文档库 最新最全的文档下载
当前位置:文档库 › 将军饮马

将军饮马

将军饮马
将军饮马

例谈“将军饮马”在求最值问题中的应用

【摘要】利用“将军饮马问题”中的轴对称思想去解决线段和最小的问题,是较多学生解题的“障碍”问题,现在通过举例说明“将军饮马问题”在三角形,四边形,圆,抛物线,坐标轴中的综合运用,希望能为初中学生的中考复习和教师的备课提供良好的素材.

【关键词】轴对称 最小值 问题探究 问题启示

【正文】

一、问题背景

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.如图所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后,再到B 点宿营.请问怎样走才能使总的路程最短?

这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.如图1,将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的B 地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马”的问题广泛流传. l A

B l A'A

B

分析:在河边l 饮马的地点有很多点,问题就是在河边l 上找一个点,使得这个点到A ,B 两点的距离之和最小,那么如何找到这一个点呢?

如图2,作B 关于直线l 的对称点B′,连结AB′与直线l 交于点C ,点C 就是所求的位置. 证明:如图3,在直线l 上另取任一点C′,连结A C′,B C′, B′C′,因为直线l 是点B ,B′的对称轴,点C ,C′在l 上,∴CB=CB′, C′B= C′B′,∴AC+CB=AC+C B′=A B′ . 在△A C′B′中,∵A B ′<A C′+ C′B′,∴AC+CB <A C′+ C′B′即AC+CB 最小.

反思:本问题实际上是利用轴对称变换的思想,把A ,B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C 在A B ′与l 的交点上,即A 、C 、B ′三点共线)。本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型。

二、问题探讨

图1

1、在三角形(或四边形)中的运用:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点。则DN+MN 的最小值为多少?

分析:要求DN+MN 的最小值,联想“将军饮马问题”,作点M 关

于AC 的对称点E ,且易知点E 应该在线段BC 上,这样MN=NE ,那么

题目就转化成求DN+NE 的最小值了,由于点N 在AC 上移动且D 、N 、

E 可能构成一个三角形,因为“两点之间线段最短”,所以,当点N 移动

到DE 与AC 交点处,即点D 、N 、E 共线时,DN+NE=DE=10,达到最小

值。

反思:若引导学生把题中的D 、M 看着是基本问题中的A 、B 两点,把AC 看着是基本问题中

的燃气管道l ,本问题即为基本问题,学生可通过基本问题的联想和迁移解决本问题。

2、在平面直角坐标系中的运用:(2009年济南)已知:抛物线的对称轴为X=-1,与x 轴

交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,

. (1)求这条抛物线的函数表达式.

(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P

的坐标.

(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D

作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE

△的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,

若存在,请求出最大值;若不存在,请说明理由。

分析:(本题只对第2问作详细分析)(1)抛物线的解析式为

224233

y x x =+-.(2)连结AC 、BC .因为BC 的长度一定,要使PBC △周长最小,就是使PC PB +最小。B 点关于对称轴的对称点是A 点,通过()30A -,、C(0,-2)可求AC 的解析式为223y x =--.AC 与对称轴1x =-的交点即为所求的点P 413??-- ??

?,。(3)当1m =时,34S =最大 反思:本题对第2问的解答是转化为“求定直线1x =-上一动点与直线外两定点B 、C 的

距离和的最小值”,它的原型就是“将军饮马问题”的基本问题,由于和函数结合一起,增加了命题的想象空间,这里,蕴含了丰富的“数”与“形”相互转化的数学思想。

3、在代数式中的运用:已知a 、b 均为正数,且 a+b=8,求代数式

16422+++b a 的最小值。

分析:由 a 、b 均为正数,且 a+b=8,得 16422+++b a =

16)8(422+-++a a ,构造合适图形可将其转化为求两条线段和的最

小值问题。如图,取AC=2,BD=4,AB=8,作C 关于AB 的对称点C ′,连接C ′D 交AB 于

P ,连接CP ,设PA=a ,则PB=8-a ,CP=,DP=16)8(2+-a 。此时C ′、P 、D 三点共线,C ′D=CP+DP=2268+=10为最小值。

