文档库 最新最全的文档下载
当前位置:文档库 › 求条件极值的新方法

求条件极值的新方法

求条件极值的新方法
求条件极值的新方法

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

拉格朗日条件极值

拉格朗日乘子法的简单证明(不知道对不对) 应用例题:已知有一个体积为a 的铁块。把这个铁块打造成一个长方体,求其表面积s 的极小值。 解:依据题意有如下关系式 )1(a xyz = )2()(2222z y x s ++= 构造函数M 如下: )3()()(2),,,(222a xyz c z y x c z y x M -+++= 只要求M 函数的极值,即为s 的极值。 )4(04=+=??cyz x x M )5(04=+=??cxz y y M )6(04=+=??cxy z z M )7(0=-=??a xyz c M 以上四个方程可解出四个未知数x ,y ,z ,c 。将(7)带入(4),(5),(6)后得: )8(4442 22z y x ac ===- 可得: )9(431 a z y x ac ====- )01(431 -a c -= 此时,面积s 为: )9(632a s = 证明过程:拉格朗日乘子法,拉格朗日条件极值。 已知,自变量x 和y 符合关系式(1),求表达式(2)的极值。 )1(0),(==y x F z )2(),(y x f )3(?)(y =x 解:若可以从(1)式中求出y 的表达式(3),则可以把(3)式带入(2)式。此时,就变成求单个自变量的函数极值问题,即为(4)式。 )4(0))(,())(,(=+=dx dy x y x f x y x f dx dz y x 对(1)进行全微分,可得(5)式,进而得到(6)式。 )6()5(0 ),(Y x y x F F dx dy dy F dx F y x dF -==+= 将(6)式带入(4)式可得(7)式。 )7(0))(,())(,())(,())(,(=-=-=x y y x y x y x F F x y x f x y x f F F x y x f x y x f dx dz )8(),() ,(y x F y x f y y -=λ

极值的第二充分条件

极值存在的第二充分条件是bai当一阶du导数等于0,而二阶导数大于0时,zhi为极小值点。当一阶导数等于dao0,而二阶导数小于0时,为极大值点。 具体证明过程如下。 证明: 因为对于函数y=f(x)。 设f(x)一阶可导,且y'=f'(x),二阶可导,且y''=f''(x)。且当x=x0时,f'(x0)=0。 那么当f''(x0)>0时, 而f''(x0)=lim(x→x0?)(f'(x)-f'(x0))/(x-x0)=f''(x0)=lim(x→x0?)(f'(x)-f'(x0))/(x-x0)>0。 当x→x0?时,x-x0<0,那么f'(x)-f'(x0)<0,即f'(x)<0。 当x→x0?时,x-x0>0,那么f'(x)-f'(x0)>0,即f'(x)>0。 那么可得x>x0时,f'(x)<0,则函数f(x)为减函数,x<x0时,f'(x)>0,则函数f(x)为增函数,所以可得f(x)在x=x0处取得极小值。 同理可证明函数y=f(x),当x=x0时,f'(x0)=0,f''(x0)<0时,f(x)在x=x0处取得极大值。 扩展资料: 1、二阶导数的性质

(1)判断函数极大值以及极小值。 结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。 (2)函数凹凸性。 设f(x)在[ab]上连续,在(ab)内具有一阶和二阶导数,那么, 若在(ab)内f''(x)>0则f(x)在[ab]上的图形是凹的。 若在(ab)内f’‘(x)<0则f(x)在[ab]上的图形是凸的。 2、二阶导数的几何意义 如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

