文档库 最新最全的文档下载
当前位置:文档库 › 霍尔元件US5881

霍尔元件US5881

霍尔元件US5881
霍尔元件US5881

Features and Benefits

?Chopper stabilized amplifier stage

?New miniature package / thin, high reliability package

?Operation down to 3.5V

?CMOS for optimum stability, quality and cost

Applications

?Solid state switch

?Limit switch

?Current limit

?Interrupter

?Current sensing

Ordering Information

Part No. Temperature Suffix Package Temperature Range

US5881 E SO or UA -40o C to 85o C Extended

US5881 L SO or UA -40o C to 150o C Automotive

*Contact factory or sales representative for legacy temperature options

US5881 Electrical Specifications

Parameter Symbol Test Conditions Min Typ Max Units Supply Voltage V DD Operating 3.5 24 V Supply Current I DD BB OP0.4 0.5 V Output Leakage I OFF B

US5881 Magnetic Specifications

Parameter Symbol Test Conditions Min Typ Max Units Operating Point3B OP15 25 30 mT Release Point B RP9.5 20 - mT Hysteresis B hys 2.0 4.3 5.5 mT

Notes:

1. 1 mT = 10 Gauss.

2. The SOT-23 device is reversed from the UA package. The SOT-23 output transistor will be switched on (BOP) in the presence of a sufficiently strong North pole magnetic field subjected to the markedface.

3. At –40oC, maximum B OP = 35 mT.

Absolute Maximum Ratings

Supply Voltage (Operating), V DD24V

Supply Current (Fault), I DD50mA

Output Voltage, V OUT24V

Output Current (Fault), I OUT50mA

Power Dissipation, P D100mW

Operating Temperature Range, T A-40°C to 150°C

Storage Temperature Range, T S-65°C to 150°C

Maximum Junction Temp, T J175°C

ESD Sensitivity (All Pins) +/- 4KV

Melexis Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function o r design. Melexis does

not assume any liability arising from the use of any product or application of any product or circuit described herein.

Unique Features

CMOS Hall IC Technology

The chopper stabilized amplifier uses switched ca-pacitor techniques to eliminate the amplifier offset voltage, which, in bipolar devices, is a major source of temperature sensitive drift. CMOS makes this ad-vanced technique possible.

The CMOS chip is also much smaller than a bipolar chip, allowing very sophisticated circuitry to be placed in less space. The small chip size also contrib-utes to lower physical stress and less power con-sumption.

Installation

Consider temperature coefficients of Hall IC and magnetics, as well as air gap life time variations. Ob-serve temperature limits during wave soldering. Application Comments

If reverse supply protection is desired, use a resistor in series with the V DD pin. The resistor will limit the supply current (Fault), I DD, to 50 mA. For severe EMC conditions, use the application circuit below.

For the latest version of this document,

Go to our website at:

https://www.wendangku.net/doc/df16819133.html,

Or for additional information

Contact Melexis Direct:

Europe and Japan USA and rest of the world

E-mail: sales_europe@https://www.wendangku.net/doc/df16819133.html, E-mail: sales_usa@https://www.wendangku.net/doc/df16819133.html, Phone: 011-32-13-670-780 Phone: (603)-223-2362

全极性霍尔传感器开关

全极性霍尔传感器开关 介绍:根据数字输出,霍尔效应集成器件可以分为四种:单极性开关,双极性开关,全极性开关和锁存型开关。本文主要来阐述全极性开关。 全极性霍尔开关又被称作全极性开关,是一种在强的南磁场和强的北磁场下均工作的,数字量输出的锁存型开关。这简化了产品的应用,因为对于全极性器件而言,可以不考虑磁铁的极性来进行安装。一个拥有足够强磁性的单极磁铁可以令器件工作。器件导通之后,全极性器件将一直保持导通状态,直到磁场被移走,器件才恢复关断的状态。器件锁存住变化之后的状态,一直保持关断,直到一个新的足够强的磁场再一次到来。 一个用来检测车辆换挡杆位置的应用,如图1.换挡杆引用一个磁铁(紫色的缸)。黑盒子组成的黑色的线是一个全极性开关器件组成的阵列。当驾驶员移动换挡杆,磁铁便会在阵列当中移动。靠近磁铁的器件会打开处于导通状态,但是更多远离磁铁的器件是不受影响的,是关断的。无论是磁铁的南极或北极都可以面向霍尔器件,霍尔器件的商标面朝向磁铁。

