文档库 最新最全的文档下载
当前位置:文档库 › 有限元分析用的材料属性表杨氏模量等

有限元分析用的材料属性表杨氏模量等

有限元分析用的材料属性表杨氏模量等
有限元分析用的材料属性表杨氏模量等

动态悬挂法测杨氏模量数据处理参考范例

动态悬挂法测杨氏模量数据处理参考范例 1. 数据记录 表1 各测量量测量值 样品 () L m m () m L m m ? ()m g ()m m g ? () 1f H z ()1 m f H z ? 黄铜 0.05 0.01 0.1 不锈钢 0.05 0.01 1 表2 样品直径测量值 次数 黄铜直径 () d m m () m d m m ? 不锈钢直径 () d m m () m d m m ? 1 0.005 0.005 2 3 4 5 6 2. 数据处理 (1)黄铜: L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f :0.10.058B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.998d m m = 1.110.0170.019A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.020u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001037.9310 701.0 1.6067 1.6067 5.99810 L m f Y d ---????==? ? 10 2 9.47710 N m = ?Y E = =

1.3%= 则101029.47710 1.3%0.1310Y Y u Y E N m =?=??=? (2)不锈钢 L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f : 10.58B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.945d m m = 1.110.0210.024A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.025u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001034.4310 1014 1.6067 1.6067 5.94510L m f Y d ---????==? ? 11 2 1.86510 N m =?Y E = = 1.7%= 则11 11 2 1.86510 1.7%0.03210 Y Y u Y E N m =?=??=? 3. 实验结果 (1)室温下测得黄铜样品的杨氏模量为: ()10 2 9.50.210Y N m =±? () 0.683p = 1.3% Y E = (2)室温下测得不锈钢样品的杨氏模量为: ()11 2 1.860.0410Y N m =±? () 0.683p = 1.7% Y E = 备注:不确定度u 在计算过程中保留两位有效数字,在最后计算结果中保留一位有效数字。

常用材料的弹性模量、切变模量及泊松比[1]

常用材料的弹性模量及泊松比 数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土17.5~32.5 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - -

杨氏模量数据表格及数据处理要求

杨氏模量测定(横梁弯曲法) 一、实验目的 1.学会用横梁弯曲法测定金属材料的杨氏模量; 2.学会读数显微镜的使用方法,掌握测量微小长度变化的方法; 二、实验仪器及用具 FD-YZ-MT杨氏模量测试仪1套JC—10读数显微镜米尺游标卡尺千分尺待测矩形金属条 三、实验原理 这部分内容请同学们按照实验报告写作要求来写 四、实验步骤(供参考) (1)将矩形待测材料安放在仪器的刀口上,套上铜刀口(下端挂一砝码盘)并使其刀刃恰 好在仪器两刀口的中间。 (2)调节显微镜的目镜,看清楚镜简内的叉丝.松开显微镜的底座并使镜筒轴线正对着铜 刀上的基线,前后移动底座,直到从镜中看清楚铜刀基线,锁定底座和升降杆;转动读数显微镜的镜筒使得目镜中看到直尺方向与竖直方向一致,读数显微镜的手轮朝上,锁紧读数显微镜镜筒,转动手轮移动十字叉丝与基线像完全重合,记下读数.(3)在砝码盘上顺序地加法码.共加7次,每次砝码的质量为10 g,同时,每次转动显微 镜的手轮,使得十字叉丝水平线与目镜中基线像重合,记下相应读数. (4)由梁上每取下一片砝码,仿照步骤(3)记下相应的读数. (5)测出仪器两刀口间的距离l,测量1—3次,再测出待测样品的厚度h和宽度a,各测 量6次,记录下相应的测量结果. (6)实验完毕整理好实验仪器 (7)利用逐差法求出对应10g的弛垂度λ ?,代入表达式(1)计算杨氏模量并求出其测量不确定度。 注意事项: 1.从初始读数到增加每一片砝码,转动读数显微镜的手轮使得叉丝与基线像重合过 程中叉丝移动方向要保持一致 2.整个测量过程确保读数显微镜或者铜刀口位置不发生移动,因此调节好读数显微 镜一定锁紧相应部位以免测量产生转动,增加砝码或减少砝码时要谨慎切莫碰动 铜刀口的位置。倘若发生了它们的位置有一个发生了变化,就必须从头开始测量。 3.使用千分尺和游标卡尺之前先记下相应的零点读数;再则,使用千分尺测量样品 厚度时应注意测量杆与固定砧别卡得太紧以免样品发生形变,使用游标卡尺测量 样品宽度时内量爪也别卡得太紧。 五、数据表格 表1 待测样品及支架两刀口距离测量 支架两刀口距离d度为:cm 千分尺零点读数:mm