导数练习题及答案:函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

多元函数极值的充分条件

多元函数极值的充分条件 马丽君 (集宁师范学院 数学系) 我们知道,一元函数()y f x =在点0x x =取得极值的充分条件是:函数()f x 在点0x 处具有一阶二阶连续导数,0x 是()f x 驻点,即0()0f x '=。若 0()0(0)f x ''><,则0x 为()f x 的极小值点(或极大值 点) 对于多元函数() Y f X =,其中 12(,,,)n X x x x =,有与上面一元函数取得极值的充 分条件相对应的结论。 定义 1.设n 元函数()Y f X =,其中 12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则称12 ,,,T n f f f x x x ????? ?????? 为()f X 的梯度,记作gradf 。 引理 设n 元函数()f X ,其中 12(,,,)n X x x x =,对各自变量具有一阶连续偏导数, 则()f X 在点00 0012(,,,)n X x x x =取得极值的必要 条件 是 : 0112(),, ,0T n n X X f f f gradf X x x x ?=?????== ?????? 证明:引理成立是显然的,即极值点函数可导,则该点的偏导数等于零。 定义 2.设n 元函数()f X ,对各自变量具有二阶 连续偏导数,00 0012(,, ,)n X x x x =是()f X 的驻点, 现定义 ()f X 在点0X 处的矩阵为: 2220002 112122220002021 22222 0002 1 2 () ()()()() ()()()()()f N n n n f X f X f X X X X X X f X f X f X H X X X X X X f X f X f X X X X X X ?? ????? ?????? ??? ???? ? =??????? ??? ? ?? ???? ???????? 由 于 各 二 阶 偏 导 数 连 续 , 即 22(,1,2,,)i j j i f f i j n x x x x ??==????, 所以0()f H X 为实对称矩阵。 定理 设n 元函数()f X ,其中 12(,,,)n X x x x =,具有对各自变量的二阶连续偏导 数,00 0012(,, ,)n X x x x =是()f X 的驻点,则 (1) 当 0() f H X 正 定 时 , 000012(,, ,)n X x x x =是()f X 的极小值 点; (2) 当 0() f H X 负定时, 000012(,, ,)n X x x x =是()f X 的极大值 点; (3) 当 0() f H X 不定时, 000012(,, ,)n X x x x =不是()f X 的极大 值点 证明:由()f X 在点0X 处的泰勒公式

考研数学高数资料—无条件极值

一份好的考研复习资料,会让你的复习力上加力。中公考研辅导老师为考生准备了【高等数学-无条件极值知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。 模块十四 多元函数微分学的应用 一、无条件极值 1、基本概念 设D 是二元函数(,)z f x y =的定义域,()000,P x y 是D 的内点,若存在0P 的邻域0()U P ,使得对任意异于0P 的点()0,()x y U P ∈均有()00,(,)f x y f x y <(或()00,(,)f x y f x y >),则称函数(,)z f x y =在点0P 处取得极大值(或极 小值),点0P 称为函数(,)z f x y =的极大值点(或极小值点),极大值点 与极小值点统称为极值点. 2、常用公式、定理 (1)极值的必要条件: 定理:设函数(,)z f x y =在00(,)x y 点具有偏导数,且在该点能够取到极值,则有0000(,)0,(,)0x y f x y f x y ''==. (2)极值的充分条件: 定理:设函数(,)z f x y =在00(,)x y 点的某邻域内具有连续的一阶及二阶偏导数,又设0000(,)0,(,)0x y f x y f x y ''==.令 (1)若20AC B ->,则函数(,)z f x y =在00(,)x y 点具有极值.当0A >时

取得极小值;当0A <时取得极大值. (2)若20AC B -<,则函数(,)z f x y =在00(,)x y 点不能取到极值. (3)若20AC B -=,则函数(,)z f x y =在00(,)x y 点可能有极值,也可能没有极值. 【例1】:设可微函数(,)u f x y =在点00(,)x y 取得极小值,则下列结论中正确的是(). ()A 0(,)f x y 在0y y =处的导数等于0 ()B 0(,)f x y 在0y y =处的导数大于0 ()C 0(,)f x y 在0y y =处的导数小于0 ()D 0(,)f x y 在0y y =处的导数不一定存在 答案:().A 【例2】:设函数(,)z f x y =的全微分为dz xdx ydy =+,则点(0,0). ()A 不是(,)z f x y =的连续点;()B 不是(,)z f x y =的极值点 ()C 是(,)z f x y =的极大值点;()D (,)z f x y =的极小值点 答案:().D 【例3】:计算下列函数的极值 (1)22(,)4()f x y x y x y =---;(2)222(,)(2).x f x y e x y y =++ 答案:(1)8 极大值;(2)1515e 极小值. 【例4】:求二元函数()22(,)2ln f x y x y y y =++的极值. 答案:1e -极小值. 【例5】:设函数()1cos y y z e x ye =+-,证明:函数(,)z f x y =有无穷多个极大值点,而无极小值点.

