文档库 最新最全的文档下载
当前位置:文档库 › 离散时间系统的时域分析

离散时间系统的时域分析

离散时间系统的时域分析
离散时间系统的时域分析

第七章离散时间系统的时域分析

§7-1 概述

一、离散时间信号与离散时间系统

离散时间信号:只在某些离散的时间点上有值的

信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连

续时间信号的系统。

二、连续信号与离散信号

连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:

三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =

2、 (有序)数列:将离散信号的数值按顺序排列起来。例如:

f(k)={1,0.5,0.25,0.125,……,}

时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、典型的离散时间信号

1、 单位样值函数:?

??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数

)(t δ相似,也有着与其相似的性质。例如:

)()0()()(k f k k f δδ=,

)()()()(000k k k f k k k f ?=?δδ。

2、 单位阶跃函数:?

??≥=其它001)(k k ε

这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其

底一定大于零,不会出现负数。

(a) 0.9a = (d) 0.9a =?

(b) 1a = (e) 1a =?

(c) 1.1a = (f) 1.1a =?

4、 单边正弦序列:)()cos(0k k A εφω+

双边正弦序列:)cos(0φω+k A

五、离散信号的运算

1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

2、 乘法:)()()(21k f k f k f ?=

3、 标量乘法:)()(1k f a k f ?=

4、 移序:)()(1n k f k f ?=

当n>0时,信号向右移(后移)——>称为减序; 当n<0时,信号向左移(前移)——>称为增序。

离散信号的移序计算相当于连续时间信号的时间平移计算。

六、线性移不变离散时间系统

1、 线性离散时间系统 系统的激励和响应之间满足齐次性和叠加性

关系的离散时间系统。

)()()()(22112211k r a k r a k e a k e a +?+

2、 移不变离散时间系统

系统的激励和响应之间满足移不变关系的离散时间系统。

)()(n k r n k e ???

3、 线性移不变离散时间系统

同时满足线性和移不变性的系统。

七、离散时间系统的描述方法:见§7-3。

§7-2 抽样信号与抽样定理

离散信号可以通过对连续信号抽样得到;连续信号可以通过抽样转化为离散信号,从而可以用离散时间系统进行处理。但是,这牵涉到两个问题:

1)怎样进行抽样?

2)如何抽样才能不损失原来信号中的信息?

一、抽样器及其数学模型

抽样是通过一定的装置(等间隔地)抽取原来连续信号中的很小的一段。其等效电路

它也可以用一个开关信号相乘的数学模型来表示,

其中的开关函数为:

∑+∞?∞=?=

k kT t G t s )()(τ

当0→τ时,开关函数近似为:

∑+∞?∞=→→→?=?=k T t kT t t s )(lim )(lim )(lim 000δτδττττ

可见,开关函数近似成为一个幅度为无穷小的周期性冲激序列。这个“无穷小”会给我们分析带来不便,所以一般直接用幅度为1的周期性冲激序列代替它,即:

∑+∞?∞==?=

k T t kT t t s )()()(δδ

这样,抽样以后的信号为:

∑∑∑∞+?∞=∞

+?∞=+∞

?∞=?=?=

?=?=k k k s kT t kT f kT t t f kT t t f t s t f t f )()()()()()

()()()(δδδ 显然,抽样以后的信号只与原来的信号在某些离散的时间点上的值有关。

二、 抽样定理

显然,利用原来的信号在某些离散的时间点上的值构成的信号,是否会损失信息?或者,在

(a) 开关函数 (b )单位冲激序列

何条件下,可以用抽样后的信号,不失真地还原出原来的信号?

1、 抽样信号的频谱:

∑+∞

?∞=?=k s kT t t f t f )()

()(δ ∑∑∑∞

+?∞

=∞+?∞=+∞?∞=?=?=??

?????=k s k s s k s s s k j F T k j F k j F j F )(*)(1)(*)(2)(*)(21)(ωωδωωωδωπωωωδωωπω 其中T s πω2=,称为抽样(角)频率;T 称为抽样

(取样)周期。

可见,抽样后信号的谱是抽样以前的谱按抽样(角)频率周期化的结果。

如果原来信号最大频率分量为的谱m ω,抽样

频率m s ωω2>,则周期化后的各个频谱不会相互重叠。将抽样信号通过一个截止频率为2/s ω、增益为T 的ILPF ,可以不失真地还原原来的信号。此低通滤波器的冲激响应:

??

????=??????=222)(t Sa t Sa T t h c c s ωωπω

(a ) 原信号()f t (b) 原信号的频谱()F j ω

(c )单位冲激序列()T t δ (d )单位冲激序列的频谱()s s ωωδω (2s T πω=

(e)1

()()()()s T f t f t f t t δδτ== (f) ()f t δ的频谱

∑+∞?∞=??