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━ (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为) (HT200 密度:,弹性模量:70-80; 泊松比热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E= 11 Pa, 泊松比λ=,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为 ( HT200,其弹性模量 E=140GPa,泊松比μ=,密度ρ=×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,%,%,密度 7210 kg / m3 ,泊松比。) (箱体材料为HT200,其性能参数为:弹性模量E=×10 11 Pa,泊松比μ=,密度为ρ=×10 3 -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度 t/m 3 ,弹性模量126 GPa, 泊松比 (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常用弹性模量及泊松比 ━━━━━━━━━━━━━━━━━━名称弹性模量E 切变模量G 泊松比μ GPa GPa ──────────────────镍铬钢 206 合金钢 206 碳钢 196-206 79 铸钢 172-202 球墨铸铁 140-154 73-76 灰铸铁 113-157 44 白口铸铁 113-157 44 冷拔纯铜 127 48 轧制磷青铜 113 41 轧制纯铜 108 39 轧制锰青铜 108 39

常用材料的弹性模量及泊松比数据表

常用材料的弹性模量及泊松比数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 ~ 2 碳钢196~206 79 ~ 3 铸钢172~202 - 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 ~ 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 ~ 8 轧制纯铜108 39 ~ 9 轧制锰青铜108 39 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 ~ 12 轧制锌82 31 13 硬铝合金70 26 - 14 轧制铝68 25~26 ~ 15 铅17 7 16 玻璃55 22 17 混凝土14~23 ~~ 18 纵纹木材~12 - 19 横纹木材~~- 20 橡胶- 21 电木~~~ 22 尼龙 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 - - 29 夹布酚醛塑料4~- - 30 石棉酚醛塑料- - 31 高压聚乙烯~- - 32 低压聚乙烯~- - 33 聚丙烯~- -

Q235等属于碳素结构钢,35#、45#等属于优质碳素钢,强度较高,塑性和韧性都比碳素钢好。 屈服强度:是弹性变形的极限也叫屈服点。增加应力到一定程度时成为塑性变形,也就是变弯了。每种钢的屈服强度是不一样的 镍铬钢、合金钢的弹性模量是206GPa 碳钢的弹性模量为196~206GPa,计算时一般取206GPa 铸钢的弹性模量为172~202Gpa

骨强度的有限元分析.

骨强度的有限元分析 曾一鸣编译 上海交通大学医学院附属第九人民医院骨科 局部骨密度的双能X线测定已广泛用于骨质疏松症诊断和骨折风险评估。然而,临床观察表明双能X线吸收法预测骨折风险在敏感性和特异性方面存在缺陷。从生物力学角度来看,一种能准确表现骨三维几何形状及骨材料属性异质性分布的研究方法能更好地对骨强度进行评估。因此,人们对于利用有限元分析评估骨的生物力学行为产生了越来越多的兴趣。本文以此为视角,描述有限元法并综述其在骨研究方面的应用,讨论此方法的优点和缺陷,评价其评估骨折风险的临床应用前景,提出未来研究的方向。我们着重阐述该领域的发展趋势及今后的发展重点,而不是针对这一主题作一全面的综述。 一、有限元方法简介 在20世纪50年代,有限元法首次应用于结构分析[1],之后广泛用于几乎每一个工程及相关领域。在固体及结构力学方面(包括骨力学),可选择有限元法作为计算和模拟的工具。因为有限元法具有良好的准确性,可评估研究对象受到外加负荷时复杂的几何学表现(例如一块完整的骨头或骨小梁网络)。 概念上看,用有限元法处理固体及结构力学问题是通过将物体划分为有限个构件或单元,每一个单元由一些少量的参考点或节点来定义(图1)。有限元法就应这种离散化而得名。应力负荷引起每个单元的变形可通过多种简单的方程式,即所谓的形态方程式来表现。其中唯一未知的是节点位移,因此只要计算出节点位移,就能得到每个单元处的应变分布,由此确定整个物体各处的应变分布。要计算出这些位移,研究者还必须规定两个附加的条件:1)边界条件,为外加负荷和/或位移。2)材料属性:包括每个单元的弹性模量及泊松比。然后分析一系列能满足物体几何学、边界条件、材料属性力学平衡的节点位移。随后用节点位移和材料属性来计算整个物体各处的应力分布。 除了能得到应力及应变分布,节点位移还能用于计算其他一些量,如物体的整体刚度及应变能密度。如果研究者指定某些材料特性,包括破坏特性,这种方法还可用于计算物体在什么时候、什么部位、怎样遭到破坏,但这需要使用非线性建模方法进行大量的计算。因此,有限元法可估计那些可通过力学试验得到的量(例如,整骨刚度),还可以估计那些很难进行实验测量的量(例如,应变能密度分布)。