图1 一个全极性开关的应用。超小型的霍尔开关, 换挡的时候,磁铁(紫色)向在他们之间移动 磁场开关点的定义: B为磁场强度,用来表示霍尔器件的开关点,单位是GS(高斯),或者T(特斯拉),转换关系是1GS=0.1mT。 B磁场强度有南极和北极之分,所以有必要记住它的代数关系,北极磁场为负数,南极磁场为正数。该关系可以比较南极北极磁场的代数关系,磁场的相对强度是由B的绝对值表示,符号表示极性。例如:一个-100GS(北极)磁场和一个100GS(南极)磁场的强度是相同的,但是极性相反。-100GS的强度要高于-50GS。 ? BOP –磁场工作点;使霍尔器件打开的磁场强度。器件输出的参数取决于器件的电学设计。 ? BRP –磁场释放点;使霍尔器件关断的磁场强度。器件输出的参数取决于器件的电学设计。 ?BHYS –磁开关点滞回窗口。霍尔元件的传输功能利用开关点之间的这个差值来过滤掉在应用中可能由于机械振动或电磁噪声引

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

霍尔元件YS44E 单极霍尔开关44E 44E引脚图

单极霍尔开关YS44E 无刷电机霍尔44E YS44E霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。越尔兴YS44E单极霍尔具有较宽的工作电压范围和较宽的工作温度范围,非常适合在汽车、工业电器和家电等产品中用作固态电子开关。 YS44E单极霍尔开关产品特点: ●内带反向电压保护 ●电源电压范围宽,输出电流大。 ●开关速度快,无瞬间抖动。 ●工作频率宽(0~100KHz)。 ●寿命长、体积小、安装方便。 ●能直接和逻辑电路接口。 YS44E霍尔元件典型应用: ●直流无刷电机无触点开关 ●位置控制电流传感器 ●汽车点火器安全报警装置 ●隔离检测转速检测 YS44E电特性:TA=25℃ 参数符号测试条件 量值 单位最小典型最大 电源电压V CC 4.5 - 24 V 输出低电平电压V OL Vcc=4.5V, R L=2KΩ,B≥B OP- 200 400 mV 输出漏电流I OH V out=Vccmax,B≤B RP- 1.0 10 μA 电源电流I CC V CC=Vccmax OC开路- 3 5 mA 输出上升时间t r Vcc=12V, R L=820Ω, C L=20pF - 0.12 1.20 μS 输出下降时间t f Vcc=12V, R L=820Ω, C L=20pF - 0.14 1.40 μS

YS44E磁特性:(VCC=4.5~24V) 1mT=10GS 参数符号 量值 单位最小典型最大 工作点BOP - - 18 mT 释放点BRP 2 - - mT 回差BH 6 - 8 mT YS44E测试电路图: 注:管腿说明:1.电源 2. 地 3.输出 YS44E实物图片V out Vcc R L R L=820ΩC L=20 pF C L 44E

霍尔元件原理及型号介绍

万联芯城销售原装进口霍尔元件,为终端客户提供一站式报价,所售电子元器件均为原装正品,现货库存,客户只需提交物料清单,即可获得优势报价,最快可当天发货。万联芯城,以良心做好良芯,上万种元件物料,轻松对应用户多种物料需求,为用户节省成本。点击进入万联芯城 点击进入万联芯城

霍尔元件是应用霍尔效应的半导体。一般用于电机中测定转子转速,如录像机的磁鼓,电脑中的散热风扇等;是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 霍尔元件工作原理 霍尔元件应用霍尔效应的半导体。 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。 利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为: UH=RHIB/d (1) RH=1/nq(金属)(2)

式中 RH――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度;d――导体的厚度。 对于半导体和铁磁金属,霍尔系数表达式和式(2)不同,此处从略。 由于通电导线周围存在磁场,其大小和导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不和被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。 若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差和电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。 利用这种方法可以构成霍尔功率传感器。 如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号列可以传感出该运动物体的位移。若测出单位时间内发

霍尔元件工作原理

? ?? ?? ? _ ?? ? ? ? P ? ?? 8 ? ?? ? ? ?-? ? ) ? / % - ?? ? ? ? ? 8 ? + ? %)? ? +??/ ?,-? 8" ? _9. ? _ 9. ?? ?, ? ? 9. f..h ,h% h 6LQ?f9 -/..( ?( ? 9R( ?? ? ? ? ? γ ? < ? ? ? ? - 1

" ? - ? ?/ ?? ? ? ? ) -?ū ?ū ?? ?) ? ( ?3 ? t ? ? ? - ( ? ? 8 ? J ? ? q ? 8 ? , ¥h 9. êh-Rh6¥ .9. ?¥ -2 6¥.( ? Γ "?? ? ? J ?? 8 ?

