依据。索力大小,直接影响到拱肋及主梁的线形、拱肋及主梁内力分布。所以在施工过程中,准确地测量索力值并把它调整到设计要求的范围以内,是保证本桥结构安全施工的关键。 A 、测量内容 本桥索力测量包括斜拉扣索索力测量和吊杆索力测量。 斜拉扣索索力测量主要采用频谱分析法进行,在扣索初张拉、扣索索力调整等阶段测试每根扣索索力。 吊杆索力监测采用频谱分析法和光纤压力传感器测量。其中,1号短吊杆采用光纤压力传感器测量,其余采用频谱分析法测量。吊杆张拉调整完毕测试其索力。 B 、测量方法及原理 本桥斜拉扣索和长吊杆索力均采用频谱分析法进行测试,1号短吊杆和系杆采用光纤压力传感器进行测量。 频谱分析法是利用紧固在缆索上的高灵敏度传感器,拾取索在环境振动激励下的振动信号,经过滤波、放大、谱分析,得出缆索的自振频率,根据自振频率与索力的关系,来迅速确定索力。 如果环境振动不易激起拉索较强振动,不易测得满足拉索频率分析的振动信号。根据我院长期以来对多座大型桥梁的索力测试经验,传递函数法能够较好解决这一问题,该办法主要利用小型力锤敲击(此敲击力度很小,力锤带橡皮头,对索无损伤),对索进行激励,再利用高灵敏度传感器拾取振动信号,并分析得到拉索的传递函数,由此获得拉索正确频率,根据自振频率与索力的关系来确定索力。 将拉索视为弦的振动,在拉索上任意截取单元体,其基本平衡方程为: 0222244=??+??-??t y m x y P x y EI (5-3) 其中:EI ——拉索的弯曲刚度; P ——索力; m ——拉索单位长度的质量; y ——拉索的振幅; x ——沿拉索方向的坐标; t ——时间。 在拉索两端为铰支的情况下,(5-3)式的解式 2 222 22/4l EI K k f ml P k π- = (5-4) 其中:l——拉索的计算索长; k——拉索的自振频率的阶数,k=1,2,3; fk ——拉索的第k 阶自振频率。 式(3-4)是拉索的自振频率和相应索力的一般关系式,一般而言拉缆索的弯曲刚度与

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥的概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索和索塔三种构件组成。它是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉和主塔受压为主的桥梁。斜拉索作为主梁和索塔的联系构件,将主梁荷载通过拉索的拉力传递到索塔上,同时还可以通过拉索的张拉对主梁施加体外预应力,拉索与主梁的结点可以视为主梁跨度内的若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁的受力性能,显著提高了桥梁的跨越能力。根据主梁所用建筑材料的不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥的主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义的混凝土斜拉桥,从此,混凝土斜拉桥进入了人们的视野。 混凝土斜拉桥的主梁和索塔一般由混凝土材料构成,为了提高主梁和索塔的适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔和主梁以受压为主,可以充分利用钢丝或钢绞线优异的受拉能力和混凝土良好的受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁的抗裂能力。从设计方面看,既要考虑结构总体布置、结构体系选择的合理性,又要考虑釆用何种方法寻求成桥索力的最优解,还要考虑施工的便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理的施工流程,设法寻求合理的施工初拉力,还要做好施工过程中施工参数的动态控制和调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何和材料非线性以及施工方法等因素对设计和施工的影响。 二、斜拉桥索力优化方法 斜拉桥是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节的特点,我们可通过对拉索索力的调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理的成桥状态,国内外许多学者都做了大量的研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态的索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束的索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束的索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥的最合理的成桥状态本来也没有一个统一的标准,所以很难说哪一种方法一定优于另外的方法。下面将各种方法的原理介绍如下: ①刚性支承连续梁法 这种方法是使用最早的方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力的竖向分力与

