文档库 最新最全的文档下载
当前位置:文档库 › 12-文件系统参数和系统时间同步

12-文件系统参数和系统时间同步

12-文件系统参数和系统时间同步

1、aioservers

# chdev –l aio0 –a maxservers=’10*number of disks of asynchronously’

# chdev –l aio0 –a minservers=’maxservers/2’--node1

# chdev –l aio0 –a maxservers=’10*number of disks of asynchronously’

# chdev –l aio0 –a minservers=’maxservers/2’--node2

2、pagepool

# mmlsconfig

# mmchconfig pagepool=100M --node1

# mmlsconfig

# mmchconfig pagepool=100M --node2

3、在cluster节点上同步时间

# touch /etc/ntp.drift /etc/ntp.trace /etc/ntp.conf

# vi /etc/ntp.conf

# Sample NTP Configuration file

# Specify the IP Addresses of three clock server systems.

server 20.3.25.81

server 20.3.25.82

# Most of the routers are broadcasting NTP time information. If your

# router is broadcasting, then the following line enables xntpd

# to listen for broadcasts.

broadcastclient

# Write clock drift parameters to a file. This enables the system

# clock to quickly sychronize to the true time on restart.

driftfile /etc/ntp.drift

tracefile /etc/ntp.trace

# smit xntpd --Choose Start Using the xntpd Subsystem, then choose BOTH --node1、node2

时间同步系统在线监测可行性研究报告

附件4 甘肃电网智能调度技术支持系统 时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号:

年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5主要技术经济指标 1.6经济分析 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题 近期,电力系统时间同步装置在运行中发现的时钟异常跳变、时钟源切换策略不合理及电磁干扰环境下性能下降等问题,反映出电力系统时间同步在运行管理、技术性能、检验检测管理、在线监测手段及相关标准等方面仍需进一步完善和加强。

XP系统时间同步解决方案

XP系统时间同步不成功_Windows time服务无法启动解决 同步时间的服务器是:210.72.145.44 xp自带的时间同步服务器老是会连不上,而且时间还会差一秒。 这里就教大家换成中科院国家授时中心的服务器,同步就方便多了。 1.双击右下角的时间。 2.把服务器改成210.72.145.44 3.按同步就可以了,一般不会出错。即使是高峰时期,三次之内闭成功,比美国的服务器好多了。 另外系统默认的时间同步间隔只是7天,我们无法自由选择,使得这个功能在灵活性方面大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Nt pClient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 而这时在对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的,看明白了吧,如果您想让XP以多长时间自动对时,只要按这个公式算出具体的秒数,再填进去就好了。比如我填了3天,就是259200。 Windows time服务用于和Internet同步系统时间,如果时间无法同步有可能是服务没有随系统启动,可以在运行处输入"services.msc"打开服务控制台,找到"windows time"服务设置为自动并启动即可。 如果启动该服务时提示: 错误1058:无法启动服务,原因可能是已被禁用与其相关联的设备没有启动。 原因是windows time服务失效。 修复: 1.运行cmd 进入命令行,然后键入 w32tm /register 正确的响应为:W32Time 成功注册。 如果提示w32tm命令不内部或外部命令……,是因为系统盘下的system32目录不存在w32tm.exe和w32time.dll这两个文件,到网上下载一个或者到其他电脑复制过来放下这个目录下再运行 2.如果上一步正确,在cmd命令行或运行里用net start "windows time" 或net start w32time 启动服务。 如果无法启动Windows Time服务,同时提示:系统提示“错误1083:配置成在该可执行