?????=

n s nT t Sa nT f t f 2)()()(ω 这个定理称为Nyquist 抽样定理,或Shannon 抽样定理。它说明模拟信号可以有条件地由其无数个离散点上的数值恢复出,也就是说在m s ωω2>时,用信号的一些离散的时间点上的数值来代替这个信号可以不损失任何信息。

能够完全不失真地还原信号所需要的最小的抽样频率m s ωω2=称为Nyquist 抽样频率,或Shannon 抽样频率。

z 在实际工程中的做法与取样中的过程正好相反:首先测量得到f(kT),然后再构成抽样信号。工程上的采样就是指测量到kT 时刻f(t)的值。 z 在构成抽样信号时,不可能产生冲激信号,这时候可以用任意的周期性脉冲信号代替,其结果不变。

z 恢复信号时,ILPF 是不可能实现的,只能用其它的LPF ,所以抽样频率必须进一步增加,一般取m ω的3~5倍。

z 如果原来的信号是一个带限信号,则Nyquist

抽样定理还可以做适当修改。

z 抽样也是一个线性处理过程,它满足齐次性和

叠加性。这是我们通过它达到用离散时间系统处理连续信号的基础。

z 通过抽样可以将连续信号转化为离散数字信

号,从而可以用数字信号处理系统进行处理,达到模拟信号处理无法达到的效果。

§7-3 离散时间系统的描述

离散时间系统的描述方法有三种:

抽样信号经过非理想低通滤波器

1) 数学模型——>差分方程

2) 物理模型——>框图

3) 系统函数——>Z.T.,在第八章中介绍。

一、 数学模型

离散时间系统处理的信号是离散信号,信号只在某些不连续的时间点上存在,不存在微分,也就不可能用微分方程描述,只能用差分方程描述离散信号相邻的几个时间点之间的关系。

例1:人口(或虫口)问题:

z 假设人口的年出身率为a ,则k 年人口y(k)和下一年的人口y(k+1)之间的关系为:

)()1()1(k y a k y +=+ <—前向(预测)方程; 或:)1()

1(1)(++=k y a k y <—后向(滤波)方程; 或:0)()1()1(=+?+k y a k y <—一般差分方程。

z 差分方程与微分方程一样,也必须有初始条件。

如果已知y(0),则可以得到差分方程的解:

)0()1()1(y a y +=,

)1()1()1()1()2(2y a y a y +=+=,

)0()1()2()1()3(3y a y a y +=+=,

)0()1()(y a k y k +=

z 差分方程也可以加激励:假设k 年从外地引入x(k)个人,则:)()()1()1(k x k y a k y ++=+。

例2:Fibonacci 数列:假设每一对兔子每月生一对小兔子,而小兔子在一个月以后才会后生育能力。如果在第一个月内有一对小兔子,问:到n 个月时,有几对兔子?

解:假设y(k)代表第k 个月兔子的总对数,则:

1) 这y(k)对兔子在k+2月生y(k)对小兔子,即

在k+2月必然有y(k)个小兔子;

2) 除了小兔子以外,k+1月存在的兔子在k+2

月必然都长成大兔子

所以,第k+2月兔子的总对数为:

y(k+2)=y(k)+y(k+1)

或者:y(k+2)- y(k+1)-y(k)=0

差分方程的一般形式:

)()1(...)1()()

()1(...)1()(011011k e b k e b m k e b m k e b k r a k r a n k r a n k r m m n ++++?+++=++++?+++?? z 差分方程在形式上与微分方程相似,只不过微分计算变成了移序计算;

z 差分方程也有阶,差分方程的阶定义为其中最大移序与最小移序之差;

z 求解差分方程也必须有初始条件,初始条件的个数必须等于差分方程的阶数;

z 与连续时间系统中的结论相似,线性移不变系统可以用一个常系数差分方程描述。

z 因为差分方程可以很方便地用计算机求其数值解,所以很多微分方程可以近似为差分方程求近似数值解。

二、物理模型

与连续时间系统一样,离散时间系统也可以用框图的形式描述。

1、 基本运算单元

离散时间系统框图的基本运算单元有加法器、标量乘法器和延时(移序)器构成。

2、 离散时间系统框图的构成

离散时间系统框图构成与连续时间系统很相

似,只不过将其中的积分器变成延时(移序)器。

离散时间系统的初始状态可以包含在延时

(移序)器中。

()(1)y k x k =

?

()(

1)(0)y k x k y =?+

(a)初始条件为零 (b)初始条件不为零

延时器

n 阶离散时间系统模拟框图

§7-4 离散时间系统的零输入响应

离散差分方程的解法:

1) 时域经典法

与微分方程一样,将解分为通解(齐次解)和特解两部分。首先确定形式解,再代入初始条件(或边界条件),确定其中的待定系数。 优点:物理概念清晰,可以一次得到全部解; 缺点:特解有时很难求,不实用。

2) 近代时域法:

将解分为零输入响应)(k r zi 和零状态响应

)(k r zs 两部分。对零输入响应)(k r zi 仍然用时域经典法;零状态响应)(k r zs 用卷积和求解。

这种方法是求解差分方程的主要方法;

3) 变换域解法:Z 变换( Z.T.),相当于连续时

间系统中的L.T.变换法。在第八章中介绍。

4) 数值解法:利用前向预测形式的差分方程,

通过迭代计算的方法,得到数值解。这种方法用计算机求解比较方便,但是无法得到通式。

例如:对于Fibonacci 问题,有差分方程:

y(k+2)- y(k+1)-y(k)=0;

