文档库 最新最全的文档下载
当前位置:文档库 › 幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)
幂函数、指数函数、对数函数专练习题(含答案)

1. 函数f (x )=x 21-的定义域是

A.(-∞,0]

B.[0,+∞)

C.(-∞,0)

D.(-∞,+∞) 2. 函数x y 2log =

的定义域是

A.(0,1]

B. (0,+∞)

C. (1,+∞)

D.[1,+∞)

3. 函数y =

A.(3,+∞)

B.[3, +∞)

C.(4, +∞)

D.[4, +∞)

4. 若集合{|2},{|x M y y N y y ====,则M N ?=

A.}1|{≥y y

B.}1|{>y y

C.}0|{>y y

D.}0|{≥y y

5. 函数y = -

1

1

-x 的图象是

6. 函数y =1-

1

1

-x , 则下列说法正确的是 A.y 在(-1,+∞)内单调递增 B.y 在(-1,+∞)内单调递减 C.y 在(1,+∞)内单调递增

D.y 在(1,+∞)内单调递减

7. 函数y =

A. (2,3)

B. [2,3)

C.[2,)+∞

D. (,3)-∞ 8. 函数x

x x f 1

)(+

=在]3,0(上是 A.增函数 B.减函数

C.在]10,(上是减函数,]31[,上是增函数

D.在]10,(上是增函数,]31[,上是减函数 9. 的定义域是函数 )2(x lg y -=

A.(-∞,+∞)

B.(-∞,2)

C.(-∞,0] D(-∞,1]

10. 的取值范围是则若设函数o x

x x x x f ,1)f (x 0)(x

)

0(,12)(o >????

?>≤-=- )(1,,-1)D.(- )(0,,-2)C.(- )B.(-1, )1,1.(A +∞∞+∞∞+∞-

11. 2

1

||

x y =函数

A.是偶函数,在区间(﹣∞,0)上单调递增

B.是偶函数,在区间(﹣∞,0)上单调递减

C.是奇函数,在区间(0,+∞)上单调递增

D.是奇函数,在区间(0,+∞)上单调递减

12. 的定义域是函数x

x x y -+=

||)1(0

0}|D.{ -1}0|C.{ 0}|B.{ }0|.{≠≠<<>x x x x x x x x x A 且

13. 函数y =

的定义域是

A.[1,)+∞

B.23(,)+∞

C.23[,1]

D.23(,1] 14. 下列四个图象中,函数x

x x f 1

)(-

=的图象是

15. 设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ?A ∩B}.已知

A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于

A.[0,1)∪(2,+∞)

B.[0,1]∪[2,+∞)

C.[0,1]

D.[0,2]

16. 设a =20.3,b =0.32

,c =log 3

.02

,则

A a >c >b B.a >b >c C. b >c >a D. c >b >a

17. 已知点在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x -= D.1

()()2

x

f x =

18. 已知幂函数α

f 的部分对应值如下表:

则不等式1)(

}20≤

22≤≤-x x D.{}44≤≤-x x

19. 已知函数的值为),则,的值域为)1(0[93)(2

f a ax x f x

∞+--+=

A.3

B.4

C.5

D.6

指数函数习题

一、选择题

1.定义运算a ?b =?

??

??

a a ≤b

b a >b ,则函数f (x )=1?2x

的图象大致为( )

2.函数f (x )=x 2

-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x

)的大小关系

是( )

A .f (b x )≤f (c x

)

B .f (b x )≥f (c x

)

C .f (b x )>f (c x

)

D .大小关系随x 的不同而不同

3.函数y =|2x

-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)

4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x

-2x

-1)的定义域是B ,若A ?B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5

D .a ≥ 5

5.已知函数f (x )=?

????