分布式系统复习题及参考答案

关于分布式系统复习题与参考答案 一、填空题(每题n分,答错个扣分,全错全扣g,共计m分) 1.访问透明性是指对不同数据表示形式以及资源访问方式的隐藏。而位置透明是用户无法判别资源在系统中的物理位置。 2. 迁移透明性是指分布式系统中的资源移动不会影响该资源的访问方式。而复制透明是指对同一个资源存在多个副本的隐藏。 3. 一个开放的分布式系统就是根据一系列准则来提供服务,这些准则描述了所提供服务的语法和语义。 4. 集群计算系统一个突出的特征是它的同构性;它提供了最大限度的分布式透明性。可用于单个程序在多台计算机上并行地运行。 5. 网格计算系统具有高度的异构性:其硬件、操作系统、网络、管理域和安全策略等都不尽相同。 6. 网格计算系统一个关键问题是如何把来自不同计算机组织的资源集中起来,使一组人或机构进行协调工作。 7. 分布式事务处理的四个特性是:原子性、一致性、独立性和持久性。 8. 分布式普适系统应用程序的需求归纳为三种,它们是:接受上下文的变化、促使自主合成、认可共享为默认行为。 9. 分布式系统体系结构样式很多,其最重要的有:分层体系结构;基于对象的体系结构、以数据为中心的体系结构以及基于事件的体系结构等四类。 10. 客户/服务器结构的应用程序通常划分为三层,它们是:用户接口层、处理层和数据层。 11. 在结构化点对点体系结构中覆盖网络是用一个确定性的过程来构成的,这个使用最多的进程是通过一个分布式哈希表来组织进程的。 12. 超级对等体通常是维护一个索引或充当一个代理程序的结点。 13. 分布式软件体系结构主要分集中式、非集中式和各种混合形式三大类。其非集中式体系结构又分为结构化的点对点、非结构化的点对点、超级对等体三种。 14. 实现软件自适应的基本技术分为要点分离、计算映像和基于组件的设计三种类型。 15. 分布式的自主系统指的是自我管理、自我恢复、自我配置和自我优化等各种自适应性。 16. 一个线程独立地执行它自己的程序代码。线程系统一般只维护用来让多个线程共享CPU 所必需的最少量信息。 17. 有两种实现线程线程包的基本方法:一是可以构造一个完全在用户模式下执行的线程;二是由内核来掌管线程并进行调度。 18. 分布式系统中的多线程通常有:多线程用户和多线程服务器两大类型。而以分发器/工作者模型组织起来的多线程服务器是最为流行的一种。 19. 虚拟化可采用两种方法,一是构建一个运行时系统,提供一套抽象指令集来执行程序。二是提供虚拟机监视器。 20. 在服务器的组织结构中,迭代服务器是自己处理请求,将响应返回给客户;而并发服务器将请求传递给某个独立线程或其他进程来处理。 21. 服务器集群在逻辑上由三层组成,第一层是逻辑交换机;第二层是应用/计算服务;第三层是文件/数据库系统。 22. 在代码迁移的框架结构中,进程包含三个段,它们是代码段、资源段和执行段三个段。 23. 进程对资源的绑定有三种类型:一是按标识符绑定;二是按值绑定;三是按类型绑定。而三种类型的资源对机器的绑定是未连接资源、附着连接资源和紧固连接资源。 24. 中间件是一种应用程序,它在逻辑上

关于数据采集技术的内容

关键词:声卡数据采集MATLAB 信号处理 论文摘要:利用数据采集卡构建的数据采集系统一般价格昂贵且难以与实际需求完全匹配。声卡作为数据采集卡具有价格低廉、开发容易和系统灵活等优点。本文详细介绍了系统的开发背景,软件结构和特点,系统地分析了数据采集硬件和软件设计技术,在此基础上以声卡为数据采集卡,以MATLAB为开发平台设计了数据采集与分析系统。 本文介绍了MATLAB及其数据采集工具箱, 利用声卡的A/ D、D/ A 技术和MATLAB 的方便编程及可视化功能,提出了一种基于声卡的数据采集与分析方案,该方案具有实现简单、性价比和灵活度高的优点。用MATLAB 语言编制了相应软件,实现了该系统。该软件有着简洁的人机交互工作界面,操作方便,并且可以根据用户的需求进行功能扩充。最后给出了应用该系统采集数据的应用实例。 1绪论 1.1 课题背景 数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。数据采集,又称数据获取,就是将系统需要管理的所有对象的原始数据收集、归类、整理、录入到系统当中去。数据采集是机管理系统使用前的一个数据初始化过程。数据采集技术广泛引用在各个领域。比如摄像头,麦克风,都是数据采集工具。 数据采集(Data Acquisition)是将被测对象(外部世界、现场)的各种参量(可以是物理量,也可以是化学量、生物量等)通过各种传感元件作