插拔力测试仪简介和操作方法

插拔力测试仪简介和操作方法 一、概述 GH-951C插拔力测试仪试验装臵适合连接器、插头插座等接插件产品作插入、拔出之力量及抗疲劳寿命测试。搭配专利设计之自动求心装臵,将可得到完全准确之插拔力试验,利用Windows 视窗中文画面设定,操作简单方便,且所有资料皆可储存( 试验条件、位移、曲线图、寿命曲线图、检查报表等)解决各种连接器测试的夹具问题及测试时公母连接器能自动对准,不会有吃单边的问题。搭配动态阻抗测试系统,可在测试插拔力同时测试动态阻抗并绘制(荷重行程-阻抗曲线图)。 二、主要技术参数 1、测定最大荷重:50Kg,20Kg,5Kg,2Kg 2、最小分解能力:0.01Kg或1g 3、最大测定高度:150mm 4、最小微调距离:0.01mm 5、测定速度范围:0-200mm/min 6、X轴移动范围:0-75mm 7、Y轴移动范围:0-75mm 8、传动机构:丝杆传动 9、驱动马达:伺服马达 10、外观尺寸:360×260×940mm 11、重量:约60Kg 12、电源:220V/50Hz 三、功能

本机主要用于测试公插从母插拔出时所需最大的力及插入时最小的力。本机配臵力量数显表。以具体数值显示力的大小。 四、设备特点 1、测试条件皆由电脑画面设定,并可储存。由下拉式菜单勾选设定或直接输入数据。(含试验类别、测定运动方向、荷重测定范围、行程测定范围、行程原点位臵、行程原点检出、测定速度、测定总次数、暂停时间每次等候位臵、空压次数等)。 2、可储存及打印图形(荷重-行程曲线图-荷重衰减寿命曲线图-检验报表)荷重元超负载之保护功能、可确保荷重元不致损坏。 3、同时显示荷重-行程曲线图及寿命曲线图。 4、自动荷重零点检出,并可设定原点检出荷重值。 5、荷重单位显示:N、lb、gf、Kgf可自由切换。 6、可同时搭配数个荷重元(2Kgf/5Kgf/20Kgf/50Kgf选购)。 7、机台采用高钢性结构设计,搭配伺服马达,长时间使用下能确保精度,适合一般引张压缩测试及插拔力寿命测试。 8、超规格值停止(于寿命测试时,测试数据超出设定上下限值时机器自动停止。 9、测定项目:最大荷重值、峰值、谷值、行程之荷重值、荷重之行程值插入点电阻值、荷重或行程之电阻值。 五、测试项目 1、连接器单孔插拔试验 2、连接器插拔寿命试验 3、连接器Normal Force 测试 4、连接器整排插拔试验 5、连接器单Pin与塑胶保持力试验 6、可同时与接触阻抗机连线(选购) 7、各种压缩、拉伸破坏强度试验。 六、操作方法 1、检视输入电压是否220V。

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述 王玉田 (青岛理工大学土木工程学院青岛266033) 摘要斜拉索的索力大小直接决定着斜拉桥的工作状态,采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。本文针对目前斜拉桥索力测试中常用的方法及其原理进 行了阐述和比较,并指出了各种方法的特点和适用场合。 关键词斜拉桥索力测试综述 Summary of Methods and Theories to Cable Force Measurement of Cable—Stayed Bridges Wang Yu-tian (School of Civil Engineering, Qingdao Technological University, Qingdao, 266033) Abstract Cable force decides the working state of the cable-stayed bridge directly. Measuring the cable force of the cable-stayed bridge through some exact method is the guarantee to construction and operation. This paper summarises the methods and their theories usually uesed in cable force of cable-stayed bridge measuring. Furthermore, Features and their applying places are pointed out. Keywords cable—stayed bridges cable force measurement summary 斜拉索是斜拉桥的一个重要组成部分,斜拉索的工作状态是斜拉桥是否处于正常状态的主要决定因素,所以,能否对斜拉索索力进行精确的测量,在很大程度上决定着斜拉桥施工的成败和正常的运营。斜拉桥索力测试的方法很多,经过近年来的实践,许多方法已经被淘汰(如“扭力扳手测试法”,误差较大),目前常用的有以下几种: 1. 压力表测定法 目前,斜拉索均使用液压千斤顶张拉。该方法的原理就是根据千斤顶张拉油缸中的液压推算千斤顶的张拉力,并认为千斤顶的张拉力就等于拉索索力。所以,只要通过精密压力表或液压传感器测定油缸的液压,就可求得索力。通常使用0.3~0.5级的精密压力表,并应事先对液压系统进行标定,测得索力的精度可达到1%~2%。 压力表测定法简单易行,比较直观、可靠,是施工中控制索力最适用的方法。但该法所用仪器较笨重,移动不便,且经常有油不回零的情况,影响测试精度。并且不适合于已张拉好的斜拉索,如运营中的索力测试。 2. 压力传感器测定法 张拉时,在张拉连杆上粘贴应变片或利用穿心式压力传感器,也可在锚头和锚座之间安装测