3-a x -3,x ≤7,

a x -6

,x >7.若数列{a n }满足a n =f (n )(n ∈N *

),且{a n }是

递增数列,则实数a 的取值范围是( ) A .[9

4,3)

B .(9

4,3)

C .(2,3)

D .(1,3)

6.已知a >0且a ≠1,f (x )=x 2-a x

,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围

是( )

A .(0,1

2]∪[2,+∞)

B .[1

4,1)∪(1,4]

C .[1

2,1)∪(1,2]

D .(0,1

4

)∪[4,+∞)

二、填空题

7.函数y =a x

(a >0,且a ≠1)在[1,2]上的最大值比最小值大a

2,则a 的值是________.

8.若曲线|y |=2x

+1与直线y =b 没有公共点,则b 的取值范围是________.

9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1

的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.

三、解答题

10.求函数y =2

11.(2011·银川模拟)若函数y =a 2x +2a x

-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.

12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x

的定义域为[0,1]. (1)求a 的值;

(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.

对数与对数函数同步练习

一、选择题

1、已知32a

=,那么33log 82log 6-用a 表示是( )

A 、2a -

B 、52a -

C 、2

3(1)a a -+ D 、 2

3a a - 2、2log (2)log log a a a M N M N -=+,则N

M

的值为( ) A 、

4

1

B 、4

C 、1

D 、4或1 3、已知22

1,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x

+==-则等于( )

A 、m n +

B 、m n -

C 、()12m n +

D 、()1

2

m n -

4、如果方程2

lg (lg5lg7)lg lg5lg70x x +++= 的两根是,αβ,则αβ 的值是( )

A 、lg5lg 7

B 、lg 35

C 、35

D 、

35

1

5、已知732log [log (log )]0x =,那么12

x -

等于( )

A 、

1

3 B D 6、函数2lg 11y x ??

=-

?+??

的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称

7、函数(21)log x y -=的定义域是( ) A 、()2,11,3??+∞

??? B 、()1,11,2??

+∞ ??? C 、2,3??+∞

??? D 、1,2??+∞ ???

8、函数212

log (617)y x x =-+的值域是( )

A 、R

B 、[)8,+∞

C 、(),3-∞-

D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )

A 、 1 m n >>

B 、1n m >>

C 、01n m <<<

D 、01m n <<< 10、2

log 13

a <,则a 的取值范围是( ) A 、()20,

1,3??+∞ ??? B 、2,3??+∞ ??? C 、2,13?? ??? D 、220,,33????

+∞ ? ?????

11、下列函数中,在()0,2上为增函数的是( )

A 、12

log (1)y x =+ B 、2

log y =C 、2

1log y x = D 、2

log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1

()x f x a +=是

( )

A 、在(),0-∞上是增加的

B 、在(),0-∞上是减少的

C 、在(),1-∞-上是增加的

D 、在(),0-∞上是减少的 二、填空题

13、若2log 2,log 3,m n a a m n a +=== 。 14、函数(-1)log (3-)x y x =的定义域是 。 15、2lg 25lg 2lg50(lg 2)++= 。

16、函数)

()lg

f x x =是 (奇、偶)函数。

三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.)

17、已知函数1010()1010x x x x

f x ---=+,判断()f x 的奇偶性和单调性。

18、已知函数2

2

2(3)lg 6

x f x x -=-,

(1)求()f x 的定义域; (2)判断()f x 的奇偶性。

19、已知函数232

8()log 1

mx x n

f x x ++=+的定义域为R ,值域为[]0,2,求,m n 的值。

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 A D D C C C B C D D

B

C D A A 16 17 18 19 B B D B

2. 函数x y 2log =的定义域是2log x ≥0,解得x ≥1,选D

3. 函数2log 2-=

x y 的定义域是2log 2x -≥0,解得x ≥4,选D.

6. 令x -1=X ,y -1=Y ,则Y =-

X

1. X ∈(0,+∞)是单调增函数,由X =x -1,得x ∈(1,+∞),y =1-

1

1

-x 为单调增函数,故选C. 15. ∵A=[0,2],B=(1,+∞),∴A ×B={x|x ∈A ∪B 且x ?A ∩B}=[0,1]∪(2,+∞). 指数函数答案

1.解析:由a ?b =?