反思:正是由于a 、b 均为正数,可以把此题构造“将军饮马问题”的基本图形,顺利地求出9422+++b a 的最小值为13,想法新奇但又顺理成章。

三、问题推广

1、由“求定直线上一动点与直线外两定点的距离和的最小值”推广到“求两定直线上各一动点与直线外两定点的距离和的最小值”问题:义务教育课程标准实验教科书八年级上册P 47第9题,如图,A 为马厩,B 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边给马喝水,然后回到帐篷,请你帮助他确定这一天的最短路线。

分析:作A 关于MN 的对称点G ,B 关于直线l 的对称点H ,

连接GH 交MN 于I ,交直

线l 于L ,连接AI 、BL ,

即可得出答案; 反思:根据对称点推

出AI=GI ,BL=HL ,

HK=BK ,AJ=GJ ,则四点

G 、I 、L 、H 在同一直线上

(基本问题中三点共线的推广),根据两点之间线段最短即可求出答案。

2、从用“三角形周长最短”证明推广到用“一边为定值的四边形周长最短”的证明:在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB=4,D 为边OB 的中点.若E 、F 为边OA 上的两个动点,且EF=2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.

分析:由于DC 、EF 的长为定值,如果四边形CDEF 的周长最小,即DE+FC 有最小值.为此,作点D 关于x 轴的对称点D',在CB 边上截取CG=2,当点E 在线段D′G 上时,

四边形CDEF 的周长最小.

反思:此题主要考查轴对称——最短路线问题(将军饮马问题),它是在

基本图形证明线段和(一边为定值的三角形周长)最短的基础上增加了平移的

线段(GE )和(两边为定值的四边形周长)最短的问题,只要学生充分体会“将

军饮马”的问题,通过对基本问题知识的类比与迁移,可以解决此问题.

四、问题启示

基于对“将军饮马问题”的探索,笔者认为对数学教育工作者有两方面的启示:

1、对习题设计者(试卷命题者)的启示:对习题的变式题的设计要“从学生发展的内在需要出发,从教学内容的发生、发展过程的角度出发”,能融数学的教与学为一体,重视知识的形成过程,重视知识的“内化”

;对试题的设计要立足于教材,对例题或基本图形进行深入的挖掘,

以教材的例题或基本图形为起点,结合学生的生活经历,难度视本题型在试卷所处的位置而定。

2、对教师教学的启示:从本文的解法反思中可以看出,即使是比较复杂的问题,所用到的知识也是简单的基础问题,这就要求教师在日常的教学中,特别是单元复习和中考复习时,不仅要从不同角度去分析问题,还原知识的发生、发展及形成的过程,教给学生解题的方法,而且要与学生共同探究基本问题与解题的联系,使学生能够说出“为什么这样想”、“用到哪些知识”等,增强学生解答综合题的信心,提高学生解答综合题的成功率。

参考文献:

1、金建荣. 趣谈将军饮马问题[J].中学生数学(初中版).2005(2)

2、刘金英、张义民、王立明. 中考数学试题分类解析(二)[ J]。中国数学教育(初中版).2011(1-2)

中考最值专题--将军饮马

【例1】【两点间距离】 如图,一个底面圆周长为24cm ,高为5cm 的圆柱体,一只蚂蚁沿侧表面从点A 到点B 的最短路线长为_______ 【练习1】 如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺, 有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则葛藤的最短长度是___尺. 【例2】【两定一动】 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =1 3S 矩形ABCD ,则PA +PB 的最小值为_______ 模型总结: 【练习2】 (1)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为_________ 方法提炼

(2)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4, 点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为. 【例3】【两定两动】 已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.M、N分别是直线a,b上的动点,且MN⊥a,当满足AM+MN+NB的长度和最短时,AM+NB= 模型总结:

已知直线 3 : 3 l y x =,CD是该直线上的一条动线段,且CD=2,点A() 23,1 +,连接AC、AD, 则△ACD周长的最小值为___________ 【例4】【一定两动】 如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是 模型总结:

将军饮马问题讲定稿版

将军饮马问题讲 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

将军饮马问题 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB 上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P 和Q),使得总路程MP+PQ+QN最短. 【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短. 3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短? 4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离之和最小 5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为() A. 15 B 7.5 C. 10 D. 24 6. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.

