文档库 最新最全的文档下载
当前位置:文档库 › D触发器及其应用

D触发器及其应用

D触发器及其应用
D触发器及其应用

实验八 D 触发器及其应用

一、实验目的

1.熟悉基本D 触发器的功能测试;

2.了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点;

3.熟悉触发器的实际应用;

4.了解并掌握 Multisim 仿真软件的使用。

二、实验设备

数字实验电路箱,74LS74,导线若干,Multisim 数电仿真软件。

74LS74引脚图 74LS74逻辑图

三、实验原理

D 触发器在时钟脉冲CP 的前沿(正跳变0到1)发生翻转,触发器的次态

取决于脉冲上升沿到来之前D 端的状态,即

=D 。

U1A

74LS74D

1D

2

1Q

5

~1Q

6

~1CLR

1

1CLK 3

~1PR

4

因此,它具有置0、置1两种功能。由于CP=1期间电路具有维持阻塞作用,所以在CP=1期间,D端的数据状态变化,不会影响触发器的输出状态。

R和S分别是决定触发器初始状态Q的直接置0、置1端。当不需要强迫置0、置1时,R和S端都应置高电平(如接+5V电源)。74LS74、74LS175等均为上升沿触发的边沿触发器。触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生器等。四、实验内容1.测试D触发器的逻辑功能;2.构成异步分频器,构成2分频和4分频;3.构成同步分频器,构成2分频和4分频。五、实验设计及实验仿真1.测试D触发器的逻辑功能:(1)将74LS74的D S D R端分别加低电平,观察并记录Q端的状态;(2)令D S D R端为高电平,D端分别接高、低电平,用单脉冲做CP,观察记录当CP为0,上升,1,下降时Q段状态的变化;(3)当D S D R为高电平,CP=0(或CP=1),改变D端状态,观察Q端的状态是否变化;(4)得到74LS74D触发器的功能测试表:

D S

D R

CP D N Q

1 N Q

1

*

*

0 1 1

1 1 0 * * 0 0 1

0 1 1 上升 0 0 0 1

0 1 1 上升 1 0 1 1

1 1 1 0 * 0 0 1

1 1 1 1 * 0 0 1

1

2.构成计时分频器,构成2分频和4分频:

仿真如图所示:

得到实验结果图如图所示:

3.构成同步分频器,构成2分频和4分频:

仿真如图所示:

得到实验结果图如图所示:

六、实验思考

实验结束后,我们对下述电路进行了验证:完成两位竞赛抢答电路,观察抢答电路的工作情况,分析工作原理。

经过试验可得以下真值表:

1D 2D 1Rd/2Rd 1Q 2Q

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 0

当主控1Rd=2Rd=0时,1D和2D置1置0都不会亮。

当主控1Rd=2Rd=1时,1D和2D谁置1谁亮,而剩下的置0,不亮。而当1D=2D=1Rd=2Rd=1时,1D和2D谁先置1,谁亮,而另一个灯此时置1、置0都不会亮。

正好达到实验要求:先抢答者按下抢答开关发出灯光显示,同时封锁后抢答者的灯光显示电路,最后由主持人清楚灯光显示和封锁信号。

集成触发器及其应用电路设计

华中科技大学 电子线路设计、测试与实验》实验报告 实验名称:集成运算放大器的基本应用 院(系):自动化学院 地点:南一楼东306 实验成绩: 指导教师:汪小燕 2014 年6 月7 日

、实验目的 1)了解触发器的逻辑功能及相互转换的方法。 2)掌握集成JK 触发器逻辑功能的测试方法。 3)学习用JK 触发器构成简单时序逻辑电路的方法。 4)熟悉用双踪示波器测量多个波形的方法。 (5)学习用Verliog HDL描述简单时序逻辑电路的方法,以及EDA技术 、实验元器件及条件 双JK 触发器CC4027 2 片; 四2 输入与非门CC4011 2 片; 三3 输入与非门CC4023 1 片; 计算机、MAX+PLUSII 10.2集成开发环境、可编程器件实验板及专用电缆 三、预习要求 (1)复习触发器的基本类型及其逻辑功能。 (2)掌握D触发器和JK触发器的真值表及JK触发器转化成D触发器、T触发器、T 触发器的基本方法。 (3)按硬件电路实验内容(4)(5),分别设计同步3 分频电路和同步模4 可逆计数器电路。 四、硬件电路实验内容 (1)验证JK触发器的逻辑功能。 (2)将JK触发器转换成T触发器和D触发器,并验证其功能。 (3)将两个JK触发器连接起来,即第二个JK触发器的J、K端连接在一起, 接到第一个JK触发器的输出端Q两个JK触发器的时钟端CP接在一起,并输入1kHz 正方波,用示波器分别观察和记录CP Q、Q的波形(注意它们之间的时序关系),理解2分频、4分频的概念。 (4)根据给定的器件,设计一个同步3分频电路,其输出波形如图所示。然后组装电路,并用示波器观察和记录CP Q、Q的波形。 (5)根据给定器件,设计一个可逆的同步模4 计数器,其框图如图所示。图中,M为控制变量,当M=0时,进行递增计数,当M=1时,进行递减计数;Q、 Q为计数器的状态输出,Z为进位或借位信号。然后组装电路,并测试电路的输入、输出