??

??

a a ≤b

b a >b 得f (x )=1?2x

=?

??

??

2x

x ≤0 ,1 x >0 .

答案:A

2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =

3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.

若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x

).

若x <0,则3x <2x <1,∴f (3x )>f (2x

).

∴f (3x )≥f (2x

). 答案:A

3.解析:由于函数y =|2x

-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0

4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ?B 知a x -2x

>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B

5. 解析:数列{a n }满足a n =f (n )(n ∈N *

),则函数f (n )为增函数,

注意a 8-6

>(3-a )×7-3,所以?????

a >13-a >0

a 8-6> 3-a ×7-3

,解得2

答案:C

6. 解析:f (x )<12?x 2-a x <12?x 2-12

-12

的图象,

当a >1时,必有a -1

≥12,即1

当0

2≤a <1,

综上,1

2≤a <1或1

答案:C

7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0

x

在[1,2]上单调递减,故a -a 2

=a 2,得a =12.故a =12或32

.

答案:12或3

2

8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.

曲线|y |=2x

+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x

+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]

9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:1

10. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2

+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.

令t =-x 2-3x +4,则t =-x 2

-3x +4=-(x +32)2+254

∴当-4≤x ≤1时,t max =254,此时x =-3

2,t min =0,此时x =-4或x =1.

∴0≤t ≤254.∴0≤-x 2

-3x +4≤52.

∴函数y =1()

2

[

2

8

,1]. 由t =-x 2

-3x +4=-(x +32)2+254(-4≤x ≤1)可知,

当-4≤x ≤-3

2时,t 是增函数,

当-3

2≤x ≤1时,t 是减函数.

根据复合函数的单调性知:

y =1()2

在[-4,-32]上是减函数,在[-3

2

,1]上是增函数.

∴函数的单调增区间是[-32,1],单调减区间是[-4,-3

2

].

11. 解:令a x

=t ,∴t >0,则y =t 2

+2t -1=(t +1)2

-2,其对称轴为t =-1.该二次函数

在[-1,+∞)上是增函数.

①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a

,a ],故当t =a ,即x =1时,y max =a 2

+2a -1=14,

解得a =3(a =-5舍去). ②若0

∴t =a x

∈[a ,1a ],故当t =1a

,即x =-1时,

y max =(1

a

+1)2-2=14.

∴a =13或-1

5(舍去).

综上可得a =3或13

.

12. 解:法一:(1)由已知得3a +2

=18?3a

=2?a =log 32.

(2)此时g (x )=λ·2x -4x

, 设0≤x 1

因为g (x )在区间[0,1]上是单调减函数,

所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.

由于2x 2+2x 1>20+20

=2,

所以实数λ的取值范围是λ≤2. 法二:(1)同法一.

(2)此时g (x )=λ·2x -4x

因为g (x )在区间[0,1]上是单调减函数,

所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x

]≤0成立.

设2x =u ∈[1,2],上式成立等价于-2u 2

+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.

对数与对数函数同步练习参考答案

二、填空题

13、12 14、{}132x x x <<≠且 由301011x x x ->??

->??-≠?

解得132x x <<≠且 15、2

16

)(),()1lg(11lg

)1lg()(222x f x f x x x

x x x x f R x ∴-=-+-=-+=++=-∈且 为

奇函数。 三、解答题 17

1

221010101(),1010101

x x x x x

x f x x R ----==∈++,

221010101

()(),1010101

x x x x x x f x f x x R -----==-=-∈++

∴()f x 是奇函数

(2)2122101

(),.,(,)101

x x

f x x R x x -=∈∈-∞+∞+设,且12x x <, 则12121

21222221222221011012(1010)()()0101101(101)(101)