常用材料弹性模量

常用材料弹性模量 弹性模量与热物理性质 序号 1 2 3 4 5 6 7 8 9 10 材料名称灰口铸铁/白口铸铁 可锻铸铁碳钢镍铬钢、合金钢 铸钢轧制纯铜冷拔纯铜轧制磷青铜冷拔黄铜轧制锰青铜 弹性模量(×105MPa) 1.13-1.57 1.55 2.0-2.1 2.06 1.75 1.08 1.27 1.13 0.90-0.97 1.08 0.39 0.4-0.48 0.41 034-0.37 0.39 剪切模量(×105MPa)0.45 0.45 0.79-0.81 0.79-0.81 泊松比 0.23-0.27 0.25-0.28 1400-1500熔点 (oC) 1200 11.3-13 11.5-14.5 1083 1083 17.5 17.5 17.9 1083 18.8 线膨胀系数(×10-6/K) 8.5-11.6 热导率(W/(m·k)) 39.2 81.1/纯铁 49.8 15 49.8 398 407 22.2镍青铜 106 24.8锡青铜 比热容(J/(kg·K)) 470 455/纯铁 465 460 470 386 418 410/镍青铜 377 343/锡青铜 0.25-0.3 0.3 0.31-0.34 0.32-0.35 0.32-0.420.35 序号 11 12 13 14 15 16 17 18 19 20

材料名称轧制铝铸铝青铜硬铝合金轧制锌铅球墨铸铁玻璃混凝土纵纹木材横纹木材 弹性模量(×105MPa) 0.69 1.03 0.7 0.82 0.17 1.4-1.54 0.55 0.14-0.23 0.098-0.12 0.005-0.00 剪切模量(×105MPa) 0.26-0.27 0.41 0.27 0.31 0.07 0.73-0.76 0.2-0.22 0.049-0.157 0.005 0.0044-0.0064 泊松比 0.32-0.36 0.3 0.3 0.27 0.42 熔点(oC) 658 线膨胀系数(×10-6/K) 热导率(W/(m·k)) 238/纯铝 比热容(J/(kg·K)) 902/纯铝 420 871/硅铝 388 126 17.9 23.6 56 162/硅铝 121 35 327 4-11.5 10-14 0.25 0.1-0.18 序号 21 22 23 24 25 26 材料名称橡胶电木尼龙大理石花岗岩尼龙1010 弹性模量(×105MPa) 0.0000784 0.0196-0.0294 0.0283 0.55 0.48 0.0107 0.0069-0.0206 0.0101 剪切模量(×105MPa) 泊松比 0.47 熔点(oC) 线膨胀系数(×10-6/K) 热导率(W/(m·k)) 比热容(J/(kg·K)) 0.35-0.38 0.4

杨氏模量_数据处理(1)