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

16-8.多元函数有极值的充分条件PPT

函数有极值的充分条件

定理(充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内连续,有二阶连续偏导数, 一、函数有极值的充分条件又 0),(00=y x f x , 0),(00=y x f y , 令 A y x f xx =),(00, B y x f xy =),(00, C y x f yy =),(00, 则),(y x f 在点),(00y x 处是否取得极值的条件如下: (1)02 >-B AC 时具有极值,当0A 时有极小值; (2)02 <-B AC 时没有极值; (3)02 =-B AC 时可能有极值,也可能没有极值,还需另作讨论.

例题 求由方程y x z y x 222 22+-++0104=--z 确定的函数),(y x f z =的极值 将方程两边分别对y x ,求偏导 ? ??='-+'?+='--'?+0422204222y y x x z z z y z z z x 由函数取极值的必要条件知,驻点为)1,1(-P ,将上方程组再分别对y x ,求偏导数, 解

,21|,0|,21|z z C z B z z A P yy P xy P xx -=''==''=-=''= 故 )2(0) 2(122≠<--=-z z AC B ,函数在P 有极值.将)1,1(-P 代入原方程,有6,221=-=z z , 当21-=z 时,04 1>=A ,所以2)1,1(-=-=f z 为极小值; 当62=z 时,04 1<-=A ,所以6)1,1(=-=f z 为极大值.

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

高等数学第18章第4节条件极值

第十八章 隐函数定理及其应用 §4条件极值 以往所讨论的极值问题,其极值点的搜索范围是目标函数的定义域,但是另外还有很多极值问题,其极值点的搜索范围还受到各自不同条件的限制. 例如 要设计一个容量为V 的长方形开口水箱,试问水箱的长?宽?高各等于多少时,其表面积最小?为此,设水箱的长?宽?高分别为z y x ,,,则表面积为 .)(2),,(xy yz xz z y x S ++= 依题意,上述表面积函数的自变量不仅要符合定义域的要求)0,0,0(>>>z y x ,而且还须满足条件 .V xyz = (1) 这类附有约束条件的极值问题称为条件极值问题. 结论1:条件极值问题的一般形式是在条件组................ )(,,2,1,0),,,(21n m m k x x x n k <== ? (2) 的限制下,求目标函数.......... ),,,(21n x x x f y = (.3.). 的极值..... ☆ 求条件极值的方法: 转化为无条件极值 1、 用消元法将条件极值化为无条件极值问题来求解 有时可以把条件极值问题化为无条件极值问题. 如上面的例子,由条件(1)解出 xy V z =,并代入函数),,(z y x S 中,得到 .)1 1(2), ,(),(xy x y V xy V y x S y x F ++== 然后按)0,0(),(=y x F F ,求出稳定点32V y x ==,并有3 22 1V z =.最后判定在此稳定点上取得最小面积3243V S =. 注. :1)在一般情形下要从条件组(2)中解出m 个变元并不总是可能的.下面我们介绍的拉格朗日乘数法就是一种不直接依赖消元而求解条件极值问题的有效方法 .

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

全国 卷第 题与极值点的第三充分条件

淘宝上博约书斋店铺的《高观点下函数导数压轴题的系统性解读》一书在第三章大学知识专门给了极值点2018全国3卷第21题与极值点的第三充分条件 例.(2018全国3卷第21题)已知函数()()()x x ax x x f 21ln 22-+++=(1)若0=a ,证明:当01<<-x 时,()0x 时,()0>x f ; (2)若0=x 是()x f 的极大值点,求a 分析:0=x 是()x f 的极大值点,能够推导出()00'=f ,很自然地应该思考:反过来成立吗?()3 x x f =是一个反例。研究数学重要的不是否定一个结论,而是能不能修正使得结论成立。若()00'=f 且()00''x f 时取极小值; 如果再追问如果二阶导数也为0呢?研究容易得到极值点的第三充分条件 定理2:若()x f 在0x x =处有n 阶导数,且()()()1,,2,1001-==-n k x f k ,()()00≠x f n ,则 (1)当n 是偶数时,()x f 在0x x =处取得极值,且当()()00x f n 时取极小值; (2)当n 是奇数时,()x f 在0x x =处不存在极值. 【解析】()()()21 21ln 21'2 -++++++=x ax x x ax x f ,()00'=f ;()()()+++=1ln 21''x ax x f ()()() 2211431ln 2212+++++=-+++x a ax x x a x ax x ,()00''=f ;()()()32311 662+++-+=x a x ax ax x f ,由()()03=x f 得6 1-=a .下证:当6 1-=a 时,0=x 是()x f 的极大值点.

