文档库 最新最全的文档下载
当前位置:文档库 › 多壁纳米碳管电化学储氢研究

多壁纳米碳管电化学储氢研究

多壁纳米碳管电化学储氢研究
多壁纳米碳管电化学储氢研究

多壁纳米碳管电化学储氢研究

李伟

专业:环境艺术设计学号:2009101329 学校:长沙学院

摘要:为探究多壁纳米碳管(MWNT)的储氢性能,用复合电沉积的方法制备了含MWNT的纳米碳管-镍(CNT-Ni)工作电极,通过恒流充放电、循环伏安以及循环寿命手段研究了工作电极的电化学储氢,结果发现直径小于10nm的MWNT的放电能力为1361.1mAh/g,相当于储氢量为4.77Wt%(质量)。CNT-Ni 电极的氢吸附发生在该电极表面的镍活性点上。电极有一定的循环寿命。指出多壁纳米碳管有一定储氢能力,储氢机理有待进一步研究。

关键词:复合电沉积纳米碳管电化学储氢

1. 引言

1997 年,Dillon 报道用1mg 没有净化的烟灰,其中包含0.1Wt%-0.2Wt%的单壁纳米碳管及一部分钴催化剂,在273K时可吸收5 Wt%的氢气[1]。2001 年报道单壁纳米碳管的储氢量最高可达到8Wt%[2,3]。我国学者最近发表的报告表明:在常温、12MPa 压力下单壁纳米碳管的储氢量为4.2Wt%[4];常温下定向多壁纳米碳管的储氢量为5.7 Wt %[5]。后来又得到了单壁纳米碳管体积储氢容量可达62KgH2/m3[6];多壁纳米碳管的体积储氢容量可达31.6KgH2/m3[7]。在包括上面所述的各种纳米碳管储氢研究中,气相储氢研究较多,而电化学储氢研究较少。但就电化学储氢而言,粉末压型法研究的较多,复合电沉积法研究极少。

由于铜在碱性溶液中易受腐蚀,金比较昂贵,一般电极不采用。本文采用金属镍做基体材料,通过制备纳米碳管-镍工作电极以及测试其在6mol/L(M)的KOH 电解液中的电化学性能,研究纳米碳管的储氢。

2. 实验

2.1 纳米碳管的制备与前处理

本实验使用了三种直径的多壁纳米碳管,均采用化学催化裂解法制备而成,含少量Fe、Ni 及无定形碳杂质。MWNT 直径为<10nm、10-30nm和60-100nm。

实验前,先用37%(质量)的HCL浸泡24小时,抽滤调节pH值至中性后用67%(质量)的HNO3常温浸泡96小时,然后过滤调节pH值至中性。使用前,首先在研钵中将其研磨变短;其次用表面活性剂对其进行处理;最后经超声波振荡将其充分分散在镀液中。

原始以及经研磨纯化后的碳管透射电子显微(TEM)图像如下所示。纯化后碳管较纯,基本无杂质,且有的管口打开,但是碳管还是较多地缠绕在一起。

图1 10-30nm碳管纯化后TEM图图2 60-100nm碳管纯化后TEM图

图3 <10nm 碳管纯化后TEM图

2.2 工作电极的制备及纳米碳管含量测量说明

基体材料选用普通碳钢(试样大小ф20×0.25)。经过酸洗和碱处理,得到净有活性的表面,用非导电树脂将其一面密封。实验在电热恒温水槽中进行。施镀过程中,利用可以调速的电动搅拌器搅拌,选用两种镀液,组分如表1。

表1 电解液组分

备注:1.氨基磺酸盐浓缩液由安美特公司提供

2. 脉冲电镀的电流密度为2-6 A/dm2, 占空比为10%,20%,30% 和50%。

得到复合镀层后,先将镀层从基体上剥离下来,然后用33%(质量)的硝酸溶解的方法测量纳米碳管在复合镀层中的含量,用扫描电镜(SEM)观察工作电极的表面形貌。

2.3 电化学性能测试

电解池采用三电极体系,高容量烧结镍为对电极,1M 甘汞电极为参比电极,电解液为6M 的KOH,在常压室温下进行测试。所用电化学工作站为上海辰华仪器公司的CHI1140型。

3. 结果与讨论

3.1 纳米碳管含量最高的工作电极

从复合电沉积的实验中,可以得出三种直径的工作电极最佳制备条件(以电极中的纳米碳管含量最高为标准),将各个电极标示如下。

表2 工作电极的说明

注:1. T、r、Dk、pH和X分别为镀液温度、搅拌速度、阴极电流密度、镀液pH 值和纳米碳管的悬浮量。

2.1#和3#电沉积时间为45min、2#和4#为1h、5#为2h。

3. 1#和2#电极中镍含量分别为132mg 和125mg;3#电极中复合镀层总重为

127mg,其中含纳米碳管3.5mg;4#电极中复合镀层总重为121.7mg,其中含纳米碳管 2.8mg;5#电极中复合镀层总重为110.5mg,其中含纳米碳管4.5mg。