7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______. 练习 1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P 在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由. 2、如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓 库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理? 3、已知:A、B两点在直线l的同侧,在l上求作一点M,使得|| -最小. AM BM 4、如图,正方形ABCD中,8 AB=,M是DC上的一点,且2 DM=,N是AC上的一动点,求DN MN +的最小值与最大值. 5、如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。 6、如图,直角坐标系中有两点A、B,在坐标轴上找两点C、D,使得四边形ABCD的周长最小。

将军饮马

将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的 周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小

D B C A A N 二、常见题目 Part1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值 2.如图,在锐角△ABC 中,AB = 42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____. 3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值

M B D A D A Part2、正方形 1.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 即在直线AC 上求一点N ,使DN+MN 最小 2.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .2 6 C .3 D . 6 3.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 4.如图,四边形ABCD 是正方形, AB = 10cm ,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;

初中数学之将军饮马的6种模型(培优)

初中数学之将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使P A+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△P AB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形P AQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 类型一、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH= 在直角△BHE中,BE

2.如图,在锐角△ABC中,AB =BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM+MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 3.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN的值最小,则这个最小值 解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N= MB'+MN = MB+MN. B'N的长就是MB+MN的最小值,则∠B'AN = 2∠BAC= 60°,AB' = AB = 2, ∠ANB'= 90°,∠B' = 30°。∴AN = 1,在直角△AB'N中,根据勾股定理B'N 类型二、正方形 1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为_________。 即在直线AC上求一点N,使DN+MN最小。 解:故作点D关于AC的对称点B,连接BM,交AC于点N。则DN+MN=BN+MN=BM。线段BM的长就是DN+MN的最小值。在直角△BCM中,CM=6,BC=8,则BM=10。故DN+MN的最小值是10

轴对称与将军饮马问题(基础篇)专题练习(解析版)

轴对称与将军饮马问题(基础篇)专题练习 一、两定点一动点 1、答案:D 分析: 解答:∵点B和B’关于直线l对称,且点C在l上, ∴CB=CB’, 又∵AB’交l于C,且两条直线相交只有一个交点, ∴CB’+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 2、答案:B 分析: 解答:MN是正方形ABCD的一条对称轴, ∴PD=AP, 当PC+PD最小时,即点P位于AC与MN的交线上, 此时∠PCD=45°. 3、答案:C 分析: 解答:当PC+PE最小时,P在BE与AD的交点位置, 如图, ∵△ABC是等边三角形, ∴∠ACB=60°, ∵D、E分别是边BC,AC的中点, ∴P为等边△ABC的重心, ∴BE⊥AC, ∴∠PCE=1 2 ∠ACB= 1 2 ×60°=30°, ∴∠CPE=90°-∠PCE=90°-30°=60°,

选C. 4、答案:作图见解答. 分析: 解答:如图所示: 5、答案:作图见解答. 分析: 解答:所作图形如图所示: 6、答案:(1)画图见解答.(2)画图见解答. (3)P(0,4). 分析: 解答:(1)

(2) (3)过点A作AM⊥x轴于M, ∵A(2,6), ∴M(2,0),AM=6, 又∵B(4,0), ∴点B关于y轴的对称点B’(-4,0), ∴B’M=6=AM, ∴△AB’M为等腰直角三角形, ∴∠P’BO=45°, ∴△P’BO也为等腰直角三角形, ∴B’O=PO=4, ∴P(0,4). 7、答案:(1)画图见解答. (2)画图见解答. 分析: 解答:(1)关于y轴对称,纵坐标不变,横坐标相反. (2)作C关于y轴的对称点C1,连接C1B,交y轴于点P.连接PB,PC,此时△PBC周