斜拉桥索力测试方法及其发展趋势

斜拉桥索力测试方法及其发展趋势 黄尚廉唐德东 重庆大学光电工程学院光电技术及系统教育部重点实验室,重庆 400044 摘要:索是斜拉桥的主要受力构件之一,它的受力状态是桥梁安全与正常使用的重要指标。监测桥索的索力对于及时反映桥索的工作状态和调整桥索的结构内力是极为重要的,从而有效防止桥索的偏载和维护桥梁的运行安全。本文综述了常用索力测试方法,并分析了每种方法的基本原理和优缺点,指出它的发展趋势和需要研究和解决的问题。 关键字:桥索;索力;频率;磁弹效应 Method of measure cable stress and trend of development Huang Shang-lian Tang De-dong The Key Lab for Optoelectronic Technique and System, Ministry of Education, Dept. of Optoelectronic Engineer, Chongqing University, Chongqing 400044 Abstract: Steel cable is one of components which supports stress of cable stay bridge, which tense state is important index of bridge safety and nature use. In order to effectively avoid deflection load of cable and maintain bridge safe of using, monitoring cable tense stress state parameters is very important to feedback cable working states in time and adjust cables tense stress. This article present method of measure cable stress in common use, analyze its ultimate principle and its merits and defects, and point its development trend and problem of solving. Key words: bridge cable; cable tense; frequency; magnetoelastic phenomenon 1引言 随着人类生产生活水平的提高,对大跨度桥梁的建设需求越来越迫切,加上建桥技术和高强度材料的日益发展,斜拉桥逐步有能力胜任对大跨度发展的要求。如国内外已建的斜拉桥中,它们的跨度分别为:法国诺曼底桥856m,日本多多罗大桥890m,上海杨浦大桥602m,南京长江第二大桥628m,这些已向人们展示了斜拉桥强大的跨越能力。 斜拉桥为高次超静定结构,它依靠斜拉索为主梁提供弹性约束,桥跨结构的重量和桥上活载绝大部分或全部通过斜拉索传递到塔柱上,因此,索是斜拉桥的主要受力构件之一,它的受力状态直接影响斜拉桥本身的健康状态。由于在斜拉桥施工或成桥后的日常使用过程中,存在各种误差和偶然因素的联合作用,将使索的结构内力和线形偏离正常状态,因此及时监测斜拉桥索的受力状态是非常重要的,已成为斜拉桥健康监测的重要内容之一。 索力测定目前国内外一般采用4种方法[1]:(1)压力表测定;(2)压力传感器测定;(3)频率测定法;(4) 磁弹效应法。因此,如何选用合 高等学校博士学科点专向科研基金资助:20030611023 理有效的测试方法对斜拉桥施工监控和成桥后的健康监测具有重要意义。 2常用测试方法的原理及其优缺点 2.1 压力表法 用千斤顶张拉桥索时(如图1),通过精密压力表或液压传感器测定油缸的液压,就可求得索力[1][2]。这种方法简单易行,是施工中控制索力最实用的方法,其精度可达1%~2%。它可以用在斜拉桥施工过程中对索力的调整,但由于压力表本身的一些特性,有指针易偏位,高压时指针抖动激烈,读数人为误差大,负荷示值需转换等缺点,不可用于成桥后的动态索力监测。 图1 千斤顶张拉斜拉索示意图 2.2 压力传感器法 https://www.wendangku.net/doc/df16557585.html,