RS触发器及其应用

RS 触发器及其应用 触发器(flip flop)是构成时序逻辑电路的基本单元,能记忆、存储一位二进制信息,触发器也称双稳态触发器,它有两种稳定输出工作状态,即分别输出1和输出0的状态。在无输入信号作用时,这种状态是稳定的;而当输入信号到来并满足一定逻辑关系时,输出端的状态将迅速变化,能从一种稳定状态转换到另一种稳定状态。 测试如下电路,调整S1开关状态,观察LED1和LED2的变化,并建立真值表。 图8.1测试电路(multisim) 【信息单】 一、基本RS 触发器 1.“与非”门构成的基本触发器 基本的RS 触发器又称为置0置1触发器。它是各种触发器中结构最简单的一种,通常作为构成各种功能触发器的最基本单元,所以也称为基本触发器。 ⑴电路结构 基本的RS 触发器由两个与非门的输入端与输出端交叉连接而成。电路结构如图8.3(a )所示,逻辑符号如图8.3(b )所示。图中Q 、Q 是基本RS 触发器两个输出端;S 、R 是两个输入端,S 、R 上的“非”号或R 、S 上的小圆圈都表示输入信号只在低电平时有效。 Q 端状态通常定义为触发器的输出状态。当0=Q 、Q =1,称触发器为0状态,当1=Q 、 Q =0,称触发器为1状态。Q 、Q 状态相反。 Q G 1G 2 Q S R Q Q

(a )电路结构 (b )逻辑符号 图8.3 与非门构成的基本RS 触发器 ⑵逻辑功能 S =1、R =0时,Q =1,反馈到G 1门使0=Q ,即不论触发器原态是0态还是1态, 电路的输出一定为0态,R 为置0端。 S =0、R =1时,Q =1,反馈到G 2门使Q =0,即不论触发器原态是0态还是1态,电 路的输出一定为1态,S 为置1端。 S =1、R =1时,设电路原来状态为0=Q 、Q =1,在S =1、R =1作用下,电路的输 出仍是0=Q 、Q =1与原态相同,即触发器的状态保持不变。 S =0、R =0时,Q =1、Q =1,破坏了输出信号互补的原则,而随后S =1、R =1时, 输出状态可能是1也可能是0,出现了不定状态,这意味着当输入条件同时消失后,触发器状态不定,这在触发器工作时是不允许出现的,也就是要禁止S 、R 同时为0的输入状态出现。 (3)逻辑功能描述 触发器的逻辑功能可用功能表、特征方程、时序图、状态图等方法描述。 ①功能表(特性表) 与非门构成的基本RS 触发器的功能表如表8.1所示。 表8.1 与非门构成的基本RS 触发器的功能表 ②波形图 设初始状态Q 为0,然后根据给定的输入信号波形,画出相应输出端Q 、Q 的波形,称为波形图。

施密特触发器工作原理

使用CMOS集成电路需注意的几个问题 集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。在电子制作中使用CMOS集成电路时,除了认真阅读产品说明或有关资料,了解其引脚分布及极限参数外,还应注意以下几个问题: 1、电源问题 (1)CMOS集成电路的工作电压一般在3-18V,但当应用电路中有门电路的模拟应用(如脉冲振荡、线性放大)时,最低电压则不应低于4.5V。由于CMOS集成电路工作电压宽,故使用不稳压的电源电路CMOS集成电路也可以正常工作,但是工作在不同电源电压的器件,其输出阻抗、工作速度和功耗是不相同的,在使用中一定要注意。 (2)CMOS集成电路的电源电压必须在规定围,不能超压,也不能反接。因为在制造过程中,自然形成许多寄生二极管,如图1所示为反相器电路,在正常电压下,这些二极管皆处于反偏,对逻辑功能无影响,但是由于这些寄生二极管的存在,一旦电源电压过高或电压极性接反,就会使电路产生损坏。 2、驱动能力问题 CMOS电路的驱动能力的提高,除选用驱动能力较强的缓冲器来完成之外,还可将同一个芯片几个同类电路并联起来提高,这时驱动能力提高到N倍(N为并联门的数量)。如图2所示。 3、输入端的问题 (1)多余输入端的处理。CMOS电路的输入端不允许悬空,因为悬空会使电位不定,破坏正常的逻辑关系。另外,悬空时输入阻抗高,易受外界噪声干扰,使电路产生误动作,而且也极易造成栅极感应静电而击穿。所以“与”门,“与非”门的多余输入端要接高电平,“或”门和“或非”门的多余输入端要接低电平。若电路的工作速度不高,功耗也不需特别考虑时,则可以将多余输入端与使用端并联。 (2)输入端接长导线时的保护。在应用中有时输入端需要接长的导线,而长输入线必然有较大的分布电容和分布电感,易形成LC振荡,特别当输入端一旦发生负电压,极易破坏CMOS中的保护二极管。其保护办法为在输入端处接一个电阻,如图3所示,R=VDD/1mA。 (3)输入端的静电防护。虽然各种CMOS输入端有抗静电的保护措施,但仍需小心对待,在存储和运输中最好用金属容器或者导电材料包装,不要放在易产生静电高压的化工材料或化纤织物中。组装、调试时,工具、仪表、工作台等均应良好接地。要防止操作人员的静电干扰造成的损坏,如不宜穿尼龙、化纤衣服,手或工具在接触集成块前最好先接一下地。对器件引线矫直弯曲或人工焊接时,使用的设备必须良好接地。 (4)输入信号的上升和下降时间不易过长,否则一方面容易造成虚假触发而导致器件失去正常功能,另一方面还会造成大的损耗。对于74HC系列限于0.5us以。若不满足此要求,需用施密特触发器件进行输入整形,整形电路如图4所示。 (5)CMOS电路具有很高的输入阻抗,致使器件易受外界干扰、冲击和静电击穿,所以为了保护CMOS管的氧化层不被击穿,一般在其部输入端接有二极管保护电路,如图5所示。 其中R约为1.5-2.5KΩ。输入保护网络的引入使器件的输入阻抗有一定下降,但仍在108Ω以上。这样也给电路的应用带来了一些限制: (A)输入电路的过流保护。CMOS电路输入端的保护二极管,其导通时电流容限一般为1mA在可能出现过大瞬态输入电流(超过10mA)时,应串接输入保护电阻。例如,当输入端接的信号,其阻很小、或引线很长、或输入电容较大时,在接通和关断电源时,就容易产生较大的瞬态输入电流,这时必须接输入保护电阻,若VDD=10V,则取限流电阻为10KΩ即可。 (B)输入信号必须在VDD到VSS之间,以防二极管因正向偏置电流过大而烧坏。因此在