初中数学将军饮马问题的六种常见题型汇总

第 6 页 共 10 页 初中数学将军饮马问题的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1. 如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠ MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P , Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

第 6 页 共 10 页 6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小 二、常见题目 【1】、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值 解: ∵点C 关于直线AD 的对称点是点B , ∴连接BE ,交AD 于点M ,则ME +MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1, BH =22BC CH -=2263-=33 在直角△BHE 中,BE =22BH EH - =22(33)1+=27 2.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____. 解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 4

初中数学:将军饮马问题习题

l A l l B A l l B A l P l l A 将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点 模型 作法 结论 当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA+PB 最小。 连接AB 交直线l 于点P ,点P 即为所求作的点。 PA+ PB 的最小。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA+PB 最小。 作点B 关于直线l 的对称点 B ′,连接AB ′交直线于点P ,点P 即为所求作的点。 PA+PB 的最小值为AB ′。 当两定点A 、B 在直线l 同侧 时,在直线l 上找一点P ,使 PA PB -最大。 连接AB 并延长交直线l 于点P ,点P 即为所求作的点。 PA PB -的最大值为AB 。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA PB -最大。 作点B 关于直线l 的对称点B ′,连接AB ′并延长交直线于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB ′。

P E D C B A P D C B A E D C B A 模型实例 例1.如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD+PE 的最小值为 。 例2.如图,已知△ABC 为等腰直角三角形,AC=BC=4,∠BCD=15°,P 为CD 上的动点,则PA PB -的最大值是多少? 热搜精练 1.如图,在△ABC 中,AC=BC=2,∠ACB-90°,D 是BC 边的中点,E 是AB 边 上一动点,则EC+ED 的最小值是 。

八上专题复习将军饮马

八(上)数学专题复习______将军饮马问题 傅苏球 2013年12 月25日 一、任务一-------------阅读理解 1、问题提出 1111、一 一, 早在古罗 马时代, 传说亚历 山大城有 一位精通 数学和物理的学者,名叫海伦.一天,一位罗马 将军专程去拜访他,向他请教一个百思不得其解 的问题:将军每天从军营B出发,先到河边饮马,然后再去河岸同侧的A地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马”的问题广泛流传.这个问题的解决并不难,据说海伦略加思索就解决了它. 2、解决办法

如图所示,从A出发向河岸引垂线,垂足为D,在AD的延长线上, 取A关于河岸的对称点A',连结A'B,与河岸线相交于C,则C点就是饮马的地方,将军只要从A出发,沿直线走到C,饮马之后,再由C沿直线走到B, 所走的路程就是最短的.如果将军在河边的另外任一点 C'饮马,所走的路程就是AC'+C'B,但是, AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.可见,在C点外任何 一点C'饮马,所走的路程都要远一些. 这有几点需要说明的:(1)由作法可知,河流l相当于线段 AA'的中垂线,所以AD=A'D,AC=A'C。(2)由上一条知:将军 走的路程就是AC+BC,就等于A'C+BC,而两点确定一线,所 以C点为最优。 思考:解题思路是 _______________________________________________ 3、将军饮马问题的应用 如图,有A、B两个村庄,他们想在河流l的边上建立一个水泵站, 已知每米的管道费用是100元,A到河流的距离AD是1km,B到河流 的距离BE是3km,DE长3km。请问这个水泵站应该建立在哪里使得 费用最少,为多少? 解:如图所作,C点为水泵站的位置。 依题意,得:所铺设的水管长度就是AC+BC,即:A'C+BC=A'B的长度。 因为EF=A'D=AD=1km, 所以BF=BE+EF=4km 又A'F=DE=3km 在Rt△A'BF中,A'B2=A'F2+BF2 所以:解得:A'B=5km 所以总费用为:5×1000×100=500000(元) 二、任务二-----------将军饮马问题在几何中的应用 1、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.