《杨氏模量》实验报告数据处理 测量数据: 1.单次直接测量量测量参考值: 金属丝长度:L=37.42cm ; 钢卷尺仪器误差:0.1cm 光杠杆与镜尺组距离:D = 151.5 cm ; 钢卷尺仪器误差:0.1cm 光杠杆常数:b = 84.00 mm ; 卡尺仪器误差:0.02mm 砝码质量: 360g/个砝码 ; 误差: 1g/ 个砝码 2.多次直接测量量测量参考值: 金属丝直径测定: 螺旋测微计零点读数:0.000 mm 151r r l -== , 262r r l -=, 373r r l -=, 484r r l -= 1.杨氏模量E 的测量参考值: 将各测量量代入公式 Pa bl d FLD E 11226221060.11063.0104.81049.014.3515 .13742.08.94360.088?=???????????==---π

由不却定度传递公式: 2222222??? ??+??? ??+??? ??+??? ??+??? ??+??? ??=l u b u d u D u L u F u E u l b d D L F E )(03.031 8.910143N u F =????=- )(11.148.9360.04N F =??= %21.011 .1403.0==F u F cm u L 03.03 1 05.0=?= %080.042.3703.0==L u L cm u D 06.03 1 1.0=?= %040.050.15106.0==D u D mm u b 0 2.031 02.0=?= %024.000.8402.0==b u b (0.630.65)0.029c m A l ?= = )0.058cm B l ?== mm l l u B A l 06.0058.0029.02222=+=?+?= %3.664 .004.0==l u l mm d A 001.04 5)490.0490.0()492.0490.0()489.0490.0()490.0490.0()488.0490.0(2 2222=?-+-+-+-+-=?mm d B 002.03 004 .0==? mm d d u B A d 003.0002.0001.02222=+=?+?= %61.0490.0003.0==d u d 222222)()()2()()()(l l b b d d D D L L F F E u E ?+?+?+?+?+?= %4.6%)3.6(%)024.0(%)22.1(%)040.0(%)080.0(%)21.0(222222=+++++=1111101.0%4.61060.1%4.6?=??=?=E u E Pa 实验结果表示:a E P ?±=1110)1.06.1( %4.6=E u E 683.0=P

有限元分析中的材料性能单位

有限元分析中的材料性能单位 关键词:有限元、材料性能、单位 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。 比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力 - N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为 MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为 mm,压力单位改为 MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。 基本物理量及其量纲: ?质量 m; ?长度 L; ?时间 t; ?温度 T。 导出物理量及其量纲: ◆速度:v = L / t; ◆加速度: a = L / t 2; ◆面积: A = L 2; ◆体积: V = L 3; ◆密度:ρ= m / L 3; ◆力: f = m · a = m · L / t 2; ◆力矩、能量、热量、焓等: e = f · L = m · L 2 / t 2; ◆压力、应力、弹性模量等: p = f / A = m / (t 2 · L) ; ◆热流量、功率:ψ= e / t = m · L 2 / t 3; ◆导热率: k =ψ/ (L · T) = m · L/ (t 3 · T); ◆比热: c = e / (m · T) = L 2 / (t 2 · T); ◆热交换系数: Cv = e / (L 2 · T · t) = m / (t 3 · T) ◆粘性系数: Kv = p · t = m / (t · L) ; ◆熵: S = e / T = m · l 2 / (t 2 · T); ◆质量熵、比熵: s = S / m = l 2 / (t 2 · T);

有限元分析中的材料性选择

有限元分析中的材料性能单位 邹正刚(上海航天局第八设计部) 摘要: 本文对使用有限元软件分析工程问题时的材料性能单位问题作了一些探讨,通过实例说明了如何统一各物理量的单位,以保证分析结果的正确。 关键词:有限元、材料性能、单位 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。 比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力- N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。 基本物理量及其量纲: ?质量m; ?长度L; ?时间t; ?温度T。 导出物理量及其量纲: ◆速度:v = L / t; ◆加速度: a = L / t 2; ◆面积:A = L 2; ◆体积:V = L 3; ◆密度:ρ= m / L 3; ◆力: f = m · a = m · L / t 2; ◆力矩、能量、热量、焓等: e = f · L = m · L 2 / t 2; ◆压力、应力、弹性模量等:p = f / A = m / (t 2 · L) ; ◆热流量、功率:ψ= e / t = m · L 2 / t 3; ◆导热率:k =ψ/ (L · T) = m · L/ (t 3 · T); ◆比热:c = e / (m · T) = L 2 / (t 2 · T); ◆热交换系数:Cv = e / (L 2 · T · t) = m / (t 3 · T) ◆粘性系数:Kv = p · t = m / (t · L) ; ◆熵:S = e / T = m · l 2 / (t 2 · T); ◆质量熵、比熵:s = S / m = l 2 / (t 2 · T); 在选定基本物理量的单位后,可导出其余物理量的单位,可以选用的单位制很多,下面举两个常用的例子。 1 基本物理量采用如下单位制: ?质量m – kg; ?长度L – mm;