?

y(k+2)= y(k+1)+y(k); ? y(k)= y(k-1)+y(k-2);

现在已知:y(0)=0,y(1)=1,则可以得到:

y(2)=1,y(3)=2,y(4)=3,y(5)=5,y(6)=8,……

本章重点介绍近代时域法。

首先,在本节中介绍近代时域法中零输入响应)(k r zi 的求法,或齐次差分方程的求解方法。

一、 差分方程的算子表示法

为了记录方便,引入移位算子S :

)1()(+=?k y k y S

则可以将一般的差分方程

)()1(...)1()()()1(...)1()(011011k e b k e b m k e b m k e b k r a k r a n k r a n k r m m n ++++?+++=++++?+++??记为:

)()(...)()()()(...)()(01110111k e b k e S b k e S b k e S b k r a k r S a k r S a k r S m m m m n n n +?++?+?=+?++?+????? 或:

)()()(k e S H k r =

其中:

12211012211......)(a S a S a S a S b S b S b S b S b S H n n n n n m m m m m m ++++++++++=????????

二、零输入响应)(k r zi 的求法

零输入响应)(k r zi 对应于齐次差分方程:

)

(1...1)(0

12211S D a S a S a S a S S H n n n n n =+++++=???? 或:

0)()1(...)1()(011=++++?+++?k r a k r a n k r a n k r zi zi zi n zi

1、一阶系统

0)()1(0=++k r a k r zi zi

—>)()1(0k r a k r zi zi ?=+

假设:)0(zi r 已知,则:

)0()1(0zi zi r a r ?=;)0()()2(20zi zi r a r ?=;

)0()()3(30zi zi r a r ?=;…

)0()()(0zi k zi r a k r ?=∴

分析上面的结论,其中的)(0a ?可以定义为系统的特征方程的特征根,相应的解中就有了

k a )(0?。结合在求解微分方程中的一些结论,可以分析出求解差分方程的零输入响应的基本思路,猜想它应该有下面的形式:

......)(332211+++=k k k zi v C v C v C k r

其中i v 为差分方程的特征根。

2、n 阶系统

与微分方程求解方法相似,也分为以下几部:

(1) 求特征方程——即H(S)的分母多项式—

—D(S)=0根(特征根)1ν、2ν、…、n ν;

(2) 根据D(S)=0的根,确定r(k)的形式解:

a 、 假设D(S)=0没有重根,则其形式解为:

[]

)()(...)()()(2211k C C C k r k n n k k zi εννν+++= b 、 假设D(S)=0有重根,假设1ν是一个m 重根,则形式解为:

[])()(...)())(...()

(111121k C C k C k C C k r k N n k m m k m m zi εννν++++++=++? 其余情况以此类推。

(3) 带入初始条件,确定待定系数。

对于一般差分方程,初始条件为)0(zi r ~)1(?n r zi 。将它带入形式解中,可以得到n 元一次线性方程组:

离散时间系统特性分析

实验五实验报告 实验名称:离散时间系统特性分析

一、实验目的: 1 。深入理解单位样值响应,离散系统的频率响应的概念; 2。 掌握通过计算机进行求得离散系统的单位样值响应,以及离散系统的频率 响应的方法。 二、实验原理: 对于离散系统的单位样值而言,在实际处理过程中,不可能选取无穷多项的取值。往往是选取有限项的取值,当然这里会产生一个截尾误差,但只要这个误差在相对小一个范围里,可以忽略不计。 另外,在一些实际的离散系统中,往往不是事先就能得到描述系统的差分方程的,而是通过得到系统的某些相应值,则此时系统的分析就需借助计算机的数值处理来进行,得到描述系统的某些特征,甚至进而得到描述系统的数学模型。 本实验首先给出描述系统的差分方程,通过迭代的方法求得系统的单位样值响应,进而求得该离散系统的频率响应。限于试验条件,虽然给出了系统方程,但处理的方法依然具有同样的实际意义。 具体的方法是: 1 在给定系统方程的条件下,选取激励信号为δ(n),系统的起始状态为零 状态,通过迭代法,求得系统的单位样值响应h(n)(n=0,…,N )。 2 利用公式 其中Ω的取值范围为0~2π 。计算系统的频率响应。 三、实验内容 1 已知系统的差分方程为 利用迭代法求得系统的单位样值响应,取N =10。 2 利用公式 其中