将军饮马的六种模型

第 1 页 共 10 页 将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 Part1、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH = 22 BC CH -=22 63 -=33 在直角△BHE中,BE = 22 BH EH - =22 (33)1 +=27 2.如图,在锐角△ABC中,AB =42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM +MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 第 2 页共10 页

将军饮马问题

将军饮马问题 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马强方法

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短

将军饮马问题讲

4. 如图,点 边的距离之和最小 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚 M 出发,先赶到河 OA 上的某一位置 P ,再马上赶到河 OB 上 的某一位置 Q ,然后立即返回校场 N .请为将军重新设计一条路线 (即选择点 P 和 Q ), 使得总路程 MP + PQ +QN 最短. 3、将军要检阅一队士兵,要求 (如图所示 ) :队伍长为 a ,沿河 OB 排开(从点 P 到点 Q );将 军从马棚 M 出发到达队头 P ,从 P 至 Q 检阅队伍后再赶到校场 N .请问:在什么位置列队 (即 选择点 P 和 Q ),可以使得将军走的总路程 MP +PQ + QN 最短? 将军饮马问题 变式】如图所示,将军希望从马棚 OB 上的某一位置 Q .请为将军设计一条路线 MP +PQ 最短. ,再马上赶到河 P 到

5 已知∠ MON内有一点 P,P 关于 OM,ON的对称点分别是和,分别交 OM, ON于点 A、B,已知= 15,则△ PAB 的周长为( ) A. 15 B 7.5 C. 10 D. 24 6. 已知∠ AOB,试在∠ AOB内确定一点 P,如图,使 P 到 OA、OB的距离相等,并且到 M、N 两点的距离也相等 . 7、已知∠ MON= 40 , P为∠ MON内一定点, OM上有一点 A,ON上有一点 B,当△ PAB的周 边上一动点,则 DP长的最小值为 练习 1、已知点A在直线l 外,点P为直线l 上的一个动点,探究是否存在一个定点B,当点P在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,长取最小值时,求∠APB的度数 . 8. 如图,在四边形ABCD中,∠ A= 90°, ADB=∠ C.若 P 是

将军饮马问题例题及应用

射频神经疼痛治疗仪 页脚内容1 将军饮马问题例题及应用 一, 简介 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一 个有 趣的数学问题. 诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后,再到B 点宿营.请问怎样走才能使总的路程最短? 这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:“将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的B 地开会,应该怎样走才能使路程最短?” 从此,这个被称为“将军饮马”的问题广泛流传. 二,例题 1, 基本类型问题 问题:有一位将军骑着马要从A 地走到B 地,但途中要到水边喂马喝一次水,则将军怎样走最近? 解答:作B 点与河面的对称点B ′,连接AB ′,可得到马喝水的地方C ,如图所示,由对称的性质可知AB ′=AC+BC ,根据两点之间线段最短的性质可知,C 点即为所求. 2, 与其他类型问题相结合 问题:某课题组在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得P A +PB 的值最小.解法:作 点A 关于直线l 的对称点A ′,连接A ′B ,则A ′B 与直线l 的交点即为P ,且PA +PB 的最小值为A ′B .请利用上述模型解决问题 如图1,等腰直角三角形A B C 的直角边长为2,E 是斜边A B 的中点,P 是A C 边上的一动点, 则P B+P E 的最小值为( ); 解答:作点B 关于A C 的对称点B ′,连接B ′E 交A C 于P , 此时PB+P E 的值最小.连接A B ′. A B ′=A B=√A C 2+BC 2=√22+22=2√2 A B=√2∵∠ B ′A C=∠BA C=45°∴∠B ′A B=90°∴PB+PE 的最小值 =B ′E=√B ′A 2+A E 2=√(2√2)2+(√2)2=√10

初中数学将军饮马

初中数学将军饮马 第六章将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点模型作法结论当两定点A、B在直线异侧时,在直线上找一点P,使PA+PB最小。 连接AB交直线于点P,点P即为所求作的点。 PA+ PB的最小。 当两定点A、B在直线同侧时,在直线上找一点P,使PA+PB 最小。 作点B关于直线的对称点B′,连接AB′交直线于点P,点P 即为所求作的点。 PA+PB的最小值为AB′。 当两定点A、B在直线同侧时,在直线上找一点P,使最大。 连接AB并延长交直线于点P,点P即为所求作的点。 的最大值为AB。 当两定点A、B在直线同侧时,在直线上找一点P,使最大。