?? ? ? c ? ? ? ?? γ( + ?,S ū ?/ ) c -? ?? ??/ ? ? ? ǎ ? ?? J ?? 8 ? JJ? ?? ( ?( + ?-? ??/ ū ??ū ? ?) ? - ?W ? ??? - #? ? ?,V - ?-? "?/ ? ?/ ?3 # ?-? ? ? - ? ?? ?,S *?/ ,V *?/ ? ,V ?H? ?? - ? ? -?,V ?),S ?,S ? ? ? ? γ/ -? / ??? ? ? " ?γ ? ??? ?"? - ? ?? ? ? ? XV - W ? ? ? ? ? ? ? s ? . ? ?

? s ? γ 1Sh,S 1Vh,V ?1S(?? ,S(?? ? 1V( ? ,V( ? ? ? ? )1S ? μ?? 1V ? ? ,V γ ? ? ? ,S ? ? $ ) ? ? ) ? ? D ? ? ( XV ? /(0? /_ ? ?? 026 ??? ,*%7 ? ? ?< ? ? ? ? J ?( XV E ? ?& ? ? & ? s Εs s ? ? ?9?/?P ? F ? ? ? ? G ?/? 2 ?? ǎ ? Z? ?? 2 H ? 3 ? ? ǎ ? ǎ I ? ? ?? a .+] ? ? ?? a .+] J ?/Z ? ??$V

霍尔元件简介及应用

霍尔元件简介及应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理

在平板半导体介质中,电子移动(有电场)的方向,将因磁力的作用(有磁场),而改变电子行进的方向。若电场与磁场互相垂直时,其传导的载子(电子或电洞),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论: (1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。 (2) 材料之形状与厚度之平方根之倒数成正比。 由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使在无磁场时,也有起因于组件形状之不平衡等因素之不平衡电压存在。

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

锁存型霍尔效应开关集成电路基础知识

锁存型霍尔效应开关集成电路基础知识 介绍: 根据数字输出,霍尔效应集成器件可以分为四种:单极性开关双极性开关,全极性开关和锁存型开关。本文主要来阐述锁存型开关。 锁存型霍尔效应传感器集成电路,通常是作为数字输出霍尔效应开关,锁存输出状态。锁存型与双极性相似,有一个正极的BOP和一个负极的BRP,但对开关状态转换的控制严格。锁存型工作时需要正负磁场都有。一个正的南极磁场会使器件处于导通状态。器件打开之后,器件将锁存这个状态,即使把磁场移走,器件也一直保持打开,直到一个北极的负磁场的到来,才能使它关断。当北极磁场使它关断之后,器件将锁存这个状态,即使把磁场移走,器件也将一直保持关断,直到下一个南极正磁场的到来,器件才能再次打开。 图1 两个锁存型器件与环形磁铁的应用。环形磁铁转动 时,经过霍尔器件南北磁场转换,使器件打开或者关闭。

图1为器件应用于检测旋转轴的位置,将多个磁铁组成一个简单的结构,采用磁场极性交替“环形磁铁”封装好的IC与每个相邻的环形磁铁构成霍尔双极性开关器件。轴旋转时,磁场区向霍尔元件移动。器件是受到最近的磁场影响,当与南极磁场相对时,打开,当与北极磁场相对时,关闭。注意器件的打字面面向磁铁。 磁场开关点的定义: B为磁场强度,用来表示霍尔器件的开关点,单位是GS(高斯),或者T(特斯拉),转换关系是1GS=0.1mT。 B磁场强度有南极和北极之分,所以有必要记住它的代数关系,北极磁场为负数,南极磁场为正数。该关系可以比较南极北极磁场的代数关系,磁场的相对强度是由B的绝对值表示,符号表示极性。例如:一个-100GS(北极)磁场和一个100GS(南极)磁场的强度是相同的,但是极性相反。-100GS的强度要高于-50GS。 ? BOP –磁场工作点;使霍尔器件开关打开的磁场强度。器件输出的参数取决于器件的电学设计。 ? BRP –磁场释放点;磁场减弱到使霍尔器件关断的磁场强度。器件输出的参数取决于器件的电学设计。 ? BHYS –磁开关点滞回窗口。霍尔元件的传输功能利用开关点之间的这个差值来过滤掉在应用中可能由于机械振动或电磁噪声引起磁场的小的波动值。BHYS = | BOP ? BRP |. 典型工作状态 锁存型霍尔传感器的开关点是关于B=0对称的,如图2所示。开关点磁场的大小相同,极性相反。例如,如果工作点是+85GS(一般认为是南极磁场),那么释放点就是-85GS (一般认为是北极磁场)。锁存最新的状态,防止开关受薄弱磁场的影响。 一个锁存型器件,在南极磁场下打开,输出一个逻辑低电平(为输出管的饱和压降Voutsat,一般小于200mV),在北极磁场下关断,输出一个逻辑高电平(Vcc)。因为器件是锁存型的,所以在回差窗口BOP与BRP之间,器件的开关状态是不会改变的。因为在开关状态改变之前,必须经过磁场必须经过0GS,所以锁存型器件的回差窗口在比其他类型的霍尔器件要宽一些。 器件在任何磁场下均可以上电,通过图2说明。初始在一个比BOP和BRP都要小的磁场下,器件关断,输出逻辑高电平(Vcc),随后,向右边的箭头,磁场逐渐变为正,当磁场大于BOP时,器件打开,输出状态翻转为低电平。如果磁场一直大于BRP,那么即使磁场小于BOP,在BHYS区,器件也将一直保持打开,输出状态不变。 接着,箭头又回到左边,磁场强度又正变负,磁场强度降低到BRP以下时,器件将关断,输出回到初始状态。