斜拉桥索初拉力分析

索初拉力计算 为了改善斜拉桥成桥阶段的加劲梁、主塔、拉索、支座的受力状态,给拉索施加初拉 力荷载,使之与恒荷载平衡。 斜拉桥是多次超静定结构体系,所以计算拉索初拉力需要多次的反复计算。另外,对 于每跟拉索的张力并不是只有一个解,对同一个斜拉桥不同的设计者可能选择不同的拉索初拉力。 MIDAS/Civil的未知荷载系数功能使用了索力优化法则,可以计算出特定约束条件 的最佳荷载系数,在计算斜拉桥拉索初拉力非常有效。 使用未知荷载系数功能计算斜拉桥拉索初拉力的计算步骤如表3。 步骤2. 定义主梁恒荷载和拉索的单位荷载的荷载工况 步骤3. 输入恒荷载和单位荷载 步骤4. 建立恒荷载和单位荷载的荷载组合 步骤5. 使用未知荷载系数功能计算未知荷载系数 步骤6. 查看分析结果以及索初拉力 步骤1. 建立斜拉桥模型 表3. 拉索初拉力计算步骤流程图 斜拉桥成桥阶段与正装分析 初始平衡状态分析 为了使斜拉桥结构在恒载作用下拉索垂度、加劲梁的弯矩、拉索锚固点坐标、拉索张力、主塔坐标达到设计期望值,通过初始平衡状态分析计算初始节点坐标、拉索变形前长度、拉索初始张拉力。 斜拉桥设计时,最重要的是如何使加劲梁和主塔的弯曲内力达到最小状态。通过初始 平衡状态分析可以使恒载作用下成桥阶段变形形状接近于设计期望状态时,内力也会达到最小状态。对于斜拉桥分析,初始平衡状态分析非常重要,且初始平衡状态分析能够计算出变形前拉索长度、追踪拉索张力、加劲梁和主塔的预拱度、加劲梁的弯矩图等设计参数。 斜拉桥的特殊结构体系决定了主塔和加劲梁上将产生很大的轴力,这些轴力和拉索的 张力决定结构的变形形状。为了确定拉索的初始张力,顺桥向的变形和拉索的张力要反映到结构分析计算中。但斜拉桥是多次超静定结构体系,计算拉索初拉力需要多次的反复计算,所以计算出满足初始状态的施工控制张力不是简单的事情。另外,对于每跟拉索的张力并不是只有一个解,对同一个斜拉桥不同的设计者可能计算出不同的拉索初拉力。 利用MIDAS/Civil的未知荷载系数功能计算拉索初拉力 给斜拉桥的拉索施加初拉力,使加劲梁产生的弯矩趋于最小,用这种方法来设计出更 大跨经桥梁。但是计算初始张力并不是简单的事情,过去设计人员一般都是采用经验值来计算初拉力。 目前虽然计算斜拉桥拉索初拉力的方法很多,但是能够计算出满足设计条件的初拉力 非常困难。 利用MIDAS/Civil优化索力功能,可以计算出最小误差范围内的能够满足特定约束条 件的最佳荷载系数,利用这些荷载系数计算拉索初拉力。 优化索力时将位移、反力、内力的“0”值以及最大最小值作为控制条件,把拉索初

索力动测仪使用教程

SET-PF1-11索力动测仪使用简明教程 传感器连接与固定SD 卡插接与固定开机工程文件名与计算参数设置采集参数设置 信号采集与分析 传感器与拉索固定 信号接口与仪器连接 正面朝外,按下 文件名称命名W 、K 、L 设置 放大倍数设置采样频率设置触发阈值设置图1 操作基本流程图 1.1 传感器连接与固定 a. 信号线与传感器连接,注意接口螺帽轻拧,并确保接入牢固 b. 首先将强磁铁与铝板以及传感器用螺丝固定,后用铝板上的粘扣将整个传感器固定于测试拉索上,注意磁铁面正对拉索;传感器为加速度计,固定时请用力将粘扣绑紧,使磁铁面紧压住拉索。传感器固定位置离桥面锚点至少3 ~ 4 m 距离,并要求传感器方向朝上。 c. 将信号线上另一端接口接入仪器 1.2 SD 卡插接与固定 SD 卡正面朝外,直接插入面板上SD 卡插口,按下会有“咔嗒”声响,此时SD 卡已正确插入。再按一次,SD 卡将自动弹出。SD 卡为测试数据存储卡,若需要存储数据,开机前请先插入SD 卡。 1.3 开机 按下开关按钮,检查屏幕右上角电池电量标识,若电量不够请及时充电。 1.4 工程文件名与计算参数设置 点击进入“工程设置界面”,仪器默认的文件路径为SINE/TEST1,建议用户命名规则为:一级文件名—构件;二级文件—拉索编号,例如一座双塔斜拉桥:1LN/01,即表示该桥1号塔左侧拉索北面拉索第1根拉索。