数电实验触发器及其应用

数电实验触发器及其应用 数字电子技术实验报告 实验三: 触发器及其应用 一、实验目的: 1、熟悉基本RS触发器,D触发器的功能测试。 2、了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点 3、熟悉触发器的实际应用。 二、实验设备: 1 、数字电路实验箱; 2、数字双综示波器; 3、指示灯; 4、74LS00、74LS74。 三、实验原理: 1、触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序 电路的最基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。在数字系统和计算机中有着广泛的应用。触发器具有两个稳定状态,即“0”和“ 1 ”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。触发器有集成触发器和门电路(主要是“与非门” )组成的触发器。 按其功能可分为有RS触发器、JK触发器、D触发器、T功能等触发器。触发方式有电平触发和边沿触发两种。 2、基本RS触发器是最基本的触发器,可由两个与非门交叉耦合构成。 基本RS触发器具有置“ 0”、置“ 1”和“保持”三种功能。基本RS触发器

也可以用二个“或非门”组成,此时为高电平触发有效。 3、D触发器在CP的前沿发生翻转,触发器的次态取决于CP脉冲上升沿n+1来到之前D端的状态,即Q = D。因此,它具有置“ 0”和“T两种功能。由于在CP=1期间电路具有阻塞作用,在CP=1期间,D端数据结构变RS化,不会影响触发器的输出状态。和分别是置“ 0”端和置“ 1” DD 端,不需要强迫置“ 0”和置“ 1”时,都应是高电平。74LS74(CC4013, 74LS74(CC4042均为上升沿触发器。以下为74LS74的引脚图和逻辑图。 馬LD 1CP 1云IQ LQ GM) 四、实验原理图和实验结果: 设计实验: 1、一个水塔液位显示控制示意图,虚线表示水位。传感器A、B被水浸沿时

电工资格证考试触发器及其应用练习题集锦附参考答案解析【精品】

触发器及其应用 习题参考答案 一、填空题: 1.时序逻辑电路的特点是:输出不仅取决于当时 输入 的状态 还与电路 原来 的状态有关。 2.欲使JK 触发器实现的功能,则输入端J 应接 “1” , K 应接 “1” 。 3.组合逻辑电路的基本单元是 门电路 ,时序逻辑电路的基本 单元是 触发器 。 4.两个与非门构成的基本RS 触发器的功能有 置0 、 置1 和 保持 。电路中不允许两个输入端同时为 0 ,否则将出现逻辑混乱。 5.钟控RS 触发器具有“空翻”现象,且属于 电平 触发方式 的触发器;为抑制“空翻”,人们研制出了 边沿 触发方式的JK 触发器和D 触发器。 6.JK 触发器具有 保持 、 翻转 、 置0 和 置1 的功能。 7.D 触发器具有 置0 和 置1 的功能。 二、选择题: 1.描述时序逻辑电路功能的两个重要方程式是( B )。 A 、 状态方程和输出方程 B 、状态方程和驱动方程 C 、 驱动方程和特性方程 D 、驱动方程和输出方程 2.由与非门组成的RS 触发器不允许输入的变量组合为 ( D )。 A 、00 B 、 01 C 、 10 D 、 11 3. 双稳态触发器的类型有( D ) A 、基本RS 触发器; B 、同步RS 触发器; C 、主从式触发 器; D 、前三种都有。 4. 存在空翻问题的触发器是( B ) A 、D 触发器; B 、同步RS 触发器; C 、主从JK 触发 器。 三、简述题 1、时序逻辑电路和组合逻辑电路的区别有哪些? 答:主要区别有两点:时序逻辑电路的基本单元是触发器,组 合逻辑电路的基本单元是门电路;时序逻辑电路的输出只与现时输入有关,不具有记忆性,组合逻辑电路的输出不仅和现时输入有关,还和现时状态有关,即具有记忆性。 2、何谓“空翻”现象?抑制“空翻”可采取什么措施? n n Q Q =+1R S ?