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

最新高等数学(下)复习题(、6有答案)

高数(下)复习题(2016.6) 1 、已知两点1M ,2(1,3,0)M ,求向量12M M 与x ,y ,z 轴三个方向的方向余弦。 (1cos 2α=-,1 cos 2 β= ,cos γ=) 2、设三角形两邻边为23=-++a i j k ,=-+b j k ) 3、在空间直角坐标系中,方程组22 4z x y z ?=+?=?代表怎样的图形。 (4z =平面上以点(0,0,4)为圆心,2为半径的圆周) 4、设两平面062=-+-z ky x 与0642=-++z y x 相互垂直,求k 的值。(k =10) 5、求两直线 11141x y z -+==-与123221x y z ++-== -的夹角。(4 π) 6、(1)设()y x z x e =+,求(1,0)d z ;(2)设1 (,,)z x f x y z y ?? = ??? ,求(1,1,1)d f 。 解:(1)ln ln()y z x x e =+,1[ln()]y x y x z x e z x e =+++,(1,0)2ln 21x z ∴=+; 1()y x y y z x x e e -=+?,所以(1,0)1y z =,从而(1,0) d (2ln 21)d d z x y =++。 (2)1111z x x f z y y -?? =? ? ?? ,(1,1,1)1x f =;112 1()z y x x f z y y -??=?- ??? ,(1,1,1)1y f =-; 121 ln ()z z x x f y y z ??=?- ??? ,(1,1,1)0z f =,(1,1,1) d d d f x y ∴=-。 7、(1)已知方程22240x y z z ++-=,求 z x ??,z y ??; (2)求由方程ln z x z y =所确定的隐函数(,)z f x y =的全微分d z 。 解:(1)两边对x 求导,得2240x x x zz z +-=,所以2x x z z =-,同理2y y z z =-。 (2)设(,,)ln z F x y z x z y =-,则1x F =,y z F y =,ln 1z z F y =--,

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘 要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式 Multivariate function of several conditional extreme value solution Abstract This paper mainly discusses the multivariable function conditional extreme value problem solving, including the unconditional extreme value, conditional extreme value concept of multivariate function is introduced, and several methods of solving condition limit the wraparound, including direct generation into law, Lagrange multiplier method, methods of cauchy inequality, including Lagrange multiplier method also introduces the differential and second-order partial derivative namely Hesse matrix method, etc. This paper introduces the multivariable function about solving several methods of conditional extreme value, which can provide in solving the relevant question readers may be reference when, find the appropriate way to solve the problem. Meanwhile introducing method also has some deficiencies in its done, and further discussion. Key words Extreme; Lagrange multiplier method; Cauchy inequality

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式

1前言 函数极值问题已广泛地出现于数学、物理、化学等学科中,且它涉及的知识面非常广,所以就要求学生有较高的分析能力和逻辑推理能力,同时也要求学生掌握多种求函数极值的方法,因此对函数极值的研究是非常必要的。 函数极值的求解与发展极大的推动了微积分学科的发展,为其做出了重大贡献。 微积分的创立,首先是为了处理十七世纪的一系列主要的科学问题。有四种主要类型的科学问题:第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题的研究成为当务之急;第二类是,望远镜的光程设计使得求曲线的切线问题变得不可回避;第三类是,确定炮弹的最大射程以及求行星离开太阳的最远和最近距离等涉及的函数极大值、极小值问题也急待解决;第四类问题是求行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力等,又使面积、体积、曲线长、重心和引力等微积分基本问题的计算被重新研究。 同样在很多工程实际中,我们经常需要做一些优化。举个简单的例子,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是

相关文档