A3144_44E_3144E_霍尔传感器_霍尔元件

A3144 44E 3144E 霍尔传感器霍尔元件 A3144E霍尔元件44E OH44E 霍尔传感器霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。 产品特点 体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高 典型应用 无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全报警装置、纺织控制系统 极限参数(25℃) 电源电压V 24V CC·························· 输出反向击穿电压V ce···················50V 输出低电平电流I OL 50mA ··················· E档: -20~85℃,L档: -40~150℃ 工作环境温度 T A·············· 贮存温度范围T -65~150 ℃ S ········ H41双极锁存霍尔开关电路 产品特点 . 电源电压范围宽 . 可用市售的小磁环来驱动 . 无可动部件、可靠性高 . 尺寸小 . 抗环境应力 . 可直接同双极和MOS逻辑电路接口 典型应用 . 高灵敏的无触点开关 . 直流无刷电机 . 直流无刷风机 . 无触点开关 AH41霍尔开关电路最适于响应变化斜率陡峭的磁场并在磁通密度较弱的场合使用,适用于单极或多对磁环工作,它由反向电压保护器、电压调整器、霍尔电压发生器、信号放大器、史密特触发器和集电极开路的输出级组成。工作温度范围为-40 ~150℃(存储温度为150℃),可适用于各种机及机电一体化领域。

霍尔传感器的工作原理、分类及应用

霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基 霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。 一、霍尔效应霍尔元件霍尔传感器 霍尔效应 如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 (二)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、

体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (三)霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。 二、霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。 (一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

霍尔元件的工作原理及结构

霍尔元件的工作原理及结构 如图1所示.—块高为1、宽为5、厚为6的半导体。存外加磁场B作用下, 当商电流J流过时.运动屯子受洛伦兹力的作用而偏向一侧,使该侧形 成电子的积 累,与它对义的侧面由于电了浓度下降。出现了正电荷·。这样,在两 侧面间就形成了—‘个电场。运动 电子在受洛伦兹力的同时,又受电场力的作用.最后当这两力作用相等时,电子的积 累达到动态平衡,这时两侧之间建立电场,称霍尔电场民,相应的电压称 霍尔电压uEI。上述这种现象称霍尔效应。经分析推导得霍尔电压 式中M—半导体单位体积中的载流子数; ‘—一电子电量; K M——程尔元件灵饭度,J(M一1/MrJ。 二·、霍尔元件的材料及结构特点 根报雀尔效应原理做成的器件叫做程尔元件。霍尔元件—般采用具有N 型的锗、锑化钥

和砷化钢等十导体单品材料制成。锑化铜元件的输出较大.促受温度的影 响也较大。铬元件 的输小虽小,但它的温度性能和线性度却比较好。砷化姻元件的输出信号 没有锑化姻元件大, 但是受温度的影响印比锑化姻的要小,而且线性度也较好。因此,以砷化 钡为霍尔元件的材料 得到曾遏放用。 霍尔元件结构很简单、是‘种半导体凹端薄片,它由霍尔片、引线和壳 体组成。霍 尔片的相对两侧对称地焊上两对电极引出线,如图10—2(a)所示。其小,一对(altj端)称为激励电流 端25外一对(c、J端)称为霍尔电势输出端,引线焊接处要求接触电阻小,而量呈现纯电阻件 质(欧姆接触)。霍尔片—般用非磁件金届、陶瓷或环氧树脂封装。 (一)输入电阻R, 霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值,队儿欧 到几百欧,视不问型 号的元件而定。温度升高,输入电阻变小,从而使输入电流变大,最终引 起猩尔屯势变化。 为广减少这种影响,最好采用恒流源作为激励源。 (二)输出电阻只。 两个留尔屯势输出端之间的电阻称为输出电阻,它的数值与输入电阻 属同一数量级,它也 随温度改变而改变。选择适当的负载电阻RL与之匹配,uJ以使出温度引起霍尔电势的漂移减