x x x x x x x x f x f x ----=-=<++++,12

22(10 10)x x < ∴()f x 为增函数。

18、(1)∵()()222

2233(3)lg lg 633

x x f x x x -+-==---,∴3()l g 3x f x x +=-,又由062

2>-x x 得233x ->, ∴ ()f x 的定义域为()3,+∞。

(2)∵()f x 的定义域不关于原点对称,∴()f x 为非奇非偶函数。

19、由2

32

8()log 1

mx x n f x x ++=+,得2

2831y

mx x n x ++=+,即()23830y y

m x x n --+-= ∵,644(3)(3)0y y x R m n ∈∴?=---≥,即23

()3160 y

y m n mn -++- ≤

由02y ≤≤,得139y

≤≤,由根与系数的关系得19

1619m n mn +=+??-=?

,解得5m n ==。

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 2、对数的性质与运算法则 (1)对数的性质(0,1a a >≠且):①1 log 0a =,②l o g 1a a =,③l o g N a a N =,④l o g N a a N =。

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

最新指数对数幂函数知识点总结

高考数学(指数、对数、幂函数)知识点总结2 整理人:沈兴灿 审核人:沈兴灿 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1) (0,,)r s r s a a a a r s R +?=>∈. (2)()(0,,)r s rs a a a r s R =>∈.(3)()(0,0,)r r r ab a b a b r R =>>∈. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ;规律:底数a 保持不变 3注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化。规律:底数a 保持不变 幂值 真数 (二)对数的运算性质 (1)负数和零没有对数; (2)1的对数是0,即01log =a (a >0,且a ≠1);特殊地:ln10= (3)底的对数是1,即1log =a a (a >0,且a ≠1);特别地:ln 1e = (三)对数运算法则。若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1log = (5)对数的换底公式 log log log m a m N N a = (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). a b b a log 1 log = (a >0,且 b >0). (6)指数恒等式:a N a N l o g = (由②N log b ①N a a b ==,,将②代入①得a N a N l o g =)

指数函数对数函数专练习题(含答案)

指数函数及其性质 1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为. 函数名称指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数 函数值的 变化情况 变化对图 象的影响 在第一象限,从逆时针向看图象,逐渐增大;在第二象限,从逆时针向看图象, 逐渐减小.

对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域. 函数名称对数函数 定义函数且叫做对数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数 函数值的 变化情况 变化对图 象的影响 在第一象限,从顺时针向看图象,逐渐增大;在第四象限,从顺时针向看图象, 逐渐减小.

指数函数习题 一、选择题 1.定义运算a ?b =?? ? a (a ≤ b )b (a >b ) ,则函数f (x )=1?2x 的图象大致为( ) 2.函数f (x )=x 2 -bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x ) D .大小关系随x 的不同而不同 3.函数y =|2x -1|在区间(k -1,k +1)不单调,则k 的取值围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2) 4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x -1)的定义域是B ,若 A ? B ,则正数a 的取值围( ) A .a >3 B .a ≥3 C .a > 5 D .a ≥ 5 5.已知函数f (x )=??? (3-a )x -3,x ≤7,a x -6,x >7. 若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列, 则实数a 的取值围是( ) A .[94,3) B .(94,3) C .(2,3) D .(1,3) 6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12 ,则实数a 的取值围是( )

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

高考数学专题复习 指数对数幂函数

2015高考数学专题复习:指数函数 一,定义: 函数 叫做指数函数, R x ∈ 指出下列哪些是指数函数 (1)x y 4= (2)4 x y = (3)x y 4-= (4)x y )4(-= (5)x y π= (6)24x y = (7)x x y = (8) )121 ()12(≠> -=a a a y x 且. 填空:1.=?n m a a 2.=n a a 3. ()=m ab 4.=-m a = 5.=m n a 6.=- m n a 7.() =n m a = 8.= ? ? ? ??-m b a ()x a x f =,则有()()=?n f m f ()()=n f m f ()()=n m f 指出下列函数所经过象限及值域: (1)131 -=+x y (2)21 - =-x e y (3)23.0-=x y ()14+=x y π 练习: 1.下列命题中,正确的是 ( ) A .函数x y 2=,当0y B.函数x y 2=,当0>x 时,10<x 时,1>y D.函数x y )21(=,当0>x 时,10<