有限元分析材料库

有限元分析材料库 篇一:有限元分析中的材料性能单位 有限元分析中的材料性能单位 #1有限元分析中的材料性能单位 摘要: 本文对使用有限元软件分析工程问题时的材料性能单位问题作了一些探讨,通过实例说明了如何统一各物理量的单位,以保证分析结果的正确。 关键词:有限元、材料性能、单位 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。 比如,在结构分析中分别用如下单位:长度–m;时间–s;质量–kg;力-n;压力、应力、弹性模量等–Pa,此时单位是统一的。但是如果将压力单位改为mPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为mPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原

则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。 基本物理量及其量纲: n质量m; n长度L; n时间t; n温度T。 导出物理量及其量纲: u速度:v=L/t; u加速度:a=L/t2; u面积:a=L2; u体积:V=L3; u密度:ρ=m/L3; u力:f=m·a=m·L/t2; u力矩、能量、热量、焓等:e=f·L=m·L2/t2;

杨氏模量测定实验报告

南昌大学物理实验报告 课程名称: 实验名称: 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:第8周星期六下午1点开始

一、实验目的: 1.掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2.学会如何用对称测量消除系统误差 3.掌握各种长度测量工具的选择和使用。 4.学习用逐差法和作图法处理实验数据

b L ?= ≈θθtg (3)D n D n n ?=-≈1 22tg θ(4) 将(3)式和(4)式联立后得: n D b L ?=?2(5) 式中12n n n -=?,相当于光杠杆镜的长臂端D 的位移。 其中的b D 2叫做光杠杆镜的放大倍数,由于D >>b ,所以n ?>>L ?,从而获得对微小量的线性放大,提高了L ?的测量精度。 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 三、弹性滞后效应 考虑到金属丝受外力作用时存在着弹性滞后效应,也就是说钢丝受到拉伸力作用时,并不能立即伸长到应有的长度()i i i L L L L ?+=0,而只能伸长到i i L L δ-。同样,当钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度i L ,仅缩短到i i L L δ+。因此实验时测出的并不是金属丝应有的伸长或收缩的实际长度。为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程,实验中可以采用增加和减少砝码的办法实现。只要在增、减相应重量时,金属丝伸缩量取平均,就可以消除滞后量i L δ的影响。即 []()()[]i 0i i 0i i 0i 2 121L L L L L L L L L L L ?+=+?++-?+=+=δδ减增

有限元分析的基本原理

有限元分析的基本原理 有限元原理和基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。 有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh-Ritz法+分片函数”,即有限元法是Rayleigh-Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh-Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义 根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的

UG有限元分析教程

第1章高级仿真入门 在本章中,将学习: 高级仿真的功能。 由高级仿真使用的文件。 使用高级仿真的基本工作流程。 创建FEM和仿真文件。 用在仿真导航器中的文件。 在高级仿真中有限元分析工作的流程。 1.1综述 UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工 程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能 评估解法。图1-1所示为一连杆分析实例。 图1-1连杆分析实例 高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语 言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直 接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。 高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM文件,这有利 于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享FE数据去执行多种类型分析。

UG NX4高级仿真培训教程 2 高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高 质量网格。结构仿真支持完整的单元类型(1D、2D和3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制 CAD几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 高级仿真中专门包含有新的NX传热解算器和NX流体解算器。 NX传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受 热载荷系统中的热流和温度。 NX流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳 态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用NX传热和NX流体一起执行耦合传热/流体分析。 1.2仿真文件结构 当向前通过高级仿真工作流时,将利用4个分离并关联的文件去存储信息。要在高级仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文 件必须是激活的工作部件。这4个文件平行于仿真过程,如图1-2所示。 图1-2仿真文件结构 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt扩展名,fem#_i是对部件名的附加。例如,如果原部件是plate.prt,一个理想化部件被命名为plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件,