#include #include #define N 10 #define M 20 #define pi 3.1415926 struct pinlv{ double fu; double xiang;}; double h[N+1],x[N+1]; struct pinlv PL(double w) { double a=0, b=0,fu,xiang; int k; struct pinlv FX; for(k=0;k<=N;k++){ a=a+h[k]*cos(-k*w); b=b+h[k]*sin(-k*w);} fu=sqrt(a*a+b*b); xiang=atan(b/a); if((a<0)&(b>0)) xiang=xiang+pi; if((a<0)&(b<0)) xiang=xiang-pi; FX.fu=fu; FX.xiang=xiang; return(FX); } main() { int i,j; double w0; struct pinlv FX[M+1]; FILE *fp1,*fp2; fp1=fopen("H:\\单位样值响应.txt","w"); fp2=fopen("H:\\频率特性.txt","w"); h[-1]=0;h[-2]=0; for(i=-1;i<=N;i++) x[i]=0; x[0]=1; for(i=0;i<=N;i++) h[i]=1.3*h[i-1]-0.4*h[i-2]+x[i-1]; printf("系统的单位样值响应为\n"); fprintf(fp1,"系统的单位样值响应(从x[0]开始)为\n"); fprintf(fp1,"激励x[i] 响应y[i]\n"); for(i=0;i<=N;i++)

实验三___离散时间系统的时域分析

实验三 离散时间系统的时域分析 1.实验目的 (1)理解离散时间信号的系统及其特性。 (2)对简单的离散时间系统进行分析,研究其时域特性。 (3)利用MATLAB对离散时间系统进行仿真,观察结果,理解其时域特性。 2.实验原理 离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示: (1)线性系统 线性系统就是满足叠加原理的系统。如果对于一个离散系统输入信号为时,输出信号分别为,即:。 而且当该系统的输入信号为时,其中a,b为任意常数,输出为,则该系统就是一个线性离散时间系统。 (2)时不变系统 如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。对于一个离散时间系统,若输入,产生输出为,则输入为,产生输出为,即: 若,则。 通常我们研究的是线性时不变离散系统。 3.实验内容及其步骤 (1)复习离散时间系统的主要性质,掌握其原理和意义。 (2)一个简单的非线性离散时间系统的仿真 系统方程为: x = cos(2*pi*0.05*n); x1[n] = x[n+1] x2[n] = x[n] x3[n] = x[n-1] y = x2.*x2-x1.*x3; 或者:y=x*x- x[n+1]* x[n-1] 是非线性。 参考:% Generate a sinusoidal input signal clf; n = 0:200; x = cos(2*pi*0.05*n); % Compute the output signal x1 = [x 0 0]; % x1[n] = x[n+1] x2 = [0 x 0]; % x2[n] = x[n] x3 = [0 0 x]; % x3[n] = x[n-1]

离散信号与系统时域分析

目录 第1章设计任务及要求 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 第2章设计原理 (2) 2.1离散信号与系统的时域分析设计 (2) 2.1.1描写系统特性的方法介绍 (2) 2.1.2系统的时域特性 (2) 第3章设计实现 (3) 3.1实验内容与方法 (3) 3.1.1实验内容 (3) 第4章设计结果及分析 (3) 4.1程序设计结果及分析 (4) 总结 (7) 参考文献: (7) 附录: (8)

第1章 设计任务及要求 1.1课程设计内容 编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。具体要求如下: (1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。 ② 求出系统的单位脉冲响应,画出其波形。 (2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。 (3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。 1) 用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。 2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。 1.2课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。 5. 课设说明书要求: 1) 说明题目的设计原理和思路、采用方法及设计流程。 2) 详细介绍运用的理论知识和主要的Matlab 程序。 3) 绘制结果图形并对仿真结果进行详细的分析。

典型连续信号和离散信号时域波形图

一.典型连续信号和离散信号的时域波形。 1.单边指数信号)()(t u Ae t y t α=; 2.单位冲激信号)()(0t t t y +=δ; 3.单位阶跃信号)()(0t t u t y +=; 4.矩形脉冲信号)]()([)(21t t u t t u A t y +-+?=; 5.正弦信号)()sin()(t u t A t y ω?=; 6.单位序列)()(0n n n y +=δ; 7.单位阶跃序列)()(0n n u n y +=; 8.单位矩形序列)()()(21n n u n n u n y +-+=; 9.指数序列)()(n u a A n y n ?=; 10.正弦序列)()sin()(n u n A n y ω?=。

单边指数信号 function zhishu(A,a,t1,t2,dt) t1=0 t2=10 A=1 A=-0.4 dt=0.01 t=t1:dt:t2; y=A*exp(a*t); plot(t,y) axis([t1,t2,0,1.2]) xlabel('t') ylabel('y(t)') title(' 单边指数信号') 单位冲激信号 function chongji(t1,t2,t0) dt=0.01; t1=10; t2=-5; t=t1:dt:t2; n=length(t); x=zeros(1,n); x(1,(-t0-t1)/dt+1)=1/dt; stairs(t,x); axis([t1,t2,0,1.2/dt]) xlabel('t') ylabel('y(t)') title('单位冲激信号')