(4)91 32 2≥-x (5)124 32<--x x (6)3 3135≤?? ? ??-x 4.计算: (1)=3 28 (2)=- 2 1 25 (3)=??? ??-5 21 (4)=??? ??3 5 278 (5) 3 264- (6) =??32 3a a a (7) = ??2 3 3 2 a a a a (8) 2 133 2 3 121 )()1.0()4()4 1(---- ?b a ab = ( ) ()2 14 06 3 4 3383213212015238116--??? ??--+-+?+ ?? ? ??--= ==-+x x 10,25102则 (11) ==-x x 10,25102则 5.已知10<a ,且1≠a )的图像必经过点 9.(1)函数()x f 对任意实数满足()()()y x f y f x f +=?,且()643=f ,求)0(f ,)1(f ,)3(-f 的值. (2)函数)(x f 满足:对任意的实数b a ,,都有,2)1(),()()(=?=+f b f a f b a f 且则)3()0(f f += 10.作出函数 x y 3=的图像并求值域 若函数 ()11x m f x a =+ -是奇函数,则m =__________ 12.若函数 )10(1)(≠>-+=a a b a x f x 且的图像经过第二、三、四象限,则一定有 ( ) A .010><>b a 且 C .010<<b a 且 13.函数b x a x f -=)(的图像如图,其中b a ,为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

指数函数对数函数幂函数练习题大全答案

一、选择题(每小题 4分,共 计40分) 1.下列各式中成立的一项是 () A .71 7 7)(m n m n =B . 3 3 39=C .4 343 3)(y x y x +=+D .31243)3(-=- 2.化简)3 1 ()3)((65 613 12 12 13 2b a b a b a ÷-的结果 () A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 () A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 1 ) 2()5(--+-=x x y () A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 () A .)1,1(- B .),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ()

指数、对数及幂函数

指数函数、对数函数及幂函数 Ⅰ.指数与指数函数 1.指数运算法则:(1)r s r s a a a +=; (2)()s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)1 m n n m a a - = (6),||,n n a n a a n ?=? ?奇偶 2. 指数函数: 【基础过关】 类型一:指数运算的计算题 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根式与指数式混合运算时,将根式化为指数运算较为方便 1、526+的平方根是______________________ 2、 已知2=n a ,16=mn a ,则m 的值为………………………………………………( ) A .3 B .4 C .3 a D .6 a 3、化简 22 1 () 2b a b a ab b b a +---+-的结果是………………………………( ) A 、a a b -- B 、a b a -- C 、b a a -- D 、2b b a a +-- 4、已知0.001a =,求:413 3 3 223 33 8(12)24a a b b a a a b b -÷-++=_________________ 5、已知1 3x x -+=,求(1)1 12 2 x x - +=________________(2)332 2 x x -+=_________________ 6、若22y y x x -+=,其中1,0x y ><,则 y y x x --=______________ 类型二:指数函数的定义域、表达式 指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数 的图像及性质 函数) (x f a y =的定义域与)(x f 的定义域相同 1、若集合A={ 113x x y -= },B={ 21},x s x A B =-?= 则____________________ 2、如果函数()y f x =的定义域是[1,2],那么函数 1(2)x y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1 2f(x)的是……………………………………………( )