钢丝杨氏模量的测定-实验报告

钢丝杨氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量杨氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验内容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

21拉伸法测量杨氏模量数据处理

6 数据处理 1)实验数据记录表格 表一:拉伸法测量杨氏摸量的数据记录 次序F(*9.8N) N i(加, cm) N i(减 cm 1 1.000 0 -0.0 2 2.000 1.38 1.6 3 3.000 2.90 2.9

4 4.000 4.30 4.4 5 5.000 5.72 5.9 6 6.000 7.12 —— ) (450.011 mm d n d n i i ==∑-)(011.00)(111 2mm d d n S n i i d =--=∑=)(0047.0mm n S S d d == ) (0047.0mm S u d dA ==) (0023.03 004.03 mm u m dB == ?= ) (0052.02 2mm u u u dB dA d =+= % 16.1== d u E d x 2) 用作图法处理数据确定N F ??的测量结果及不确定度;

())/(1090.61005 .015.78.900.100.622m N N N F F N F A B A B ?=?-?-=--=??3 m FB FA u u ?= = 仅有标尺的系统误差) 都只相当于一次测量,两点因为对于F B A ,( 3 222m FB FA F u u u ?= +=∴? 同理可证: 3 2m N u ?= ? %00.1103.3107.610.7305.0200.5305.0222552 2 2 2 2 2 =?+?=? ?? ? ????+???? ????=??? ? ? ??+???? ???=??? ???+??? ???=--????N u F u N u F u E B A N F N F N F

有限元分析报告

有限元仿真分析实验 一、实验目的 通过刚性球与薄板的碰撞仿真实验,学习有限元方法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使用方法。本实验使用HyperMesh 软件进行建模、网格划分和建立约束及载荷条件,然后使用LS-DYNA软件进行求解计算和结果后处理,计算出钢球与金属板相撞时的运动和受力情况,并对结果进行可视化。 二、实验软件 HyperMesh、LS-DYNA 三、实验基本原理 本实验模拟刚性球撞击薄板的运动和受力情况。仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。前处理阶段任务包括:建立分析结构的几何模型,划分网格、建立计算模型,确定并施加边界条件。 四、实验步骤 1、按照点-线-面的顺序创建球和板的几何模型 (1)建立球的模型:在坐标(0,0,0)建立临时节点,以临时节点为圆心,画半径为5mm的球体。 (2)建立板的模型:在tool-translate面板下node选择临时节点,选择Y-axis,magnitude输入5.5,然后点击translate+,return;再在2D-planes-square 面板上选择Y-axis,B选择上一步移下来的那个节点,surface only ,size=30。 2、画网格 (1)画球的网格:以球模型为当前part,在2D-atuomesh面板下,surfs选

择前面建好的球面,element size设为0.5mm,mesh type选择quads,选择elems to current comp,first order,interactive。 (2)画板的网格:做法和设置同上。 3、对球和板赋材料和截面属性 (1)给球赋材料属性:在materials面板内选择20号刚体,设置Rho为2.000e-08,E为200000,NU为0.30。 (2)给球赋截面属性:属性选择SectShll,thickness设置为0.1,QR设为0。 (3)给板赋材料属性:材料选择MATL1,其他参数:Rho为2.000e-08,E为100000,Nu为0.30,选择Do Not Export。 (4)给板赋截面属性:截面选择SectShll,thickness设为0.2。其他参数:SHRE 为8.333-01,QR为0,T1为0.2。 (5)给板设置沙漏控制:在Properties-Create面板下Card image选择HourGlass,IHQ为4,QM为0.100。更新平板。 4、加载边界条件 (1)将板上最外面的四行节点分别建成4个set。 (2)建立一个load collector。 (3)Analysis-constraints面板中,设置SIZE为1,nodes通过by sets选择set_1、set_2、set_3、set_4,然后点击creat即可,边界条件加载完毕。 5、建立载荷条件(给球一个3mm的位移) (1)建立一个plot: post-xy plots-plots-creat plot,然后点击return; (2)在post-xy plots-edit curves面板中输入X{0,0,0.0001},Y{0,3}。 (3)给刚性球一个3mm的沿y正方向的位移:card image设为PrcrRgd,DOF为

相关文档
相关文档 最新文档