霍尔开关元件工作原理

霍尔开关是以霍尔效应为原理工作的开关。霍尔效应是指,磁场里存在一个垂直的金属或半导体薄片,电流通过的情况下,金属或半导体薄片的两端会产生电势差。 霍尔开关工作原理 霍尔开关是以霍尔效应为原理工作的开关。霍尔效应是指,磁场里存在一个垂直的金属或半导体薄片,电流通过的情况下,金属或半导体薄片的两端会产生电势差。 霍尔效应产生的电势差,表达为公式就是U=K?I?B/d,其中U是导体两端电势差的值,K是霍尔系数,I是通过导体的电流,B是外加磁场感应强度,D是薄片的厚度。霍尔效应电势差的公式表明,霍尔效应的灵敏度高低与外磁场的磁感应强度成正比。 霍尔开关是以霍尔效应原理为基础设计而成的,属于有源磁电转换器件。霍尔开关的控制信号为磁感应强度,在接受到磁输入信号后,霍尔开关内部的原件会将之转变为实际应用的电信号。 霍尔开关的输入端由磁感应强度来表征,在磁感应强度达到一定水平时,会触动霍尔开关内部的触发器,触发器反转则带动了霍尔开关的输出电平衡状态反转。 霍尔开关的输出端多是采用晶体管,一般来说,霍尔开关的输出有常开型、常闭型、NPN、PNP、锁存型和双信号输出型等。 霍尔开关的性能优点 霍尔开关的原理是霍尔效应,因此霍尔开关具有无触电工作的特点。霍尔开关多以集成封装和组装的工艺制程,能耗低、使用寿命长、响应频率快,并符合工业现场所需要的易操作、性能稳定等工作特点。 霍尔开关的内部材质为环氧树脂,经过封灌后构成一个整体,这使得霍尔开关有良好的环境适应性,可以用于各种恶劣的工作环境。霍尔开关可应用于接近开关、压力开关等方面。 常用的霍尔开关元件型号有:YS41F、YS43F、YS188、YS282、YS44E、YS137等国外国内品牌元件。

霍尔元件的工作原理及结构

霍尔元件的工作原理及结构-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

霍尔元件的工作原理及结构 如图1所示.—块高为1、宽为5、厚为6的半导体。存外加磁场B作用下, 当商电流J流过时.运动屯子受洛伦兹力的作用而偏向一侧,使该侧形成电子的积 累,与它对义的侧面由于电了浓度下降。出现了正电荷·。这样,在两侧面间就形成了—‘个电场。运动 电子在受洛伦兹力的同时,又受电场力的作用.最后当这两力作用相等时,电子的积 累达到动态平衡,这时两侧之间建立电场,称霍尔电场民,相应的电压称霍尔电压uEI。上述这种现象称霍尔效应。经分析推导得霍尔电压 式中M—半导体单位体积中的载流子数; ‘—一电子电量; K M——程尔元件灵饭度,J(M一1/MrJ。 二·、霍尔元件的材料及结构特点 根报雀尔效应原理做成的器件贴片钽电容叫做程尔元件。霍尔元件—般采用具有N型的锗、锑化钥 和砷化钢等十导体单品材料制成。锑化铜元件的输出较大.促受温度的影响也较大。铬元件 的输小虽小,但它的温度性能和线性度却比较好。砷化姻元件的输出信号没有锑化姻元件大, 但是受温度的影响印比锑化姻的要小,而且线性度也较好。因此,以砷化钡为霍尔元件的材料 得到曾遏放用。

霍尔元件结构很简单、是‘种半导体凹端薄片,它由霍尔片、引线和壳体组成。霍 尔片的相对两侧对称地焊上两对电极引出线,如图10—2(a)所示。其小,一对(altj端)称为激励电流 端25外一对(c、J端)称为霍尔电势输出端,引线焊接处要求接触电阻小,而量呈现纯电阻件 质(欧姆接触)。霍尔片—般用非磁件金届、陶瓷或环氧树脂封装。 (一)输入电阻R, 霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值,队儿欧到几百欧,视不问型 号的元件而定。温度升高,输入电钽电容阻变小,从而使输入电流变大,最终引起猩尔屯势变化。 为广减少这种影响,最好采用恒流源作为激励源。 (二)输出电阻只。 两个留尔屯势输出端之间的电阻称为输出电阻,它的数值与输入电阻属同一数量级,它也 随温度改变而改变。选择适当的负载电阻RL与之匹配,uJ以使出温度引起霍尔电势的漂移减 至最小。 (三)最大激励电流JM 由于霍尔电势随激励电流增大而沼大,故在应用中总希望选用较大的激励电流,但激励电 流增大.霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电势的温漂增大,因此每种型号 的元件均规定丁相应的最大激励电流,它的数值为几毫安至几百毫安。 (曰)R敏曰xH f(M=ZH/(J.B),它的数值约为10 n、V/(1nA.I’)。 (五]最大磁感应强废Bm 磁感应强度为BMDf,霍尔吧势的非线性误差将明显增大 (六)不等位电努 在额定激励电流卜,当斯麦迪电子外加磁场为零时,霍尔输出端之间的开路电压称为不等位电势,这是