适当转换后,再经信号调理、采样、量化、编码、传输等步骤,最后送到控制器进行数据处理或存储记录的过程。 被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据测量是数据采集的基础。数据测量方法有接触式和非接触式,检测元件多种多样。不论哪种方法和元件,都以不影响被测对象状态和测量环境为前提,以保证数据的正确性。数据采集含义很广,包括对连续物理量的采集。在计算机辅助制图、测图、设计中,对图形或图像数字化过程也可称为数据采集,此时被采集的是几何量数据。 在智能仪器、信号处理以及自动控制等领域,都存在着数据的测量与控制问题,常常需要对外部的温度、压力、流量、位移等模拟量进行采集。数据采集技术是一种流行且实用的技术。它广泛应用于信号检测、信号处理、仪器仪表等领域。近年来,随着数字化技术的不断,数据采集技术也呈现出速度更高、通道更多、数据量更大的发展态势。 数据采集系统是一种应用极为广泛的模拟量测量设备,其基本任务是把信号送入计算机或相应的信号处理系统,根据不同的需要进行相应的计算和处理。它将模拟量采集、转换成数字量后,再经过计算机处理得出所需的数据。同时,还可以用计算机将得到的数据进行储存、显示和打印,以实现对某些物理量的监视,其中一部分数据还将被用作生产过程中的反馈控制量。

计算机系统时间同步方案

关于同步210厂各计算机系统时间的方案目前我厂现场计算机包括生产管理计算机(含MES系统终端及ERP系统终端)、过程控制计算机(各二级服务器及终端)和基础自动化计算机(操作用HMI、FDA等),各系统的计算机均是使用自身BIOS时间作为系统时间,造成各电脑时间互异、各信息系统之间时间无法同步的情况;公司规定各系统时间同步原则为三级系统与ERP 系统时间同步、二级系统时间与三级系统时间同步、一级系统与二级系统时间同步;但是公司没有建设专门的时间服务器,且我厂一二级各系统之间互相独立,各系统之间时间同步存在很大的困难,为达到各系统之间时间同步的目的,特制定如下方案: 一、选择调度室计划用三级电脑作为我厂所有计算机系统的时间 服务器,设置该电脑时间与信息中心MES系统服务器时间自动同步,且设置系统以每小时一次的频率与信息中心MES系统服务器进行时间同步; 二、各三级计算机、ERP终端、二级服务器与我厂时间服务器进行 同步,频率为24小时; 三、各区域二级HMI电脑、一级电脑以相应区域的二级服务器为 依据进行时间同步,频率为24小时; 四、ERP系统、三级系统、二级系统的时间同步工作由设备管理室 负责,一级各电脑的时间同步工作由电气作业区负责,具体操作方式见附录《计算机系统时间同步设置操作说明》;

五、计算机系统时间的管理部门为设备管理室; 六、未经允许,禁止任务个人及部门对系统时间进行修改,违者进 行严肃考核,一经发现,考核100元/次; 设备管理室 2010-6-26

附录一: 计算机系统时间同步设置操作说明 若要使当前电脑与网络上IP为xxx.xxx.xxx.xxx的电脑时间同步,需要对当前电脑操作系统进行如下设置: 一、启动相关服务项 依次点击开始→控制面板→管理工具→服务,将Remote Procedure Call (RPC)服务、Remote Procedure Call (RPC) Locator服务、Windows Time服务启动,且将其启动类型设为自动;具体操作为:点击服务名称,右键选择属性,在启动类型下拉框中选择“自动”,确定。如图:

分布式系统中的时间问题

分布式操作系统中的时间问题 摘要 实践表明,分布式操作系统的同步问题常常比单处理器或者多处理器系统中的同步问题更加困难。本文从时间同步问题开始着手讨论,分析在分布式系统中同步问题的重要性以及如何在分布式系统中实现时间的同步。本文讨论的问题及其解决方式本质上是比较常见的并且出现在分布式操作系统的不同情况下。 关键词:分布式操作系统、同步、时间问题 Abstract The practice shows that the synchronization problems in distributed operating systems often more difficult than synchronous problem of single processor or multiprocessor system.This paper begins to discuss from the time synchronization problem,analysis of the importance of synchronization problems in distributed system and how to realize the time synchronization in distributed system.This paper discusses the problems and the solutions are relatively common and occur in different situations under the distributed operating system. Key Words: distributed operating systems、synchronization、timing issue

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

分布式系统中进程的同步方法

分布式系统中进程的同步方法 【摘要】在分布式操作系统中,为了实现进程的同步,首先要对系统中发生的事件进行排序,还要有良好的分布式同步算法。本文对分布式操作系统中的一些常见算法进行了分析,从而解析才能使进程在分布式操作系统中更加正确有效地协同工作。 【关键字】分布式操作系统,进程,同步,算法。 【Abstract】In the distributed operating system,in order to achieve the process of synchronization,First, you want to sort of events that occur in the system,but you also distributed synchronization algorithm.This article analyzes some common algorithms in the distributed operating system, to resolve to make the process more correctly and effectively work together in a distributed operating system. 【Key words】Distributed operating system, Process, Synchronous, Algorithm.

在分布式系统中,处于不同物理位置的若干进程通过传递消息相互通信,进行协同工作完成同一任务。工作过程中,进程产生了大量的事件和消息,这些事件和消息在时间上的先后顺序对工作正确有效的完成往往是有影响的。由于进程所处的物理位置不同带来的时钟差异如各地时钟值的差异和时钟运行精度的差异等)和网络传输延时等方面的原因,一个进程所看到的系统内事件和消息的先后顺序很可能与它们的实际顺序是不一致的,这样就带来了问题,如图1所示。 100 150 300 350 物理时间 图1 分布式进程通信示例 在一个先来先服务的分布式系统中,X地的进程Pi在时刻100时向Z滴的进程Pk发出了请求服务的消息Rq,并盖上了本地的时间戳130,随后Y地的进程Pj也向Pk发出了请求服务消息,并盖上了本地的时间戳120。Pj的消息在时刻300到达Pk,而Pi的消息在时刻350才到达Pk。这样,对Pk而言,不管到达的顺序还是按照时间戳的大小都应该先对Pj进行服务,这显然是不公平的。因此,在分布式系统中必须采取一定的同步机制来保证工作的顺利进行和结果正确。 进程同步大致有两种程度:一种是局部的松散同步,即事件和消息产生的逻辑顺序上简单同步;一种是全局的精确同步,即各进程的本地时钟基于现实世界物理时间标准同步。前一种同步能由Lamport算法和Ricart and Agrawla 算法等算法实现。在这种同步机制中,各进程利用逻辑时钟产生时间戳,能保证按序发送消息,同样接收进程也能按序接收。或者说,接受进程能按序从各个不同进程接收消息,而且从同一进程接收的消息也是顺序的。但这种同步仅仅保证了事件和消息的顺序一致性,而不能反映它们产生的真实时间,因为同步机制中所采用的时间戳只能看作是一个数字编号,并没有和物理时钟精确对应起来。这种同步机制在分布式系统的实际应用中有着很大的局限,因为很多现实的分

suse系统时间同步操作

s u s e系统时间同步操作 This model paper was revised by the Standardization Office on December 10, 2020