实验一 时域离散信号与系统变换域分析(2015)资料

实验一 时域离散信号与系统变换域分析 一、实验目的 1.了解时域离散信号的产生及基本运算实现。 2.掌握离散时间傅里叶变换实现及系统分析方法。 3. 熟悉离散时间傅里叶变换性质。 4. 掌握系统Z 域分析方法。 5. 培养学生运用软件分析、处理数字信号的能力。 二、实验设备 1、计算机 2、Matlab7.0以上版本 三、实验内容 1、对于给定的时域离散信号会进行频谱分析,即序列的傅里叶变换及其性质分析。 2、对于离散系统会进行频域分析及Z 域分析。包括频谱特性、零极点画图、稳定性分析。 3、对于差分方程会用程序求解,包括求单位冲击序列响应,零输入响应、零状态响应、全响应,求其系统函数,及其分析。 4、信号时域采样及其频谱分析,序列恢复。 5、扩展部分主要是关于语音信号的读取及其播放。 四、实验原理 1、序列的产生及运算 在Matlab 中自带了cos 、sin 、exp (指数)等函数,利用这些函数可以产生实验所需序列。 序列的运算包括序列的加法、乘法,序列)(n x 的移位)(0n n x -,翻褶)(n x -等。序列的加法或乘法指同序号的序列值逐项对应相加或相乘,但Matlab 中“+”“.*”运算是对序列的值直接进行加或乘,不考虑两序列的序号是否相同,因此编程时考虑其序号的对应。 2、序列的傅里叶变换及其性质 序列的傅里叶变换定义:)(|)(|)()(ω?ωωω j j n n j j e e X e n x e X ==∑∞-∞=-,其幅度特性为|)(|ωj e X , 在Matlab 中采用abs 函数;相位特性为)(ω?,在Matlab 中采用angle 函数。 序列傅里叶变换的性质:

时域离散信号的产生与基本运算

实验一 时域离散信号的产生与基本运算 一、实验目的 1、了解常用的时域离散信号及其特点。 2、掌握MATLAB 产生常用时域离散信号的方法。 3、掌握时域离散信号简单的基本运算方法。 二、实验内容 1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。 2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。 3、已知信号 (1) 描绘)(n x 序列的波形。 (2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。 (3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-= 三、实现步骤 1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。 (1)单位抽样序列 程序: x=zeros(1,10);

x(2)=1; stem(x,'filled') axis([0,10,-0.2,1]); title('μ¥??3é?ùDòáD'); -0.20 0.2 0.4 0.6 0.8 图 1 (2)单位阶跃序列 程序: N=10; u=ones(1,N); stem(u,'filled') axis([-10,10,0,1]); title('μ¥???×??DòáD');

00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 单位阶跃序列 图 2 (3)正弦序列 程序: x=-20:1:20; y=sin(0.2*pi.*x+0.5*pi); stem(x,y,'filled'); axis([-20,20,-2,2]); title('?y?òDòáD');

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

实验六 离散时间系统的时域分析

信号与系统实验报告 实验名:离散时间信号与系统的频域分析 实验六离散时间系统的时域分析 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、预习内容 1、离散时间信号的傅里叶变换与逆变换。 2、离散时间信号频谱的物理含义。 3、离散时间系统的频率特性。 4、离散时间系统的频域分析方法。 三、实验原理 1. 离散时间系统的频率特性

2. 离散时间信号傅里叶变换的数值计算方法 3.涉及到的Matlab 函数

四、实验内容 1、离散时间系统的时域分析 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤ 4π的离散时间傅里叶变换 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1)

plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); yl abel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, angle (h)); grid; title(‘相位谱’) x label(‘omega/\pi’); ylabel(‘以弧度为单位的相位’);

实验用MATLAB产生时域离散信号

实验1用M A T L A B产生时域离散信号 一、.实验目的: 1、了解常用时域离散信号及其特点 2、掌握用MATLAB产生时域离散信号的方法 二、实验内容及步骤 1、阅读并上机验证实验原理部分的例题程序,理解每一条语句的含义。 改变例题中的有关参数(如信号的频率、周期、幅度、显示时间的取值范围、采样点数等),观察对信号波形的影响。 2、编写程序,产生以下离散序列: n1=-3;n2=4;n0=0; n=n1:n2; x=[n==n0]; stem(n,x,'filled'); axis([n1,n2,0,*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位脉冲序列'); (2)n1=-5;n2=5;n0=0; n=n1:n2; x=[n>=n0]; stem(n,x,'filled') axis([n1,n2,0,*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位阶跃序列'); n1=20;a=;w=*pi; n=0:n1; x=exp((a+j*w)*n); subplot(2,2,1);plot(n,real(x)); title('复指数信号的实部'); subplot(2,2,3);stem(n,real(x),'filled'); title('复指数序列的实部'); subplot(2,2,2);plot(n,imag(x)); title('复指数信号的虚部'); subplot(2,2,4);stem(n,imag(x),'filled'); title('复指数序列的虚部');

信号、系统及系统响应,离散系统的时域分析实验报告

实验报告 实验二 信号、系统及系统响应,离散系统的时域分析 一、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变换关系,加深对时域采样定理的理 解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信 号、离散信号及系统响应进行频域分析。 (5) 熟悉并掌握离散系统的差分方程表示法; (6) 加深对冲激响应和卷积分析方法的理解。 二、实验原理与方法 1、信号、系统及系统响应 采样是连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 我们知道,对一个连续信号xa(t)进行理想采样的过程可用(2-1)表示。 ^ ()()() (21) a a x t x t p t =- 其中^ ()a x t 为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()() (22) n p t t nT δ∞ =-∞= --∑ ^ ()a x t 的傅里叶变换^ ()a X j Ω为 ^ 1()[()] (23) a a s m X j X j m T ∞ =-∞ Ω=Ω-Ω-∑ (2-3)式表明^ ()a X j Ω为()a X j Ω的周期延拓,其延拓周期为采样角频率