全极性霍尔传感器开关优选稿

全极性霍尔传感器开关集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

全极性霍尔传感器开关 介绍:根据数字输出,霍尔效应集成器件可以分为四种:单极性开关,双极性开关,全极性开关和锁存型开关。本文主要来阐述全极性开关。 全极性霍尔开关又被称作全极性开关,是一种在强的南磁场和强的北磁场下均工作的,数字量输出的锁存型开关。这简化了产品的应用,因为对于全极性器件而言,可以不考虑磁铁的极性来进行安装。一个拥有足够强磁性的单极磁铁可以令器件工作。器件导通之后,全极性器件将一直保持导通状态,直到磁场被移走,器件才恢复关断的状态。器件锁存住变化之后的状态,一直保持关断,直到一个新的足够强的磁场再一次到来。 一个用来检测车辆换挡杆位置的应用,如图1.换挡杆引用一个磁铁(紫色的缸)。黑盒子组成的黑色的线是一个全极性开关器件组成的阵列。当驾驶员移动换挡杆,磁铁便会在阵列当中移动。靠近磁铁的器件会打开处于导通状态,但是更多远离磁铁的器件是不受影响的,是关断的。无论是磁铁的南极或北极都可以面向霍尔器件,霍尔器件的商标面朝向磁铁。 图1一个全极性开关的应用。超小型的霍尔开关, 换挡的时候,磁铁(紫色)向在他们之间移动 磁场开关点的定义: B为磁场强度,用来表示霍尔器件的开关点,单位是GS(高斯),或者T(特斯拉),转换关系是1GS=0.1mT。 B磁场强度有南极和北极之分,所以有必要记住它的代数关系,北极磁场为负数,南极磁场为正数。该关系可以比较南极北极磁场的代数关系,磁场的相对强度是由B的绝对值表示,符号表示极性。例如:一个-100GS(北极)磁场和一个100GS(南极)磁场的强度是相同的,但是极性相反。-100GS的强度要高于-50GS。

霍尔元件传感器原理

2008-01-05 18:55 一、霍尔元件的工作原理: 霍尔元件应用霍尔效应的半导体。 二、霍尔元件的特性: 1、霍尔系数(又称霍尔常数)RH 在磁场不太强时,霍尔电势差UH与激励电流I和磁感应强度B的乘积成正比,与霍尔片的厚度δ成反比,即UH =RH*I*B/δ,式中的RH称为霍尔系数,它表示霍尔效应的强弱。 另RH=μ*ρ即霍尔常数等于霍尔片材料的电阻率ρ与电子迁移率μ的乘积。 2、霍尔灵敏度KH(又称霍尔乘积灵敏度) 霍尔灵敏度与霍尔系数成正比而与霍尔片的厚度δ成反比,即KH=RH/δ,它通常可以表征霍尔常数。 3、霍尔额定激励电流 当霍尔元件自身温升10℃时所流过的激励电流称为额定激励电流。 4、霍尔最大允许激励电流 以霍尔元件允许最大温升为限制所对应的激励电流称为最大允许激励电流。 5、霍尔输入电阻 霍尔激励电极间的电阻值称为输入电阻。 6、霍尔输出电阻 霍尔输出电极间的电阻值称为输入电阻。 7、霍尔元件的电阻温度系数 在不施加磁场的条件下,环境温度每变化1℃时,电阻的相对变化率,用α表示,单位为%/℃。 8、霍尔不等位电势(又称霍尔偏移零点) 在没有外加磁场和霍尔激励电流为I的情况下,在输出端空载测得的霍尔电势差