作点B关于直线的对称点B′,连接AB′并延长交直线于点P,点P即为所求作的点。 的最大值为AB′。 当两定点A、B在直线同侧时,在直线上找一点P,使最小。 连接AB,作AB的垂直平分线交直线于点P,点P即为所求作的点。 的最小值为0。 模型实例例1.如图,正方形ABCD的面积是12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为 。 例2.如图,已知△ABC为等腰直角三角形,AC=BC=4, ∠BCD=15°,P为CD 上的动点,则的最大值是多少?热搜精练 1.如图,在△ABC中,AC=BC=2,∠ACB-90°,D是BC边的中点,E是AB边 上一动点,则EC+ED的最小值是。 2.如图,点C的坐标为(3,),当△ABC的周长最短时,求的值。 3.如图,正方形ABCD中,AB-7,M是DC上的一点,且DM-3,N是AC上的一

初中将军饮马问题题型总结(全)

初中涉及将军饮马问题题型总结 题型一:将军饮马之单动点 1. 三角形中的将军饮马 【真题链接1.】(2017?天津) 如图,在ABC ?中,AB AC =,AD 、CE 是ABC ?的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( ) A .BC B .CE C .AD D .AC 【解析】 解:如图连接PC , AB AC =,BD CD =, AD BC ∴⊥, PB PC ∴=, PB PE PC PE ∴+=+, PE PC CE +, P ∴、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度,故选:B . B B

【真题链接2.】(2020?天津一模) 如图,ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( ) A .1 B .2 C D . 【解析】 解:如图, 连接BE 交AD 于点P ', ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点, AD ∴、BE 分别是等边三角形ABC 边BC 、AC 的垂直平分线, P B P C ∴'=', P E P C P E P B BE '+'='+'=, 根据两点之间线段最短, 点P 在点P '时,PE PC +有最小值,最小值即为BE 的长. BE == 所以P E P C '+' 故选:C . B B

【真题链接3.】(2019秋?东至县期末) 如图,在ABC ?中,AB AC =,4BC =,面积是16,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ?周长的最小值为( ) A .6 B .8 C .10 D .12 【解析】解:连接AD ,AM . ABC ?是等腰三角形,点D 是BC 边的中点, AD BC ∴⊥, 11 41622 ABC S BC AD AD ?∴= =??=,解得8AD =, EF 是线段AC 的垂直平分线, ∴点C 关于直线EF 的对称点为点A , MA MC ∴=, AD AM MD +, AD ∴的长为CM MD +的最小值, CDM ∴?的周长最短11 ()84821022 CM MD CD AD BC =++=+ =+?=+=. 故选:C . A A

八年级数学将军饮马问题专题练习汇总(20200708010955)

八年级数学将军饮马问题专题练习汇总 1.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为_________。 2.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________。 3.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=7,BC=8。点P是AB上一个动点,则PC+PD的最小值为_________。 4.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,求EM+BM的最小值_____。 5.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______。 6.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1。如果B为反比例函

数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上存在一点P,使PA+PB最小,则P点坐标为_______。 7.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜 相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm. 拓展①:一定点、一动点到直线上一动点组成的线段距离和最短问题 如图,在锐角三角形ABC中,AB=6,∠BAC=60°。∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 _________。 拓展②:一定点与两条直线上两动点组成的三角形周长和最短问题 如图,∠AOB=45°,角内有点P,PO=10,在角的两边上有两点 Q,R(均不同于O点),则△PQR的周长的最小值为 _________。 拓展③:一定点与两条直线上两动点组成的三角形周长和最短问题 在BC,CD上 如图,在四边形ABCD中,∠BAD=120°, ∠B=∠D=90°, 分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ ANM=_______°