上表中得到的数据结果均是采用直流电镀得到的。采用脉冲电镀时,参考了直流电镀的最佳工艺条件,在固定以下参数(T=50℃,r=230r/min,pH=4.0,脉冲频率f=500HZ)、改变电流密度和占空比(脉冲电镀的电流密度为2-6 A/dm2,脉冲占空比为10%、20%、30%、50%)的基础上得到了碳管最高含量为2.9mg,没有超过直流电镀中得到的碳管最高含量4.5mg,因此没有对其进行电化学储氢

研究。

图4-6 显示了工作电极电极的表面形貌。从图中可以看出,纳米碳管均匀地分布于基体表面,说明纳米碳管在镀液中的分散状况较好。基体表面被一层浓密的纳米碳管覆盖,这些纳米碳管一端镶嵌于基体中,另一端暴露于基体外。纳米碳管暴露于基体外有利于其进行充放电,有利于氢的存储。

图4 3#电极的SEM 图图5 4#电极的SEM 图

图6 5#电极的SEM 图

3.2 恒流充放电测试

本实验采用50mA 恒流充放电,实验结果如各图7-11 所示。从图中曲线的放电时间可以计算出储氢量,放电截止电位均为各放电平台电位,约0.4V。由于复合电极中都含有镍,因此在计算其储氢量时应减去镍电极的储氢量。具体为3#电极的储氢量减去1#电极的储氢量;4#和5#电极的储氢量减去2#电极的储氢量。

计算储氢量的方法:

1.纳米碳管放电量C=(T1-T2)×50/3600(mA·h)(1)

其中,T1 为复合电极截止电压放电时间;T2 为镍电极截止电压放电时间,单位秒。

2.纳米碳管重量比容量CWw=C/G(mA·h/g)(2)其中,G 为复合电极中纳米碳管的重量:单位克。

3.纳米碳管储氢重量百分比Wt=C1/(C1+G)×100% (3)其中,C1 =3.6C/96500

经过计算,得到1-5 号电极中的MWNT的放电容量 C 分别为0.153、0.125、1.269、1.667和6.25 mA·h,各电极中MWNT 的比容量见表3。

表3 各电极储氢量比较

图7 1#电极充放电曲线图8 2#电极充放电曲线

图9 3#电极充放电曲线图10 4#电极充放电曲线

图11 5#电极充放电曲线

3.3 循环伏安测试

图12-16 分别表示出了不同的扫描速度下镍电极和纳米碳管-镍电极的循环伏安图。图中1、2 和 3 分别表示扫描速度为50mV/s、30mV/s 和20mV/s。图15 和16 表明镍电极的吸附峰在-0.811~-0.751V之间。而CNT-Ni 电极的循环伏安曲线出现了更为明显的氢吸附峰,峰值略有偏移,在-0.831~-0.778V 之间。但是所有的图中都没有发现有明显得氢的氧化峰存在,仍有待于进一步研究。在同样的扫描速度下,CNT-Ni 电极的峰值较前者高出10~34 倍,表明CNT-Ni 电极的电化学活性远高于镍电极。由于CNT-Ni 电极的吸附峰电位与镍电极的吸附峰电位基本相同,故可以认为CNT-Ni 电极的氢吸附发生在该电极表面的镍活性点上。

图12 1#电极的循环伏安曲线图13 2#电极的循环伏安曲线

图14 3#电极的循环伏安曲线图15 4#电极的循环伏安曲线

图16 5#电极的循环伏安曲线

3.4 循环寿命测试

电极的循环寿命是电极实用化的关键因素之一。由于碳材料高的化学稳定性,纳米碳管电极可望具备好的循环性能。从循环寿命曲线图可以明显地发现CNT-Ni 电极有一个活化过程,而且活化较容易。循环一定周期(以各电极容量为最初容量的80%为终点)后,容量会有所降低。3#和4#电极的循环可以达到75 次,而5#电极的循环只能达到50 次。电极的容量损失是由于电极电化学活性的降低和CNT 从电极上脱落以及其它原因造成的。一定周期循环后可以发现电解液中存在少量的黑色沉淀。

图20 电极的循环寿命曲线

4 结论

通过研究,结论如下:

1. 多壁纳米碳管有储氢能力。

2. 直径小于10nm 的碳管储氢量最高,可以达到4.77%,但是其循环寿命较短;而其余两种直径的碳管尽管储氢量较低,但是其循环寿命相对较长。

3. 碳管的储氢机理仍有待于进一步研究。

参考文献

[1] Dillon A C,Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon

nanotubes[J].Nature,1997,386 (6623):377.