触发器及其应用实验报告 - 图文-

实验报告 一、实验目的和任务 1. 掌握基本RS、JK、T和D触发器的逻辑功能。 2. 掌握集成触发器的功能和使用方法。 3. 熟悉触发器之间相互转换的方法。 二、实验原理介绍 触发器是能够存储1位二进制码的逻辑电路,它有两个互补输出端,其输出状态不仅与输入有关,而且还与原先的输出状态有关。触发器有两个稳定状态,用以表示逻辑状态"1"和"0飞在二定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图14-1为由两个与非门交叉祸合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。 基本RS触发器具有置"0"、置"1"和保持三种功能。通常称s为置"1"端,因为 s=0时触发器被置"1"; R为置"0"端,因为R=0时触发器被置"0"。当S=R=1时状态保持,当S=R=0时为不定状态,应当避免这种状态。

基本RS触发器也可以用两个"或非门"组成,此时为高电平有效。 S Q S Q Q 卫R Q (a(b 图14-1 二与非门组成的基本RS触发器 (a逻辑图(b逻辑符号 基本RS触发器的逻辑符号见图14-1(b,二输入端的边框外侧都画有小圆圈,这是因为置1与置。都是低电平有效。 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚逻辑图如图14-2所示;JK触发器的状态方程为: Q,,+1=J Q"+K Q 3 5

J Q CLK K B Q 图14-2JK触发器的引脚逻辑图 其中,J和IK是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成"与"的关系。Q和Q为两个互补输入端。通常把Q=O、Q=1的状态定为触发器"0"状态;而把Q=l,Q=0 定为"}"状态。 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 CC4027是CMOS双JK触发器,其功能与74LS112相同,但采用上升沿触发,R、S端为高电平

施密特触发器的特性和应用

施密特触发器的特性和应用 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。见图6-2: 解释:当输入信号Vi减小至低于负向阀值V-时,输出电压Vo翻转为高电平Vo H;而输入信号Vi增大至高于正向阀值V+时,输出电压Vo才翻转为低电平VoL。这种滞后的电压传输特性称回差特性,其值V+-V-称为回差电压。 一、用555定时器构成的施密特触发器 1.电路组成: 将555定时器的阀值输入端Vi1(6脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由Vo(3脚)或Vo’(7脚)挂接上拉电阻Rl及电源VDD作为输出端,便构成了如图6-3所示的施密特触发器电路。

2.工作原理: 如图所示,输入信号Vi,对应的输出信号为Vo,假设未接控制输入Vm 。 ①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。 ②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。 ③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3V cc,定时器状态翻转为1,输出Vo=1。 总结:未考虑外接控制输入Vm时,正负向阀值电压 V+=2/3Vcc、V- =1/3Vcc,回差电压△V=1/3Vcc。若考虑Vm,则正负向阀值电压V+=Vm、V-=1/2Vm,回差电压△V=1/2Vm。由此,通过调节外加电压Vm可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。 二、施密特触发器的应用举例 1.波形变换: 施密特触发器可用以将模拟信号波形转换成矩形波,如图6-4所示将正弦波信号同相转换成矩形波的例子,输出脉冲宽度tpo可通过回差电压加以调节。

触发器实验报告

触发器实验报告 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原 理(必填) 三、主要仪器设备(必填) 四、操作方法和实 验步骤 五、实验数据记录和处理 六、实验结果与分 析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 实验截图: 专业:电卓1501 姓名:卢倚平 学号: 日期:地点:东三404

(上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1+n Q Q J =Q K , D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图:

触发器及其应用

实验二触发器及其应用 一、实验目的 1.熟悉触发器的构成及工作原理; 2.掌握触发器的逻辑功能测试方法; 3.掌握触发器之间相互转换方法及实际应用。 二、实验原理 触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元。触发器具有两个稳定状态,即"0"和"1",在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。 1.基本RS触发器 图1为由二个与非门交叉藕合构成的基本RS触发器。基本RS触发器具有置"0"、置"1"和"保持"三种功能。通常称为置"1"端,因为 =0时触发器被置"1";为置"0"端,因为 =0时触发器被置"0",当 = =1时状态保持。基本RS触发器也可以用二个"或非门"组成,此时为高电平触发器。 图1基本RS触发器 2.D触发器 D触发器的状态方程为:Qn+1=D。其状态的更新发生在CP脉冲的边沿,74LS74等均为上升沿触发,故又称之为上升沿触发器的边沿触发器,触发器的状态只取决于时针到来前D端的状态。如下: 图2 双D触发器图3 D触发器逻辑符号

三、实验仪器与器件 数字电路实验箱示波器信号发生器 74LS00 74LS74 四、实验内容及步骤 1、两个TTL与非门相接构成基本RSFF,按下表的顺序在输入端加信号,观察并记录FF的Q 端的状态,将结果填入表中,并说明在各种输入状态下FF的功能。 2、用D触发器构成一个二分频器,并用示波器记录输入输出波形,参考电路如下图所示。 3、用EWB软件仿真一个由触发器构成的二倍频器,参考电路如下图所示。 五、实验结果 (要求记录实验结果,并与理论值对比分析)