1LN/01 塔号 左侧塔北侧拉索 第1根索 图2 文件命名规则示例 除文件命名外,在工程设置界面有一个重要的系数(比例系数K )需要设置,K 值的确定首先咨询桥梁管理单位或施工单位,直接输入对应的K 值设置处;若不确定也可依据索长L 和单位质量W 值计算,仪器将根据输入的L 与W 值自动计算处K 值。由于每根拉索索长不同,因此每根索K 值也不同,此处也可暂不设置K 值,测量时直接在测量界面设置对应的K 值。(注:索长L 指拉索桥面锚点与支撑锚点的长度,单位为m ;W 为拉索1 m 长的重量,单位为Kg )。 1.5 采集参数设置 工程文件设置完成后退出并进入采集索力测量界面。在屏幕上方选择好对应的测试通道,若传感器接入的是PIN1,请选择通道1。信号触发方式仪器默认“信号触发”,无需改动。放大倍数仪器默认为29 dB ,参数调节时先将放大倍数调至53或59 dB 。采样频率仪器默认为500 Hz ,可先不做改动。保存方式仪器默认为“手动保存”,可先不做改动。按屏幕右侧信号采集按钮进行信号采集,按下次继续采集,此时采集信号均不会保存。 放大倍数设置 点击【确认】键,开始采集信号,仪器右下角显示红色的“开始采样”字样,等待该处显示“空闲状态”字样即表示信号采集完成。查看屏幕信号显示区所占比例,通过调整放大倍数使信号幅值大小在显示区垂直方向占2/3左右。如下图3(a)所示,放大倍数设置为53 dB ,信号完全饱和,需要减小放大倍数;图3(b)中,放大倍数设置为29 dB ,信号幅值偏小,需提高放大倍数。

(完整版)斜拉桥斜拉索施工方案

斜拉桥斜拉索施工方案 1、概况 该桥斜拉索采用填充型环氧涂层钢绞线斜拉索,塔上设置张拉端,梁下为锚固端;每侧主塔设12对斜拉索,全桥共24对斜拉索,其规格为15-27、15-31、15-34、15-37、15-43、15-55、15-61共7种,斜拉索采用平行钢绞线斜拉索体系。斜拉索由固定端锚具、过渡段、自由段、HDPE护套管、张拉端锚具及索夹、减振器等构成。 2、斜拉索施工工艺 本工程主梁采用前支点挂篮悬臂现浇施工,斜拉索挂索方式与支架现浇和后支点挂篮施工有所不同,需在挂篮上设置索力转换装置。其基本工艺流程详见附《表3 施工工艺框图》。 3、斜拉索施工准备 (1)、施工前准备工作 施工前准备工作包括:施工平台、施工机具的准备;施工人员的工作分配;斜拉索锚具的组装和安装;HDPE外套管的焊接等。 ①、施工平台准备 斜拉索挂索施工前,在主塔和箱梁处设置施工平台,以方便施工人员操作。主塔施工处在塔内、外均设置施工平台,箱梁处施工平台设置在挂篮上。施工平台的搭设满足施工要求,并采取适当的安全措施,确保人员和设备的安全可靠。 ②、施工机具准备 正式施工前,所有施工机具就位。张拉用千斤顶、油泵和传感器经过有资质的第三方进行配套标定。因本工程斜拉索规格较大,采用机械穿索方式进行挂索施工,双塔双索面同时施工时,主要施工设备清单如下。

③、施工人员分配 为有效安排斜拉索施工的各环节,统一协调指挥,斜拉索施工前,需进行人员的工作分配。按本工程双塔双索面斜拉索同时施工的要求,每个索面需进行如下主要人员及岗位配置。 备注:HDPE管焊接和锚具组装安装在挂索前完毕,张拉工和穿索工经过培训后可上岗操作; ④、斜拉索锚具组装和安装 斜拉索各部件单独包装运输,现场组装。 斜拉索挂索前,对锚具进行组装和安装。对于张拉端锚具,将固定端锚板与密封装置组装好,旋上螺母后安装于箱梁上混凝土锚块处,并临时将其与锚垫板固定。对于张拉端锚具,将锚板与密封装置组装好后安装与塔内钢锚箱的锚固端处,并临时将其与锚垫板固定。安装张拉端和固定端锚具时,在锚具上做好标记,确保上下锚具孔位严格对应一致。 ⑤、HDPE管焊接 HDPE外套管为定尺生产,其标准长度一般为6m/根或9m/根。斜拉索挂索施工前,将标准长度的HDPE管焊接成设计长度,采用热熔焊接机进行HDPE 管的焊接。 4、钢绞线穿索张拉 (1)、HDPE管吊装 ①、准备工作 依次将防水罩、延伸管套到HDPE管上,安装临时抱箍,并穿入首根钢绞线。 将带法兰的延伸管套到塔柱端的HDPE外套管上,直至大约1.5m的外套管