指数函数、对数函数、幂函数教案

一、指数函数 1.形如(0,0)x y a a a =>≠的函数叫做指数函数,其中自变量是x ,函数定义域是R ,值域是(0,)+∞. 2.指数函数(0,0)x y a a a =>≠恒经过点(0,1). 3.当1a >时,函数x y a =单调性为在R 上时增函数; 当01a <<时,函数x y a =单调性是在R 上是减函数. 二、对数函数 1. 对数定义: 一般地,如果a (10≠>a a 且)的b 次幂等于N , 即N a b =,那么就称b 是以a 为底N 的对数,记作 b N a =log ,其中,a 叫做对数的底数,N 叫做真数。 着重理解对数式与指数式之间的相互转化关系,理解,b a N =与log a b N =所表示的是,,a b N 三个量之间的同一个关系。 2. 对数的性质: (1)零和负数没有对数;(2)log 10a =;(3)log 1a a = 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。 3. 两种特殊的对数是:①常用对数:以10作底 10log N 简记为lg N ②自然对数:以e 作底(为无理数),e = 28…… , log e N 简记为ln N . 4.对数恒等式(1)log b a a b =;(2)log a N a N = 要明确,,a b N 在对数式与指数式中各自的含义,在指数式b a N =中,a 是底数,b 是指数,N 是幂;在对数式log a b N =中,a 是对数的底数,N 是真数,b 是以a 为底N 的对数,虽然,,a b N 在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求 对数log a N 就是求b a N =中的指数,也就是确定a 的多少次幂等于N 。 三、幂函数 1.幂函数的概念:一般地,我们把形如y x α =的函数称为幂函数,其中x 是自变量,α是

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

高一数学指数函数对数函数幂函数练习含答案

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>=m m m 3、求下列各式的值 (1)2 325= (2)32 254- ?? ??? = 4、解下列方程 (1)13 1 8 x - = (2)151243 =-x 分数指数幂(第 9份)答案 1 2、33 2 22 ,x y m 3、(1)125 (2) 8125 4、(1)512 (2)16 指数函数(第 10份) 1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4 x y = (3)x y )4(-= (4)2 4x y =。 2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。 3、若指数函数x a y )12(+=在R 上是增函数,求实数a 的取值范围 。 4、如果指数函数x a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2a C 、21<

5、下列关系中,正确的是 ( ) A 、51 31 )21()21(> B 、2.01.022> C 、2 .01.022--> D 、11 5311()()22 - - > 6、比较下列各组数大小: (1)0.5 3.1 2.3 3.1 (2)0.3 23-?? ? ?? 0.24 23-?? ? ?? (3) 2.52.3- 0.10.2- 7、函数x x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。 函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。 8、求满足下列条件的实数x 的范围: (1)82>x (2)2.05=a a a y x 的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。 11、函数x y ??? ??=31的图象与x y -?? ? ??=31的图象关于 对称。 12、已知函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值多2,求a 的 值 。 13、已知函数)(x f =1 22+-x x a 是奇函数,求a 的值 。 14、已知)(x f y =是定义在R 上的奇函数,且当0

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固 撰稿:刘杨审稿:严春梅责编:丁会敏 一、知识框图 二、目标认知 学习目标 1.指数函数 (1)通过具体实例,了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算. (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函 数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅 读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函 数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数 的单调性与特殊点; 3.反函数 知道指数函数与对数函数互为反函数(a>0,a≠1). 4.幂函数 (1)了解幂函数的概念;

(2)结合函数的图象,了解它们的变化情况. 重点 指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 难点 指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质. 三、知识要点梳理 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 2.n次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:

《指数函数与对数函数》测试题与答案

指数函数与对数函数检测题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、10 5 C 、lg10 D 、lg5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若2 2 log log a a M N =则M N =; ④若M N =则2 2 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2 {|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.48 12314,8 ,2y y y -??=== ? ?? ,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()2 2 lg 2lg 52lg 2lg 5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、2 3(1)a a -+ D 、2 31a a -- 9、若210 25x =,则10x -等于( ) A 、15 B 、15- C 、150 D 、1625

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

指数函数、对数函数、幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

相关文档 最新文档