施密特触发器和比较器的区别

施密特触发器原理图解详细分析 重要特性:施密特触发器具有如下特性:输入电压有两个阀值VL、VH,VL 施密特触发器通常用作缓冲器消除输入端的干扰。 施密特波形图 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。 门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。正向阈值电压与负向阈值电压之差称为回差电压。 它是一种阈值开关电路,具有突变输入——输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。 利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。 当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电 压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的. 从传感器得到的矩形脉冲经传输后往往发生波形畸变。当传输线上的电容较大时,波形的上升沿将明显变坏;当传输线较长,而且接受端的阻抗与传输

D触发器及其应用实验报告

实验五D触发器及其应用 实验人员:班号:学号: 一、实验目的 1、熟悉D触发器的逻辑功能; 2、掌握用D触发器构成分频器的方法; 3、掌握简单时序逻辑电路的设计 二、实验设备 74LS00 ,74LS74,数字电路实验箱,数字双踪示波器,函数信号发生器 三、实验内容 1、用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 74LS74是双D触发器(上升沿触发的边沿D触发器),其管脚图如下: 其功能表如下: ○1构成二分频器:用一片74LS74即可构成二分频器。实验电路图如下:

○2构成四分频器:需要用到两片74LS74。实验电路图如下: 2、实现如图所示时序脉冲(用74LS74和74LS00各1片来实现) 将欲实现功能列出真值表如下:

Q 1n+1=Q 0n =D 1 Q 0n+1=Q 1n ????=D 0 F ′=Q 1n Q 0n ???? F =F ′?CP 连接电路图如下: 四、实验结果 1、用74LS74(1片)构成二分频器、四分频器。示波器显示波形如下: ○ 1二分频器: ○ 2四分频器:

2、实现时序脉冲。示波器显示波形如下: 五、故障排除 在做“用74LS74(1片)构成二分频器、四分频器”时,连接上示波器后,发现通道二总显示的是类似于电容放电的波形,但表现出了二分频。反复排查问题均没有发现原因。最后换了一根连接示波器的线,便得到了理想的结果。 在示波器使用时想要用U盘保存电路波形,不会操作。后来在询问了同学之后才知道只需要按“print”就好。 六、心得体会 通过此次实验,我更深入地领悟了触发器的原理和用法,还复习了示波器的用法,还学会了如何保存示波器波形。

用定时器构成的施密特触发器

施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。见图6-2: 解释:当输入信号Vi减小至低于负向阀值时,输出电压Vo翻转为高电平VoH;而输入信号Vi增大至高于正向阀值时,输出电压Vo才翻转为低电平VoL。这种滞后的电压传输特性称回差特性,其值- 称为回差电压。 一、用555定时器构成的施密特触发器 1.电路组成: 将555定时器的阀值输入端Vi1(6脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由Vo(3脚)或Vo’(7脚)挂接上拉电阻Rl及电源VDD作为输出端,便构成了如图6-3所示的施密特触发器电路。 2.工作原理:如图所示,输入信号Vi,对应的输出信号为Vo,假设未接控制输入Vm 。 ①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。 ②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。 ③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3Vcc,定时器状态翻转为1,输出Vo=1。

总结:未考虑外接控制输入Vm时,正负向阀值电压=2/3Vcc、=1/3Vcc,回差电压△V=1/3Vcc。若考虑Vm,则正负向阀值电压=Vm、=1/2Vm,回差电压△V=1/2Vm。由此,通过调节外加电压Vm 可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。 二、施密特触发器的应用举例 1.波形变换: 施密特触发器可用以将模拟信号波形转换成矩形波,如图6-4所示将正弦波信号同相转换成矩形波的例子,输出脉冲宽度tpo可通过回差电压加以调节。 2.波形整形 若数字信号在传输过程中受到干扰变成如图6-5(a)所示的不规则波形, 可利用施密特触发器的回差特性将它整形成规则的矩形波。若负向阀值取为,则回差电压。整形后输出波形如图6-5(b)所示。由于输入信号的干扰在输出中表现为三个矩形脉冲,这是错误的。若减小负向阀值取为,则回差电压。此时整形后输出波形如图6-5(c)所示,消去了干扰。 3.幅度鉴别: 施密特触发器的翻转取决于输入信号是否高于或低于,利用此特性可以构成幅度鉴别器,用以从一串脉冲中检出符合幅度要求的脉冲。如图6-6所示,当输入脉冲大于时,施密特触发器翻转,输出端