将军饮马问题地11个模型及例题

将军饮马问题 问题概述 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 方法原理 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 基本模型 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

2018年数学中考专题复习—— 将军饮马

l A l B A B' l l B A l P 第六章 将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点 模型 作法 结论 当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA+PB 最小。 连接AB 交直线l 于点P ,点P 即为所求作的点。 PA+ PB 的最小。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA+PB 最小。 作点B 关于直线l 的对称点B ′,连接AB ′交直线于点P ,点P 即为所求作的点。 PA+PB 的最小值为AB ′。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA PB -最大。 连接AB 并延长交直线l 于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB 。

l l A P E D C B A A 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA PB -最大。 作点B 关于直线l 的对称点B ′,连接AB ′并延长交直线于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB ′。 模型实例 例1.如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角 线AC 上有一点P ,则PD+PE 的最小值为 。 例2.如图,已知△ABC 为等腰直角三角形,AC=BC=4,∠BCD=15°,P 为CD 上的动点,则PA PB -的最大值是多少?

中考数学压轴题专题复习:将军饮马问题----两线段和最小值专题讲解训练

将军饮马问题----两线段和最小值专题讲解训练知识链接 几何中最值问题的解题思路 轴对称最值图形 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN为直线l 上的一条动线段,求AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值 转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重合,然后 作其中一个定点关于定直线l的对称点 作其中一个定点关于定直线 l的对称点 折叠最值图形 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 例题精讲 例、如图,直线y=kx+b交x轴于点A(-1,0),交y轴于点B(0,4),过A、B两点的抛物线交x 轴于另一点C. (1)直线的解析式为_______; (2)在该抛物线的对称轴上有一点动P,连接PA、PB,若测得PA+PB的最小值为5,求此抛物线的解析式及点P的坐标; (3)在(2)条件下,在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

题型强化 1、在平面直角坐标系中,已知 2 12 y x bx c (b 、c 为常数)的顶点为 P ,等腰直角三角形ABC 的顶点A 的 坐标为(0,﹣1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过 A 、 B 两点,求抛物线的解析式. (2)平移(1)中的抛物线,使顶点P 在直线AC 上并沿AC 方向滑动距离为 2时,试证明:平移后的抛物线与 直线AC 交于x 轴上的同一点.(3)在(2)的情况下,若沿 AC 方向任意滑动时,设抛物线与直线AC 的另一交点为 Q ,取BC 的中点N ,试探究 NP+BQ 是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.

初中数学:将军饮马问题习题

将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 当两定点A、 B 在直线l 异侧时,在直线l 上找一点P,使PA+PB最小。连接AB交直线l 于点P,点P即为所求作的点。 当两定点A、B在直线l 同侧时,在直线l 上找一点P,使PA+PB最小。 A B l 当两定点A、B在直线l 同侧时,在直线l 上找一点 P,使PA PB 最大。 A 作点 B 关于直 线l 的 对称点 B′,连 接AB′ 交直线 于点 P,点P 即为所 求作的 点。 连接AB并延长交直线l 于点P,点P 即为所求作的点。 模型 1 定直线与两定点 模型 A l 作法结论 PA+ PB 的最 小。 PA+PB 的最小 值为AB′。 PA PB 的最大 值为AB。

l B 当两定点A、B在直线l 同侧时,在直线l 上找一点P,使PA PB 最大。 作点B关于直线l 的对称点B′,连接AB′并延长交直线于点P,点P 即为所求作的点。 PA PB 的最 大值为AB′。B

模型实例 例 1.如图,正方形 ABCD 的面积是 12,△ ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,则 PD+PE 的最小值为 。 例 2.如图,已知△ ABC 为等腰直角三角形, AC=BC=,4 ∠ BCD=15°, P 为 CD 上的动点,则 PA PB 的最大值是多少? 热搜精练 1.如图,在△ ABC 中, AC=BC=,2 ∠ ACB-90°, D 是 BC 边的中点, E 是 AB 边 上一动点,则 EC+ED 的最小值是 。 D C B

相关文档