[2] Dillon A C,Gennett T, Alleman JL,et al. Proceedings of the 2000 US DOE hydrogen program review.2000.

[3] Hebben MJ, in the International Winter school on Electronic Properties of Novel

Materials.Kirchberg,Austria.2000.

[4] Liu C,Fan Y Y,Liu M,et al.Hydrogen in single-walled carbon nanotubes at room temperature[J]. Science,

1999, 286: 1127- 1129.

[5] 郝东晖,朱宏伟,张先锋,等. [J].科学通报,2002,47(15):1148-1151.

[6] Liu C, Y ang QH, Tong Y, et al. Appl Phys Lett.2002,80: 2389.

[7] Hou PX,Y ang QH,Bai S,et al.J Phys Chem B.2002,106:963.

碳纳米管吸波材料的研究现状与展望

3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com 碳纳米管吸波材料的研究现状与展望3 王生浩,文 峰,李 志,郝万军,曹 阳 (热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如 吸波材料,但目前国内关于此类研究的报道还不多。较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。 关键词 碳纳米管 吸波材料 吸波性能 复合 The R esearch Status and Prospect of Electromagnetic W ave 2 absorbing C arbon N anotubes WAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang (Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science , School of Science and Engineering ,Hainan University ,Haikou 570228) Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemical properties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM. K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagnetic wave absorbing properties ,composite   0 引言 随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。 自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。近 年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的 热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。 1 碳纳米管的吸波机理 碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.wendangku.net/doc/dd17013284.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.wendangku.net/doc/dd17013284.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

碳纳米管性质及应用

碳纳米管性质及应用 摘要:碳纳米管的发现是现代科学界的重大发现之一。由于碳纳米管具有特殊的 导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。本文简单综述碳纳米管的基本性质及应用。 关键词:碳纳米管;结构;制备;性质;应用 1 碳纳米管的发现 1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。 2 碳纳米管的结构 碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。 3碳纳米管的制备 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。 3.1电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作.T. W. Ebbeseo在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

储氢材料的分类及镍氢电池的机理

储氢材料分类 狭义上讲,储氢材料[8]是一种能与氢反应生成金属氢化物的物质;但是它与一般金属氢化物有明显的差异。即储氢材料必须具备高度的反应可逆性(可反复进行吸储氢和释放氢的可逆反应),而且,此可逆循环的次数(循环寿命)必须足够多,循环次数超过5000次。实际上,它必须是能够在适当的温度、压力下大量可逆的吸收和释放氢的材料。 对于理想的金属储氢材料应具备以下条件:1.在不太高的温度下,储氢量大,释放氢量也大;2.氢化物的生成热一般在-46 ~ -29 kJ/mol H2之间;3.原料来源广,价格便宜,容易制备;4.经多次吸、放氢,其性能不会衰减;5.有较平坦和较宽的平衡压力平台区,即大部分氢均可在一持续压力范围内放出;6.易活化,反应动力学性能好。 就目前发表的资料看,储氢材料尚无明确的、公认的分类方法,本文把它分为以下4类: (1) 金属(或合金)储氢材料 氢几乎可以同周期表中的各种元素反应,生成各种氢化物或氢化合物。但并不是所有金属氢化物都能做储氢材料,只有那些能在温和条件下大量可逆的吸收和释放氢的金属或合金氢化物才能做储氢材料用。例如:目前以开发的具有实用价值的金属型氢化物有稀土系AB5型;锆、钛系Laves相AB2型;钛系AB型;镁系A2B型;以及钒系固溶体型等几种。金属与氢反应的实验模型如图1-1所示。 图1-1 合金储氢材料与H2反应示意图 Fig.1-1 The reaction chart of metal with H2 (2) 非金属储氢材料 从目前的研究的情况分析,能够可逆的吸放氢的非金属材料[9,10]仅限于碳系