数字电路实验报告集成触发器及应用

姓名:xxxxxxxxxxxxxxx学号:xxxxxxxxxx . 学院:计算机与电子信息学院专业:计算机类. 班级:xxxxxxxxxxxxxxxxxx时间:2019年10月18 日. 指导教师:xxxxxxxx . 实验名称:集成触发器及应 用. 一、实验目的 1、掌握RS、JK、D触发器的基本逻辑功能测试方法; 2、掌握时序电路的设计; 二、实验原理 触发器是构成时序电路的基本逻辑单元。它具有两个稳定状态,即“0”状态和“1”状态。只有在触发信号作用下,才能从原来的稳定状态转变为新的稳定状态。因此触发器是一种具有记忆功能的电路,可作为二进制存储单元使用。 触发器种类很多,按其功能可分为基本RS触发器、JK触发器、D触发器和T触发器等;按电路的触发方式又可分为电位触发器型、主从型、维阻型、边沿触发器型等。 基本RS触发器是各种触发器中最基本的组成部分,它能存贮一位二进制信息,但有一定约束条件。例如用与非门组成的RS触发器的R'、S'不能同时为“0”,否则当R’、S’端的“0”电平同时撤销后,触发器的状态不定。因此只R'=S'=0的情况不允许出现,也就是RS=0约束条件。 基本RS触发器的用途之一是作无抖动开关。例如在图4-1所示的电路中,当开关S 接通时,由于机械开关在扳动的过程中,存在接触抖动,使得F点电压从+5V直接跃降到0V一瞬间(几十毫秒),会发生多次电压抖动,相当产生连续多个脉冲信号。如果利用这种电路产生的信号去驱动数字电路,则可能导致电路发生误动作。

图4-1 这在某些场合是绝对不允许的,为了消除机械开关的抖动,可在开关S与输入端A 之间接入一个RS触发器(见图4-2所示),就能使F端产生很清晰的阶跃信号。那么这种带RS触发器的开关通常称为无抖动开关(或称为逻辑开关)。而把有抖动的开关称为数据开关。 图4-2 TTL集成触发器主要有三种类型:锁存器、D触发器和JK触发器。锁存器是电位型触发器。由于它存在“空翻”,不能用于计数器和移位寄存器,只能用于信息寄存器。维阻D触发器,克服了“空翻”现象,所以称作维阻型触发器。 主从型触发器,虽然克服了“空翻”,但存在一次变化问题,即在CP=1期间,J、K 端若有干扰信号,触发器可能产生误动作,这就降低了它的抗干扰能力,因而使用范围受到一定的限制。边沿触发型JK触发器抗干扰性能较好,故应用广泛。 图4-3是集成JK、D触发器的逻辑符号。图中RD为复位输入端,SD为置位输入端,端旁的小圆圈表示低电平驱动。当SD和RD端有加“0”信号驱动时,触发器的状态不受CP及控制输入端所处状态的影响。CP为时钟输入端,在SD=RD=1时,只有在CP 脉冲的作用时才使触发器状态更新。CP端有小圆圈,表示该触发器在CP产脉冲的负沿时翻转。CP端没有小圆圈,表示该触发器在CP脉冲的正沿时翻转。在部分国外的触发器符号中,CP端的小圆圈上加有尖角标志,表示该触发器是负沿触发器的边沿触发器,如图4-3(C)所示。J、D、K为触发器的控制信号输入端,它们是触发器更新状态的数据。若J、K、D有两个或两个以上的输入端时,就将这些端子画成与门的形式,如图4.3(a)、(b)中所示。Q和Q’为两个互补输出端,通常把Q=1,Q’=0的状态,定为触发器的1状态,而把Q=0,Q’=1的状态定为触发器的0状态。

数字电路练习题及答案--施密特触发器

一、简答题: 1、获取矩形脉冲波形的途径有哪两种? (1)一种方法是利用各种形式的多谐振荡器电路直接产生所需要的矩形脉冲。(2)另一种方法是通过各种整形电路把已有的周期性变化波形变换为符合要求的矩形脉冲。其前提条件是,能够找到频率和幅度都符合要求的一种已有的电压信号。 2、施密特触发器在性能上有哪两个重要特点? (1)输入信号从低电平上升的过程中,电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。 (2)在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。 3、施密特触发器有哪些用途? (1)可以将边沿变化缓慢的信号波形整型为边沿陡峭的矩形波。 (2)可以将叠加在矩形脉冲高、低电平上的噪声有效地清除。 4、单稳态触发器的工作特性具有哪些显著特点? (1)它具有稳态和暂稳态两个不同的工作状态。 单稳只有一个稳定的状态。这个稳定状态要么是0,要么是1。在没有受到外界触发脉冲作用的情况下,单稳态触发器保持在稳态; (2)在外界触发脉冲作用下,能从稳态翻转到暂稳态,(假设稳态为0,则暂稳态为1)。在暂稳态维持一段时间以后,再自动返回稳态。 (3)单稳态触发器在暂稳态维持的时间长短仅仅取决于电路本身的参数,与触发脉冲的宽度和幅度无关。 二、计算题:

1、如图所示为一个用CMOS 门电路构成的施密特触发器,已知电源电压为10V , Ω=k R 101;Ω=k R 202;求其正向阈值电压、负向阈值电压及回差电压。(本题 6分) 解: (1)正向阈值电压为:(2分) (2)负向阈值电压为:(2分) (3)回差电压为:(2分) 解: (1)正向阈值电压为:V V R R V TH T 5.7210 )20101()1(21=+=+ =+(2分) (2)负向阈值电压为:V V R R V TH T 5.22 10 )20101()1(21=-=- =-(2分) (3)回差电压为:V V V V V V T T T 55.25.7=-=-=?-+(2分) 2、在图示的施密特触发器电路中,若G1和G2为74LS 系列与非门和反相器,它