称为不等位电势。 9、霍尔输出电压 在外加磁场和霍尔激励电流为I的情况下,在输出端空载测得的霍尔电势差称为霍尔输出电压。 10、霍尔电压输出比率 霍尔不等位电势与霍尔输出电势的比率 11、霍尔寄生直流电势 在外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电势外,还有一直流电势,称寄生直流电势。 12、霍尔不等位电势 在没有外加磁场和霍尔激励电流为I的情况下,环境温度每变化1℃时,不等位电势的相对变化率。 13、霍尔电势温度系数 在外加磁场和霍尔激励电流为I的情况下,环境温度每变化1℃时,不等位电势的相对变化率。它同时也是霍尔系数的温度系数。

霍尔开关(传感器)的特性及应用设计

实验4 霍尔开关(传感器)的特性及应用设计 1879年霍尔在研究载流导体在磁场中受力的性质时发现了霍尔效应,它是电磁基本现象之一。利用此现象制成的各种霍尔元件,特别是测量元件,广泛地应用于工业自动化和电子技术。对于半导体材料,测量霍尔系数和电导率,是研究它们电性能的重要手段。 本设计实验的仪器装置是河北工业大学物理实验中心研制的霍尔元件与光电门的特性及转速测量通用装置。它对于言传身教、寓教于学,激发学生的创造性有积极意义。 一、目的要求 1.掌握霍尔元件的工作原理。了解霍尔开关集成电路的特性及其主要参数和应用。 2.测量风扇或电机在不同工作电压下的转速,并描绘速度与电压的关系曲线。 3.研究并设计霍尔开关集成电路在测速度、里程、计数以及诸多实际问题中的应用装置。 二、仪器装置 霍尔开关集成电路、光电门、电源、风扇、导线、示波器、计算机等。 三、实验原理 (一)霍尔元件及霍尔开关集成电路的工作原理 如图4-1所示,霍尔元件由均匀的n 型半导体材料制成,长l 宽b 厚d 。如果在M 、N 两端加一稳定电压,则有恒定电流I 沿X 轴方向通过霍尔元件。M 、N 之间的等位面平行于YZ 平面。假定电流I 是沿负X 轴以速度v 运动的电子所构成,电子电荷为e ,而自由电子的浓度为n ,则电流为 ebndv dt dQ I ?== (4-1) 若在z 轴方向加上恒定磁场B,沿X 轴运动的电子就受到向下的洛伦兹力的作用。 B v e f B r r r ×?= (4-2) 图4-1 霍尔元件工作原理图 图4-2 霍尔开关集成电路原理图 于是,霍尔元件内部的电子向下作抛物线运动,并积聚在下方平面。同时上方平面剩余正电荷,结果形成一个上正下负的电场E r 。上下两个平面间具有电位差,上述过程在短暂的10H V -13s~10-11 s内就能完成。这个现象就是霍尔效应,这个电压就是霍尔电压。 当上下两个平面聚积的电荷产生的电场对电子的静电作用力与洛伦兹力下相等时,电子就无偏离地从右向左用过半导体,此时有如下关系 B E f f r r = 即 evB b V e H = (4-3) KIB end IB bvB V H =? == (4-4) KI V B H = (4-5)

霍尔传感器工作原理其应用

霍尔传感器工作原理及其应用 | 一、霍尔齿轮传感器 差动霍尔电路制成的霍尔齿轮传感器,如图1所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图2所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。

图1霍尔速度传感器的内部结构 1.车轮速度传感器 2.压力调节器 3.电子控制器 图2 ABS气制动系统的工作原理示意图 二、旋转传感器 按图3所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。

全极性霍尔传感器开关

全极性霍尔传感器开关 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

全极性霍尔传感器开关 介绍:根据数字输出,霍尔效应集成器件可以分为四种:单极性开关,双极性开关,全极性开关和锁存型开关。本文主要来阐述全极性开关。 全极性霍尔开关又被称作全极性开关,是一种在强的南磁场和强的北磁场下均工作的,数字量输出的锁存型开关。这简化了产品的应用,因为对于全极性器件而言,可以不考虑磁铁的极性来进行安装。一个拥有足够强磁性的单极磁铁可以令器件工作。器件导通之后,全极性器件将一直保持导通状态,直到磁场被移走,器件才恢复关断的状态。器件锁存住变化之后的状态,一直保持关断,直到一个新的足够强的磁场再一次到来。 一个用来检测车辆换挡杆位置的应用,如图1.换挡杆引用一个磁铁(紫色的缸)。黑盒子组成的黑色的线是一个全极性开关器件组成的阵列。当驾驶员移动换挡杆,磁铁便会在阵列当中移动。靠近磁铁的器件会打开处于导通状态,但是更多远离磁铁的器件是不受影响的,是关断的。无论是磁铁的南极或北极都可以面向霍尔器件,霍尔器件的商标面朝向磁铁。 图1 一个全极性开关的应用。超小型的霍尔开关, 换挡的时候,磁铁(紫色)向在他们之间移动 磁场开关点的定义: B为磁场强度,用来表示霍尔器件的开关点,单位是GS(高斯),或者T(特斯拉),转换关系是1GS=。