螺栓扭矩预紧力对照表

螺栓扭矩预紧力对照表扭力螺丝刀, 扭力扳手 数显扭距测量仪等 螺栓标准扭矩及预紧力查询表(仅供参考) 内六角外六 角 螺栓 直径 DIN267性能等级(螺栓强度等级) 螺栓螺栓 3.6 5.6 6.9 8.8 10.9 12.9 S(m m) S(m m) M(m m) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) 1.5 4 M2 255 0.1 345 0.15 710 0.3 835 0.35 1,170 0.5 1,415 0.6 2 5 M2.5 485 0.26 655 0.35 1,310 0.71 1,550 0.8 3 2,180 1.18 2,620 1. 4 2.2 5 5.5 M3 630 0.37 1,050 0.62 1,700 0.99 2,250 1.3 3,150 1.9 3,800 2.2 6 M3.5 850 0.5 7 1,400 0.95 2,250 1.5 3,000 2 4,250 2.9 5,100 3.4 3 7 M 4 1,100 0.8 5 1,850 1.4 2,900 2.3 3,900 3 5,750 4.4 6,700 5.1 4 8、9 M 5 1,800 1.7 3,000 2.8 4,800 4.5 6,400 5.9 9,400 8.7 11,000 10 5 10 M 6 2,550 2.9 4,200 4.8 6,750 7. 7 9,000 10 13,200 15 15,500 18 6 13、 14 M8 4,650 7 7,750 12 12,40 19 16,500 25 24,300 36 28,400 43 8 15、 17 M10 7,400 14 12,30 23 19,70 37 26,300 49 38,700 72 45,200 84 10 19、 21 M12 10,80 24 18,00 40 28,80 65 38,400 85 56,500 125 66,000 145 12 22、 23 M14 14,80 39 24,70 64 39,50 105 52,500 135 77,500 200 90,500 235 14 24、 26 M16 20,40 59 34,00 98 54,50 155 72,500 210 107,00 310 125,000 365 27 M18 24,80 81 41,30 135 66,00 215 91,000 300 129,00 430 152,000 500 17 30 M20 31,90 115 53,00 190 85,00 305 117,00 425 166,00 610 195,000 710 32 M22 39,90 155 66,50 260 106,0 00 415 146,00 580 208,00 820 244,000 960 19 36 M24 45,90 200 76,50 330 122,0 00 530 168,00 730 240,00 1,050 281,000 1,220 41 M27 80,50 295 100,0 00 490 161,0 00 780 222,00 1,100 316,00 1,550 369,000 1,800 22 46 M30 73,50395 122,0660 196,01,050 269,001,450 384,002,100 449,000 2,450

xxx桥索力测试方案

BCJ大桥吊杆索力测试方案 GDXXX设计研究院 201X年X月X日

XXX 桥索力测试方案 1前言 NG 市WX 大道BCJ 桥位于WX 新区,跨越YY 江支流BCJ ,西接WX 大道,东接YY 宁PJ 路。大桥由主桥和引桥组成,桥孔布置分别为:主桥为1-111.5m 中承式钢管混凝土拱结构;西岸引桥为2×13m (钢筋混凝土连续板桥)+3×20m (预应力混凝土先简支后连续空心板桥);东岸引桥为6×20m (预应力混凝土先简支后连续空心板桥)+2×13m (钢筋混凝土连续板桥)。整座桥梁分为左右对称的两幅桥。共有吊杆112根,受建设方拟委托我院对成桥的吊杆进行索力检测,特制订本方案。 吊杆是中承式钢管混凝土拱桥结构中重要的构件,它的作用是把主梁承受的恒载、活载转递到主拱圈上,再传递至基础;同时对于主梁在活载作用下起到一个弹性支撑的作用。吊杆索力的对拱圈、主梁的受力和变形尤为重要。因此无论在拱桥的施工过程还是在运营过程中,精确测量索力的大小以便准确预知桥梁结构的受力和状态,为决策者提供可靠的数据和判断的依据是十分重要的。 2索力测试方法 本次索力的测试方法为频率法。 吊杆索力测试的基本原理是弦振动理论,对于每一根张紧的吊杆、斜拉索,通过建立其振动微分方程,可以导出其振动与索力之间的关系式,这是采用频率法测试吊杆、斜拉索索力的基本原理。不计入吊杆、斜拉索抗弯刚度的影响,则索力计算公式为: 22)(4n f m L T n 式中 T :索的拉力(kN ) m :索的单位质量(kg/m )