(2/)s T πΩ=。其采样前后信号的频谱只有满足采样定理时,才不会发生频率混叠失真。 将(2-2)带入(2-1)式并进行傅里叶变换: ^ ()[()()]j t a a n X j x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ Ω=-∑? [()()]j t a n x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ = -∑? ()(24) j nT a n x nT e ∞ -Ω=-∞ = -∑ 式中()a x nT 就是采样后得到的序列()x n ,即 ()()a x n x nT = ()x n 的傅里叶变换()j X e ω为 ()()(25) j j n n X e x n e ω ω∞ -=-∞ = -∑ 比较(2-5)和(2-4)可知 在数字计算机上观察分析各种序列的频域特性, 通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。 对长度为N 的有限长序列x(n), 有 一个时域离散线性非移变系统的输入/输出关系为 上述卷积运算也可以在频域实现 2、离散系统时域分析 ^ ()() (26) j a T X j X e ωω=ΩΩ=-1 ()()(27) 2,0,1,,1k N j n j k n k X e x m e k k M M ωωπ ω--==-= =???-∑()()()()() (28) m y n x n h n x m h n m ∞ =-∞ =*= --∑()()() (29) j j j Y e X e H e ωωω=-式中

离散系统的时域分析实验报告

实验2 离散系统的时域分析 一、实验目的 1、熟悉并掌握离散系统的差分方程表示法; 2、加深对冲激响应和卷积分析方法的理解。 二、实验原理 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应,则系统响应为如下的卷积计算式: 当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。 三、实验内容

1、用MATLAB 求系统响应 1) 卷积的实现 线性移不变系统可由它的单位脉冲响应来表征。若已知了单位脉冲响应和系统激励就 可通过卷积运算来求取系统响应,即)(*)()(n h n x n y 程序: x=input(‘Type in the input sequence=’); %输入x h=input(‘Type in the impulse response sequence=’); %输入h y=conv(x,h); % 对x ,h 进行卷积 N=length(y)-1; %求出N 的值 n=0:1:N; %n 从0开始,间隔为1的取值取到N 为止 disp(‘output sequence=’); disp(y); %输出y stem(n,y); %画出n 为横轴,y 为纵轴的离散图 xlabel(‘Time index n ’); ylable(‘Amplitude ’); % 规定x 轴y 轴的标签 输入为: x=[-2 0 1 -1 3] h=[1 2 0 -1] 图形: 2) 单位脉冲响应的求取 线性时不变因果系统可用MA TLAB 的函数filter 来仿真 y=filter(b,a,x); 其中,x 和y 是长度相等的两个矢量。矢量x 表示激励,矢量a ,b 表示系统函数形式 滤波器的分子和分母系数,得到的响应为矢量y 。例如计算以下系统的单位脉冲响应 y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3) 程序: N=input(‘Desired impuse response length=’); b=input(‘Type in the vector b=’); a=input(‘Type in the vector a=’); x=[1 zeros(1,N-1)]; y=filter(b,a,x);

实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析 1.实验目的 (1)理解和加深傅里叶变换的概念及其性质。 (2)离散时间傅里叶变换(DTFT)的计算和基本性质。 (3)离散傅里叶变换(DFT)的计算和基本性质。 2.实验原理 对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。 离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。 设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥ =-? = -?,并且其傅里叶变 换为:()()(){}sp n iwt f t f nT t nT dt e d ¥ ¥ -? =-? --= ? òF 。 这就是采样序列f(nT)的DTFT::()()iwT inwT DTFT n F e f nT e ¥ -=-? = ?,为了方便,通常将采 样间隔T 归一化,则有:()()iw inw DTFT n F e f n e ¥ -=-? = ?,该式即为信号f(n)的离散时间傅 里叶变换。其逆变换为:()1()2iw DTFT inw F e dw f n e p p p -=ò。 离散傅里叶变换(DFT ,Discrete-time Fourier Transform )是对离散周期信号的一种傅里叶变换,对于长度为有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT 的离散谱是对DTFT 连续谱的等间隔采样。 21 1 20 ()()| ()()DFT k DTFT k w N knT N N i iwT iwnT N n n F w F e f nT e f nT e p p =----==== = 邋 长度为N 的有限长信号x(n),其N 点离散傅里叶变换为: 1 ()[()]()kn N N n X k DFT x n x n W -=== ?。 X(k)的离散傅里叶逆变换为:10 1()[()]()kn N N k x n IDFT X k X k W N --===?。 DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域

FFT对连续信号和时域离散信号进行谱研究分析

FFT对连续信号和时域离散信号进行谱分析

————————————————————————————————作者:————————————————————————————————日期:

一、实验目的与要求 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。 二、实验原理 用FFT对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N 小于等于D。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。 三、实验步骤及内容 (1)对以下序列进行FFT分析: x1(n)=R4(n) n+1 0≤n≤3 x2(n)={ 8-n 4≤n≤7 0 其它n 4-n 0≤n≤3 X3(n)={ n-3 4≤n≤7 0 其它n 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较 xn1=[1 1 1 1]; Xk18=fft(xn1,8); yn11=abs(Xk18); n11=0:length(yn11)-1; Xk116=fft(xn1,16); yn12=abs(Xk116); n12=0:length(yn12)-1; n=0:3; x21=n+1; x31=4-n; n=4:7; x22=8-n; x32=n-3; xn2=[x21,x22]; Xk28=fft(xn2,8); yn21=abs(Xk28); n21=0:length(yn21)-1; Xk216=fft(xn2,16); yn22=abs(Xk216); n22=0:length(yn22)-1; xn3=[x31,x32]; Xk38=fft(xn3,8);

离散时间系统的分析

课程设计报告 课程设计题目:离散时间系统分析学号:201420130206 学生姓名:董晓勇 专业:通信工程 班级:1421301 指导教师:涂其远 2015年12月18日

离散时间系统的分析 一、设计目的和意义 1 . 目的: (1)深刻理解卷积和、相加、相乘运算,掌握求离散序列卷积和、相加相乘的计算方法;(2)加深理解和掌握求离散序列Z变换的方法; (3)加深和掌握离散系统的系统函数零点、函数极点和系统时域特性、系统稳定性的关系。 2 . 意义: 在对《信号与系统》一书的学习中,进行信号与系统的分析是具有十分重要的意义,同时也是必不可少的。利用matlab函数,只需要简单的编程,就可以实现系统的时域、频域分析,对系统特性进行分析,为实际的系统设计奠定了基础。本设计在离散系统Z域分析理论的基础上,利用matlab对离散系统的稳定性和频域响应进行了分析。 二、设计原理

第一部分:对离散时间系统的时域进行分析呈 对离散时间信号的代数运算(相加、相乘、卷积和),是在时域进行分析。相加用“+”来完成,相乘用“·*”来完成,卷积和则用conv 函数来实现,具体形式为y=conv(x1,x2,….),其中x1,x2,…..为输入的离散序列 ,y 为输出变量。 在零初始状态下,matlab 控制工具箱提供了一个filter 函数,可以计算差分方程描述的系统的响应,其调用形式为: y=filter(b,a,f) 其中,a=[a0,a1,a2,…]、b=[b0,b1,b2,….]分别是系统方程左、右边的系数向量,f 表示输入向量,y 表示输出向量。 第二部分:对离散时间系统的Z 域进行分析 matlab 工具箱提供了计算Z 正变换的函数ztrans,其调用形式为: F=zrtans(f) %求符号函数f 的Z 变换,返回函数的自变量为z 。 Matlab 的zplane 函数用于系统函数的零极点图的绘制,调用方式为: zplane(b,a)其中,b 、a 分别为系统函数分子、分母多项式的系数向量。 matlab 中,利用freqz() 函数可方便地求得系统的频率响应,调用格式为: freqz(b,a,N) 该调用方式将绘制系统在0~PI 范围内N 个频率等分点的幅频特性和相频特性图。 三、 详细设计步骤 1.自己设计两个离散时间序列x1、x2,对其进行相加,相乘,卷积运算,并显示出图形。 2.根据已知的LTI 系统:y[n]-0.7y[n-1]-0.6y[n-2]+y[n-3]=x[n]+0.5[n-1],得其在Z 域输 入输出的传递函数为: 1 12310.5()10.70.6z H z z z z ----+= --+ 利用matlab 求:(1)系统函数的零点和极点,并在z 平面显示他们的分布;(2)画出幅频响应和相频响应的特性曲线。 四、 设计结果及分析 (1).自行设计产生两个离散序列信号,对其进行相加、乘及卷积运算

离散LSI系统的时域分析.doc

. ... 实验二:离散LSI系统的时域分析 一、实验内容 1.知描述某离散LSI系统的差分方程为2y(n)-3y(n-1)+y(n-2)=x(n-1),分别用impz 和dstep函数、filtic和filter函数两种方法求解系统的单位序列响应和单位阶跃响应。 用impz和dstep函数求解系统的单位序列响应和单位阶跃响应如下 a=[1,-3/2,1/2]; b=[0,1/2,0]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 课程名称数字信号 实验成绩 指导教师实验报告.