17集成施密特触发器应用实验

数字电路-17 集成施密特触发器应用实验 一. 实验目的 1. 了解用示波器测试集成数字器件电压传输特性的方法。 2. 掌握集成施密特触发器的几种典型应用。 二. 实验原理 施密特触发器主要用于将随时间变化缓慢的非周期信号或周期性的非矩形波信号变换成上升时间和下降时间均很小的矩形波信号。 当输入u i 小于负向阀值电平U T-时,反相施密特触发器输出为“1”,当u i 大于正向阀值电平U T+时,施密特触发器输出为“0”。U i 介于两者之间时,施密特触发器的状态保持不变。所以,触发器的电压传输关系具有滞回特性,两个阀值电平之差称回差ΔU T 。 在电子系统中,施密特触发器具有广泛的应用。根据施密特触发器的滞回特性,可以将输入的三角波,正弦波和其他不规则的周期性电压信号转变成矩形信号输出。当电信号在传输过程中受到干扰而发生畸变时,可利用施密特触发器的回差特性对信号进行整形。当输入信号为一组幅度不等的脉冲时,可利用施密特触发器对输入信号的幅度进行鉴别,只有幅度达到施密特触发器阀值电平的信号,才能引起输出变化。 1. 用施密特触发器构成多谐振荡器 图17-1是用反相施密特触发器构成的多谐振荡电路。当输出u O 为高电平时,输入u c ≤U T+,施密特触发器的输出通过电阻R 向电容C 充电,u c 上升。至Uc 等于U T+,输出u O 变为低电平U OL 。然后电容通过电阻R 、施密特触发器输出端放电,u c 下降。在 +-<

555触发器及其应用

实验八 555定时器及其应用 一、实验目的 1.熟悉集成555定时器的特性参数和使用方法。 2.掌握使用555定时器组成施密特触发器的方法 3.掌握使用555定时器组成单稳态触发器的方法,定时元件RC对脉冲宽度的影响。 4.掌握使用555定时器组成自激多谐振荡器的方法和定时元件RC对振荡周期和脉冲宽度的影响。 二、实验器材 1.数字电路实验箱1台 2.示波器 1 台 3.万用表 1 只 4.集成电路:555定时器 1 只 5.元器件:电阻、电容若干只 三、实验原理和电路 1.器件特性 555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。只要在外部配上几个适当的阻容元件,就可以构成史密特触发器、单稳态触发器及自激多谐振荡器等脉冲信号产生与变换电路。它在波形的产生与变换、测量与控制、定时电路、家用电器、电子玩具、电子乐器等方面有广泛的应用。 集成555定时器有双极性型和CMOS型两种产品。一般双极性型产品型号的最后三位数都

120 是555,CMOS 型产品型号的最后四位数都是7555.它们的逻辑功能和外部引线排列完全相同。器件电源电压推荐为4.5~12V ,最大输出电流200mA 以内,并能与TTL 、CMOS 逻辑电平相兼容。其主要参数见表8.1。 555定时器的内部电路框图及逻辑符号和管脚排列分别如图8.1和图8.2所示。 引脚功能: V i1(TH ):高电平触发端,简称高触发端,又称阈值端,标志为TH 。 V i2(TR ):低电平触发端,简称低触发端,标志为TR 。 V CO :控制电压端。 V O :输出端。 Dis :放电端。 Rd :复位端。 555定时器内含一个由三个阻值相同的电阻R 组成的分压网络,产生31V CC 和32V CC 两个基准电压;两个电压比较器C 1、C 2;一个由与非门G 1、G 2组成的基本RS 触发器(低电平触发);放电三极管T 和输出反相缓冲器G 3。 Rd 是复位端,低电平有效。复位后, 基本RS 触发器的Q 端为1(高电平),经反相缓冲器后,输出为0(低电平)。 分析图8.1的电路:在555定时器的V CC 端和地之间加上电压,并让V CO 悬空,则 比较器C 1的同相输入端接参考电压32V CC ,比较器C 2反相输入端接参考电压31V CC ,为了学习方便,我们规定: . (a) 555的逻辑符号 (b) 555的引脚排列 图8.2 555定时器逻辑符 号和引脚 图8.1 555定时器内部结构 Vi1(TH) Vi2 Vco ..

D触发器的使用

实验3 D触发器及其应用 一、实验目的 1、熟悉D触发器的逻辑功能; 2、掌握用D触发器构成分频器的方法; 3、掌握简单时序逻辑电路的设计方法。 二、实验设备 1、数字电路实验箱; 2、数字双踪示波器; 3、函数信号发生器; 4、集成电路:74LS00; 5、集成电路:74LS74; 三、实验内容 1、用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 简单介绍分析: (1)74LS74:双D触发器(上升沿触发的边沿D触发器) D触发器在时钟脉冲CP的前沿(正跳变0→1)发生翻转,触发器的次态取决于CP脉冲上升沿到来之前D端的状态,即=D。因此,它具有置0、置1两种功能。由于在CP=1期间电路具有维持阻塞作用,所以在CP=1期间,D端的数据状态变化,不会影响触发器的输出状态。/R D和/S D分别是决定触发器初始状态的置0、置1端。当不需要强迫置0、置1时,/R D和/S D端都应置高电平。74LS74(CC4013),74LS175(CC4042)等均为上升沿触发的边沿触发器。 (2)74LS74引脚图:

(3)二分频器的连接线路原理图: 图(3-2) 实验步骤如下: a.按照上面的连线原理图(3-2)在实验板上连好线; b.打开电源开关; c.在CP端加入1kHz的连续方波,用示波器观察CP,1Q,2Q各点的波形。(4)四分频器的连接线路原理图: 图(3-3) 实验步骤如下: a.按照上面的连线原理图(3-3)在实验板上连好线; b.打开电源开关; c.在CP端加入1kHz的连续方波,用示波器观察CP,1Q,2Q各点的波形。 2、实现如图所示时序脉冲(74LS74和74LS00各1片)

触发器及其应用

实验四触发器及其应用 一:实验目的 1.掌握基本RS。JK。D和T触发器的逻辑功能 2.掌握集成触发器的逻辑功能及使用方法 3.熟悉触发器之间互相转化的方法 二:实验原理: 触发器具有两个稳定状态。用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元 1.基本RS触发器 图8-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”。置“1”和保持三种功能。通常称为置“1”端,因为=0(=1)时触发器被置“1”;为置“0”端,因为=1(=0)时触发器被置“0”,但==1时状态保持;==0时,触发器状态不稳定,应避免此种情况发生,表9-1为基本RS触发器的功能表。 基本RS触发器。也可以用两个“或非门”组成,此时为高电平触发有效。 表8-1: 图8-1 基本RS触发器 输入输出 0 1 1 0 1 0 0 1 1 1 0 0 2.JK触发器 在输入信号为双端的情况下,JK触发器是功能完善.使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿除法的边沿触发器。引脚功能和逻辑符号如图8-2所示。 JK触发器的状态方程为 J和K是数据输入端是触发器状态更新的依据,若J。K有两个或两个以上输入端时,组成“与”的关系。Q和为两个互补输出端。通常把Q=0,=1的状态顶为触发器“0”状态;而把Q=1,=0定为“1”状态。

16 15 14 13 12 11 10 9 图8-2 74LS112双JK触发器引脚排列及逻辑符号 下降沿触发JK触发器的功能表如8-2所示表8-2 输入输出 CP J K 0 1 ××× 1 0 1 0 ×××0 1 0 0 ××× 1 1 ↓0 0 1 1 ↓ 1 0 1 0 1 1 ↓0 1 0 1 1 1 ↓ 1 1 1 1 ↑×× 注:×—任意态↓—高到低电平跳变↑—低到高电平跳变 ()—现态()—次态¢—不定态 JK触发器常被用作缓冲存储器,位移寄存器和计数器 3.D触发器 在输入信号为单端的情况下,D触发器用来最为方便,其状态方程为=,其输出 状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只 取决于时钟到来前D端的状态,D触发器的应用很广,可用作数信号的寄存,位移寄存,分 频和波形发生等。有很多种型号可供各种用途的需要而选用。如双D74LS74。四D74LS175, 六D74LS174等 图8-3为双D74LS74的引脚排列及逻辑符号。功能表如表8-3。 图8-3 74LS74引脚排列及逻辑符合

施密特触发器及其应用

一、实验目的 进一步掌握施密特触发器的原理和特点,熟悉和了解由施密特触发器构成的部分应用电路,学会正确使用TTL,CMOS集成的施密特触发器。 二、实验内容 1.具有施密特性的门电路特性测试 (1)74LS132芯片的特性测试 图 20.1所示为74LS132芯片的原理电路和逻辑符号图。 图20.1 用实验法测出芯片的电压传输特性曲线。并标出V T+,V T-,ΔV T等值。 参照给定的原理电路图,说明V T+,V T-,·ΔV T等值和理论分析值是否一致? 理论分析时,可假设肖特基三极管的V BES≈0.8V,V CES≈0.3V,肖特基二极管的正向导通压降V D≈0.4V。 (2)CMOS CD40106特性测试 图20.2所示为CD40106芯片的原理电路的逻辑符号图。 令V DD=+5V,测出CD40106的V T+,V T-·ΔV T值,画出相应的电压传输特性曲线。 改变V DD值,使之分别为+10V,-15V,重复上述内容。

图20.2 2.施密性触发器的应用。 (1)多谐振荡器 按图20.3所示电路接线,V DD=-5V。 (b) (a) 图20.3 用示波器观察图(a),图(b)电路输出端Vo的波形。 选择电容C,使图(a)中Vo的频率f=100KHZ~150KHZ。 选取图(b)电路中的电容C,令其分别为100PE和1μF,测出Vo端振荡波形的相应的频率。 (2)压控振荡器 按图20.4所示电路接线V DD=+5V 信号V1的变化范围为2.5~5.0V 图20.4 用示波器观察并记录Vo端的波形。 当V1取值分别为:2.5V、3V、3.5V、4.0V、4.5V、5V时测出Vo端波形相应的频率f。 观察电路中元件参数的大小(如电阻R、电容C)和f有何关系? 观察与非门的VT施密特触发器的V T+、V T-和f有何关系? 三、思考题 1.施密特触发器电路的特点是什么?(图20.1) 所示的原理电路是由哪几部分构成的?各部分的作用是什么? 2.CMOS施密特触发器的V DD值的大小和芯片的V T+、V T-、ΔV T参数有何关系? 3.改变图20.1图(b)电路的V DD值时,Vo端的振荡频率是否会跟着变化?怎样变化? 四、实验仪器及材料

相关文档
相关文档 最新文档