B磁场强度有南极和北极之分,所以有必要记住它的代数关系,北极磁场为负数,南极磁场为正数。该关系可以比较南极北极磁场的代数关系,磁场的相对强度是由B的绝对值表示,符号表示极性。例如:一个-100GS(北极)磁场和一个100GS(南极)磁场的强度是相同的,但是极性相反。-100GS的强度要高于-50GS。 BOP –磁场工作点;使霍尔器件打开的磁场强度。器件输出的参数取决于器件的电学设计。 BRP –磁场释放点;使霍尔器件关断的磁场强度。器件输出的参数取决于器件的电学设计。 BHYS –磁开关点滞回窗口。霍尔元件的传输功能利用开关点之间的这个差值来过滤掉在应用中可能由于机械振动或电磁噪声引起磁场的小的波动值。BHYS = | BOP BRP |. 典型工作状态 全极性霍尔传感器的开关点是关于B=0对称的,如图2。开关点在与之相反的极性上是具有等效的强度的。比如,器件的南极 BOP=60GS,BRP=30GS,那么它的北极BOP=-60GS,BRP=-30GS。锁存最新的工作状态,避免受外部微弱磁场的影响。 图2A全极开关的输出特性 图2A全极开关的输出特性 全极性器件在任何足够强的极性的磁场下打开的时候,输出高电平(图2A)(几乎达到Vcc)还是低电平(图2B)(输出管的

霍尔位置传感器原理和应用

霍尔位置传感器原理和应用 一.霍尔位置传感器的特点: 霍尔位置传感器是一种检测物体位置的磁场传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔位置传感器以霍尔效应原理为其工作基础。 霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采取了各种补偿和保护措施的霍尔位置传感器的工作温度围可达到-55℃~150℃。 按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。前者输出模拟量,后者输出数字量。 霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。 二.霍尔位置传感器的原理: 2.1霍尔效应和霍尔元件

在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。 2.2 霍尔集成电路 霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。

霍尔元件的结构及工作原理

霍尔元件的结构及工作原理 霍尔元件的结构及工作原理 霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。霍尔元件是一个N型半导体薄片,若在其相对两侧通以控制电流I,而在薄片垂直方向加以磁场氏则在半导体另外两侧便会产生一个大小与电流,和磁场B的乘积成工比的电压。这个现象就是霍尔效应,所产生的电压叫霍尔电压UR. 式中:UH---霍尔电压; RH---霍尔系数; d---霍尔元件的厚度; I---通过霍尔元件的电流; B---加在霍尔元件上的磁场磁力线密度; ---元件形状函数,其中L为元件的长度,W为元件的宽度。 从上面的公式可以看出,霍尔电压正比于电流强度和磁场强度,且与霍尔元件的形状有关。在电流强度恒定以及霍尔元件形状确定的条件下,霍尔电压正比于磁场强度。当所加磁场方向改变时,霍尔电压的符号也随之改变因此,霍尔元件可以用来测量磁场的大小及方向。

图:霍尔效应原理图霍尔元件常采用锗、硅、砷化镓、砷化铟及锑化钢等半导体制作。用锑化铟半导体制成的霍尔元件灵敏度最高,但受温度的影响较大。用锗半导体制成的霍尔元件,虽然灵敏度较低,但它的温度特性及线性度较好。目前使用锑化铟霍尔元件的场合较多。 霍尔元件的原理及应用 2009-03-24 20:17 由霍尔效应的原理知,霍尔电势的大小取决于: Rh为霍尔常数,它与半导体材质有关;IC为霍尔元件的偏置电流;B为磁场强度;d为半导体材料的厚度。 对于一个给定的霍尔器件,Vh将完全取决于被测的磁场强度B。 一个霍尔元件一般有四个引出端子,其中两根是霍尔元件的偏置电流IC的输入端,另两根是霍尔电压的输出端。如果两输出端构成外回路,就会产生霍尔电流。一般地说,偏置电流的设定通常由外部的基准电压源给出;若精度要求高,则基准电压源均用恒流源取代。为了达到高的灵敏度,有的霍尔元件的传感面上装有高导磁系数的坡莫合金;这类传感器的霍尔电势较大,但在0.05T左右出现饱和,仅适用在低量限、小量程下使用。 近年来,由于半导体技术的飞速发展,出现了各种类型的新型集成霍尔元件。这类元件可以分为两大类,一类是线性元件,另一类是开关类元件。

相关文档 最新文档