... 010203000.10.20.0.0.0.0.0.0.1系统的单位序列响应h(n) n01020300112230系统的单位阶跃响应g(n)n 用函数filtic和filter求解离散系统的单位序列响应和单位阶跃

解:x01=0;y01=0; a=[1,-3/2,1/2]; b=[1/2,0,0]; N=32;n=0:N-1; xi=filtic(b,a,0); x1=[n==0]; hn=filter(b,a,x1,xi); x2=[n>=0]; gn=filter(b,a,x2,xi); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); . ... subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 01020300.550.60.650.70.750.80.850.90.951

实验6_离散时间系统的z域分析报告

实验6 离散时间系统的z 域分析 一、实验目的 1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理 1. Z 变换 序列x(n)的z 变换定义为 ()()n n X z x n z +∞ -=-∞ = ∑ Z 反变换定义为 1 1 ()()2n r x n X z z dz j π-= ?? 在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换 和z 反变换: Z=ztrans(F) 求符号表达式F 的z 变换。 F=ilaplace(Z) 求符号表达式Z 的z 反变换。 2.离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 ()()n n H z h n z +∞ -=-∞ = ∑ 此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到 ()()/()H z Y z X z = 由上式描述的离散时间系统的系统函数可以表示为 101101()M M N N b b z b z H z a a z a z ----+++= +++…… 3.离散时间系统的零极点分析 离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为: zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。 zplane(z,p) z,p 为零极点序列(列向量)。 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k ΛΛ。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

6.离散时间信号与系统的时域分析

第6章线性时不变离散系统的时域分析 6.1 学习要求 (1)掌握离散信号的基本描述方法、分类及其基本运算; (2)掌握离散时间系统的差分方程描述; (3)熟练掌握系统的单位样值响应; (4)熟练掌握卷积和的概念及计算; (5)掌握系统零输入响应和零状态响应的求解方法; (6)了解离散相关的概念和性质。 6.2学习重点 (1)系统的单位样值响应的计算; (2)零输入响应和零状态响应的求解方法; (3)卷积和的概念及计算。 6.3知识结构

6.4内容摘要 6.4.1 离散时间信号的定义 离散时间信号是指仅在不连续的离散时刻有确定函数值,而在其它点上函数值未定义的信号,简称离散信号,也称序列,常用)(n x 表示。 6.4.2 常用的时间序列 (1)单位样值序列)(n

?? ?≠==0 00 1)(n n n δ (2)单位阶跃序列)(n u ? ??<≥=000 1)(n n n u )(n u 和)(n δ的关系: +-+-+-+=)3()2()1()()(n n n n n u δδδδ∑∞ =-=0 )(k k n δ )1()()(--=n u n u n δ (3)矩形序列)(n R N ? ? ?≥<-≤≤=)0(0) 10(1)(N n n N n n R N 或 矩形序列与阶跃序列、样值序列的关系: ∑-=-=+-++-+-+=10 )()1()2()1()()(N m N m n N n n n n n R δδδδδ )1()()(+--=N n u n u n R N (4)正弦序列 )sin()(0φω+=n A n x 式中,A 为幅度,φ为起始相位,0ω为正弦序列的数字域频率,N π ω20=。 (5)实指数序列 )()(n u a n x n = 波形特点为:a >1时,序列发散;1

时域离散信号的产生与运算

典型时域离散序列的产生与简单运算 1. 单位冲激序列 程序1: function [x,n]=impseq(n0,n1,n2) % generates x(n)=delta(n-n0); n1<=n<=n2 n=[n1:n2]; x=[(n-n0)==0]; 调用:[x,n]=impseq(0,-3,4); stem(n,x) 程序2: n1=-3;n2=4;n0=0; n=n1:n2; x=[n==n0]; stem(n,x,'filled'); axis([n1,n2,0,1.1*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位脉冲序列'); 2. 单位阶跃序列 程序: n1=-3;n2=4;n0=0; n=n1:n2; x=[n>=n0]; stem(n,x,'filled'); axis([n1,n2,0,1.1*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位阶跃序列'); 3. 矩形序列 程序: 10()00n n n δ=?=?≠?1≥0()00n u n n ?=?

n=[-10:10]; xn1=[(n-0)>=0]; xn2=[(n-4)>=0]; %定义两个阶跃序列; xn=xn1-xn2; 两个阶跃序列之差得到矩形序列; stem(n,xn,'.'); xlabel('时间(n)');ylabel('幅度x(n)'); title(‘矩形序列'); 4. 正弦序列 程序: n=0:20; xn=sin(pi/4*n); stem(n,xn,'.'); xlabel('时间(n)');ylabel('幅度x(n)'); title(‘正弦序列'); 5. 指数序列 程序: n=[0:20]; x=(0.9).^n; stem(n,x); xlabel('时间(n)');ylabel('幅度x(n)'); title(‘指数序列'); 6. 对conv 进行简单的扩展conv_m ,可以完成任意位置序列的卷积. 对于有限长序列x (n ),h (n ),它们分别的区域为[n xb,n xe]和[n hb,n he],则卷积后的区域为 [n xb+n hb,n xe+n he] 程序: function[y,ny]=conv_m(x,nx,h,nh) nyb=nx(1)+nh(1); nye=nx(length(x))+nh(length(h)); ny=[nyb:nye]; y=conv(x,h); 调用: x=[3,11,7,0,-1,4,2]; h=[2,3,0,-5,2,1]; nx=[-3:3]; nh=[-1:4]; [y,ny]=conv_m(x,nx,h,nh) ()sin()x n A n ωθ=+n a n x =)(

相关文档