材料、玻璃微球等非金属材料,是最近几年刚发展起来的新型储氢材料。例如碳纳米管、石墨纳米纤维、高比表面积的活性炭、玻璃微球等。这类储氢材料均属于物理吸附模型,是一种很有前途的新一代储氢材料。 (3) 有机液体储氢材料 某些有机液体[11,12],在合适的催化剂作用下,在较低压力和相对高的温度下,可做氢载体,达到贮存和输送氢的目的。其储氢功能是借助储氢载体(如苯和甲苯等)与H 2的可逆反应来实现的。 (4) 其他储氢材料 除了上述3类储氢材料外,还有一些无机化合物和铁磁性材料可用作储氢,如KHNO 3或NaHCO 3作为储氢剂[13]。磁性材料在磁场作用下可大量储氢,储氢量比钛铁材料大6~7倍。 镍氢电池(Ni/MH)的基本原理 利用贮氢合金的电化学吸放氢特性研制成功的金属氢化物-镍(Ni/MH)二次电池是近年来发展比较迅速的一种高能绿色二次电池,它以贮氢电极合金充当活性物质的氢化物电极作为负极,以氢氧化镍电极作为正极。Ni/MH 电池具有能量密度高、功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可免维护、使用完全等特点。Ni/MH 电池的比能量是镍镉电池的 1.5~2倍,电流充放电时,无记忆效应、低温特性好、综合性能优于Ni/Cd 电池,而且Cd 有毒,废电池处理复杂。在能源紧张,环境污染严重的今天,Ni/MH 电池显示出广阔的应用前景。Ni/MH 电池目前主要应用在小型移动通讯设备、笔记本电脑、便携式摄像机、数码相机及电动自行车等领域。 Ni/MH 电池以Ni(OH)2/NiOOH 电极为正极,以贮氢合金电极为负极,以6 M 的KOH 溶液为电解液。其电化学式可表示为: (-)M/MH|KOH(6 M)|Ni(OH)2/NiOOH(+) 研究表明,在Ni/MH 电池的充放电过程中,正、负极发生的反应分别为: 正极:-22Ni(OH)OH NiOOH+H O+e + 负极:-2M+H O+e MH OH x x x x +

储氢碳纳米管

碳纳米管储氢性能的研究 学院:材料学院班级:1109102 学号:1110910209 姓名:袁皓 摘要:综述了近年来研究人员在碳纳米管制备以及在各种不同条件下获得的储氢性能,分析了碳纳米管的储氢机理。从实验、理论研究两个方面总结了前人在碳纳米管储氢上的研究成果,并对碳纳米管储氢吸附方式,吸附量影响因素等方面做出分析。最后指出为实现碳纳米管储氢大规模应用仍需做的一些基础性研究工作。 关键词:碳纳米管;吸附;储氢 氢能以其资源丰富、可再生、热效率高等优点备受关注。氢能的使用包括氢的生产、储存和运输等方面,开发氢能的关键问题是如何对氢进行储存。储氢的主要方法有:金属存储、压缩存储、液化存储和吸附存储等,它们各有优缺点。碳纳米管因其特殊的力学、电学等性质而成为储氢的主要载体。Kroto等发现了C60以后,Iijima意外地发现碳纳米管。由于碳纳米管具有优良的电学、力学性质,世界各国迅速展开了对碳纳米管的制备方法、结构与性能的研究。Dillon等报道了碳纳米管储氢作用,相关报道也比较多。因为碳纳米管具有比较大的比表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。 一碳纳米管的结构和性质 碳纳米管(Carbon Nanotubes, CNTs)首次是在1991年由日本的电子显微镜专家Iijima分析电弧放电产生的阴极沉积物时意外发现的,可以被看成是由石墨面卷曲而成的无逢管状结构,后发现可以通过化学处理使两端开口。根据组成碳纳米管管壁中碳原子层数目,碳纳米管可被分为单壁碳纳米管(Single -Walled Carbon Nanotubes, SWNTs )和多壁碳纳米管(Multi-Walled Carbon Nanotubes,MWNTs)。结构模型如图: 单壁碳纳米管仅由一层碳原子构成,是多壁碳纳管的一种特殊情况。单壁碳纳米管直径一般在1 -3nm,最小直径大约为0. 5nm,当直径大于3nm时会表现出不稳定性。单壁碳纳米管通常因范德华力作用而形成10 -100管束状。多壁碳纳米管可以看成为不同管径的单壁碳纳米管套装而成,少则2层多达几十层,层距约为0.343nm,略大于石墨片层之间的距离0. 335nm。碳纳米管直径在几纳米到几十纳米之间,而长度可达数微米,具有较大的长径比。因此,人们认为碳纳米管是一种典型的准一维纳米材料,并且因其重量轻,六边形完美结构而表现出许多异常的力学、电磁学、化学特性,并在不同领域里得到广泛的应用。其中碳纳米管在吸附氢气上表现出的独特性质,使其最有希望成为高效的储氢材料。 二碳纳米管的制备 目前已有很多种制备碳纳米管的方法,其中电弧放电法和催化裂解法应用得最为广泛。1991年Iijima首先用真空电弧蒸发石墨电极,在阴极沉积物中发现了碳纳米管。该方法是:在一定气压的惰性气氛下,石墨电极之间在强电流下产生电弧,阴极逐渐损耗,部分气态碳离子沉积于阴极形成沉积物。电弧放电法的产物质量较好,管径均匀,管身较直,石墨化程度高,但因

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

纳米储氢材料

纳米储氢材料的研究应用现状及发展前景 摘要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米储氢材料,研究现状,发展前景 1 绪论 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型,储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

相关文档
相关文档 最新文档