L :参振索长(m ) n f :为第n 阶拉索振动频率(Hz ) 若计入拉索的抗弯刚度的影响,则索力计算公式: EI L n n f mL T n 22 222 )(4π-= 式中 EI :为拉索抗弯刚度。 现场测试主要利用环境随机振动方法对斜拉索的横向振动频率进行测定。具体方法是:把加速度传感器捆绑于吊杆距桥面约2m 左右的位置上,此时可采用人工激振或直接利用环境随机振动使吊杆产生微幅振动,并由加速度传感器拾振,并转化为电信号,由DH5290动态数据采集系统进行采集。对信号进行FFT 分析,可以得到吊杆横向振动的各阶频率,通过索力计算软件计算可得出各吊杆的索力。 3吊杆数量 BCJ 大桥共有吊杆112根。 4吊杆索力测试费用 由于XX 区内无相关收费标准,因此参照xxx 省物价局批准的收费标准XXX 价函[2004]405号进行计费。 检测费用单价为:400元/根,共112根,合计112*400=44800元。

斜拉桥施工索力张拉控制及优化

斜拉桥施工索力张拉控制及优化 研究背景:随着经济和技术的发展,以及斜拉桥合理的结构形式,我国修建了大量的斜拉桥。因此该类桥梁的施工控制就显得尤为重要。国内外学者及工程技术人员对斜拉桥的施工控制进行了许多研究,提出了卡尔曼滤波法、最小二乘误差控制法、自适应控制法、无应力状态控制法等许多实用控制方法。这些方法的实质都是基于对施工反馈数据的误差分析,通过计算和施工手段对结构的目标状态和施工的实施状态进行控制调整,达到对施工误差进行控制的目的。施工控制的方法必须与各类斜拉桥设计、施工的特点相结合才能在确保结构安全及施工便捷的前提下切实可靠地实现控制的目标。目前国内大多数斜拉桥的施工控制都是针对常规的混凝土斜拉桥进行的,其相应的控制方法也是针对常规混凝土斜拉桥的施工特点提出来的,本文着重阐述对于常规混凝土斜拉桥的施工控制过程中的索力张拉控制及优化方法。 斜拉索施工过程:斜拉索安装完毕,即进行张拉工作。张拉前对千斤顶、油泵、油表进行编号、配套,张拉设备定期进行标定。斜拉索正常状态按设计指令分2次张拉,第1次张拉按油表读数控制,张拉时4根索严格分级同步对称进行;第2次张拉是在监控利用频率法测完索力后,以斜拉索锚头拔出量进行精确控制。施工监控包括对索力、应力、应变、线形、温度、主塔偏位的监控。施工监控在凌晨气温相对稳定时进行,保证在凌晨5点前完成。索力测试采用应变仪捕捉索自振频率,当测出索力误差超过2时,应对索力进行调整,直到满足要求。索力调整完毕立即对应力、应变、线形、温度、主塔偏位进行测量。可分阶段地进行张拉、调索。在牵索挂篮悬浇时,在控制好挂篮底模标高后,在节段砼灌注过程中,当砼灌注至1/4、2/4、3/4,及砼灌注完后,均需进行调整索力及挂篮底模标高。当主塔施工至与边跨合拢前、中跨合拢前和合拢后、二期恒载安装后均需按设计要求对全桥斜拉索进行统一检测调整,使全桥线型满足设计要求。并在对每节段主梁悬浇进行监控时,对主梁最前端的5~6对拉索的索力进行测定,观察其变化幅度是否在设计范围内。在斜拉索张拉前,应将张拉千斤顶进行精确标定,标定出其校正曲线,确保张拉力的准确,张拉千斤顶将悬挂在用于斜拉索挂设的滑动架上随支架上下滑动,张拉时,千斤顶支撑在张拉架上,当千斤顶将斜拉索按设计要求拉长以后,即将锚头上锚固螺母内拧加以固定,然后放松千斤顶完成一次斜拉索的张拉。 在斜拉索张拉调整过程中,需将主塔两方向及上下游方向四根索同时分步进行。值得注意的是,当次中跨与边跨合拢后,边跨的斜拉索是在已灌注好的主梁上进行安装,但其索力

索力报告测试作业指导书

索力测试作业指导书 1目的 1.1为正确使用JMM-268索力动测仪,测试斜拉桥拉索、中承式拱桥吊杆等结构的索力,满足测试的准确性和精确,特编制此指导书。 2适用范围 2.1斜拉桥拉索索力检测。 2.2中承式拱桥吊杆索力检测。 2.3预应力钢筋、钢丝拉力的测量。 3 引用标准和相关文件 3.1《大跨径混凝土桥梁的试验方法》; 3.2《市政桥梁工程质量检验评定标准》(CJJ2-90); 3.3《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004); 3.4《公路斜拉桥设计规范(试行)》(JTJ 027-97); 3.5 JMM-268索力动测仪使用说明书。 4 工作程序和要求 4.1测试原理 根据张力弦振动公式 F= 式中F——弦的自振频率 L——弦的长度 ρ——弦的材料密度

δ——弦的应力 可知,明确了弦的材料和长度之后,测量弦的振动频率就可确定弦的拉力。对于两端固定匀质受力的钢索也可近似作为弦。钢索的拉力T 与其基弦F 有如下关系: 2T KF = (4-2) 式中 K ——比例系数 F ——钢索基频 T ——钢索拉力(kN ) n F F n = (4-3) 式中 n F ——主振动频率(Hz ) n ——主振频率的阶次 因此,通过测量钢索的主振动频率,就可求出钢索的拉力。 4.2比例系数K 的确定 4.2.1理论计算 (4-4) 式中 W ——钢索单位长质量(kg/m ) L ——钢索两嵌固点之间的长度(m ) 4.2.2试验标定 对钢索分级张拉。通过张拉千斤顶和油表或其它装置,读取各级张拉力T ,用JMM-268索力动测仪测量各级拉力下钢索的基频F ,则比例系数K 可通过最小二乘法求出。 211P i Z i i i ZT K F ===∑∑ (4-5) 式中 P ——张拉级数;

斜拉桥斜拉索的主要病害及成因分析

斜拉桥斜拉索的主要病害及成因分析 斜拉桥斜拉索的主要病害及成因分析 摘要:我国的斜拉桥起步较晚,1975年建成的跨径76m的四川云阳桥是国内第一座斜拉桥,80年代中后期是我国斜拉桥发展的鼎盛时期,至今为止建成或正在施工的斜拉桥共有100余座,其中跨径大于200m的有52座。跨度超过400m的斜拉桥已达20座,居世界首位。由于斜拉桥的成桥使用条件比较复杂且防护技术也不完善,因此,在斜拉桥运营若干年之后,桥体不可避免地会出现许多病害。 拉索是斜拉桥的主要受力构件,对斜拉结构桥梁的结构安全和实用寿命具有直接的重要影响。然而,斜拉索从出现时起,就不可避免地受到腐蚀退化、振动疲劳衰减等各种不利因素的作用。 关键词:斜拉索;防护系统;主要病害;成因分析 中图分类号: U448 文献标识码: A 1.拉索病害及成因分析 在斜拉桥设计、施工和使用过程中,尽管对斜拉索采取了各种防腐、减隔振措施,但由于方法、工艺、材料等不合理,使得斜拉索病害已成为制约斜拉桥使用寿命的关键性因素。因此,分析斜拉索病害原因,在设计、施工和使用斜拉桥时给予足够的重视,并采取各种有效措施延长拉索的使用寿命。 1.1拉索腐蚀 腐蚀是物质与介质作用而引起的变质或破坏。由于腐蚀过程是自发的,所以在斜拉桥整个寿命期内,拉索的腐蚀破坏将会始终存在。 ①拉索腐蚀部位 拉索钢丝腐蚀程度基本上取决于橡胶护套的破损程度,因为这是雨水或露水顺钢索流入或渗入护套内产生的结果,所以钢丝腐蚀有两个明显特点:腐蚀程度大体遵循“上轻下重”规律,即处于较高位置的钢丝腐蚀较轻,处于较低位置的钢丝腐蚀较重;腐蚀较严重的部位,往往是靠近护套破损的部位以及破损处以下的一段部位。 ②拉索腐蚀成因

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

相关文档