一、时区设置 使用utc还是local time. UTC(Universal Time Coordinated)=GMT(Greenwich Mean Time) Local time 是你手表上的时间 linux可以处理UTC时间和蹩脚的Windows所使用的local time 如果机器上同时安装有Linux和Windows,建议使用local time 如果机器上只安装有Linux,建议使用utc 确定后编辑/etc/sysconfig/clock, UTC=0 是local time; UTC=1 是UTC(GMT) 1)/etc/sysconfig/clock查看当前时区 HWCLOCK="-u" #与下面设置的时区对应 下面2项不用改#jvm/Nginx等程序取的时间才与date命令时间一致TIMEZONE="America/New_York" DEFAULT_TIMEZONE="US/Eastern" 2)使用tzselect设置时区(========好像对时间同步没有用) #/usr/bin/tzselect 逐步选择就ok

3)复制相应的时区文件,替换系统默认时区 # cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 或者 cp /usr/share/zoneinfo/Asia/Beijing /etc/localtime(====这个不能同步时间,不知原因) 4)java时区:java_opts增加 =GMT+8 二、时间同步 内网时间服务器: 1)服务器端配置/etc/ restrict restrict mask #有几种都配置上 restrict mask restrict mask restrict mask server #是时钟服务器 2)服务器端ntp服务启动(xntp / ntp) # /etc/ntpd start 3)客户端只做定时同步

基于GPS的控制系统时间同步

基于GPS 的控制系统时间同步 金刚平,徐欣圻 (中国科学院国家天文台南京天文光学新技术研究所,南京 210042) 摘 要:介绍如何利用G PS 接收器获取准确的UT C 时间,在分布式实时操作系统QNX 下,实现系统时间和UT C 的一致。同时讨论了如何建立网络时间服务器,通过执行网络时间 同步算法,实现局域网内不同计算机之间的时间同步。最后文章给出在具体应用中的实例。 关键词:G PS;QNX;时间服务器 中图分类号:TP311 文献标识码:A 文章编号:1000-2162(2002)04-0030-05 0 前 言 目前,G PS (G lobal P osition System )在导航和定位方面得到了广泛的应用,同时在授时领域,也开始利用G PS 来获取准确的UT C (C oordinated Universal T ime )时间。在国家九五重大科学工程LAMOST (Large Sky Area Multi -objects Fiber S pectroscopic T elescope )望远镜的控制系统中,为了实施精确跟踪天体目标,需要一个准确的UT C 时间。同时,处于控制系统局域网内部的其他计算机也需要和UT C 时间同步。因此,我们决定采用G PS 来构建时标系统,并利用网络通讯把得到的准确的UT C 时间发布到整个网络中,以实现整个控制系统时间同步[1]。 1 时间同步的必要性 建立时间服务器,实现网络内计算机之间时间同步的必要性在于: 数据分析:在网络应用中,我们从不同的网络节点计算机获取数据。通常在数据包里面,包含有数据到达的时间信号。但只有实现了网络内的时间同步,才可以利用时间戳来获取这些数据之间的关系。 对时间敏感的交易:在股票和货币类对时间比较敏感的交易中,这些活动经常发生在不同的城市,时间的准确性对交易的顺利进行影响很大。 网络安全:很多的局域网安全系统都是基于各个通讯终端的准确时间戳。有一些安全系统通过测试网络延迟来决定是否终止交易。 在实时控制领域:例如我们正在研制的国家重大科学工程项目LAMOST 控制系统便是典型一例,其分布式控制局域网内部的时间同步,对于实现精确的协调控制,其作用是不言而喻的。 收稿日期:2002-05-28 作者简介:金刚平(1975-),男,安徽桐城人,南京天文光学新技术研究所助理研究员,硕士; 徐欣圻(1944-),男,江苏无锡人,南京天文光学新技术研究所研究员,博士生导师. 2002年12月 第26卷第4期安徽大学学报(自然科学版)Journal of Anhui University Natural Science Edition December 2002V ol.26N o.4

基于STM及的通道同步数据采集系统设计

基于S T M及的通道同步数据采集系统设计 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

基于STM32及AD7606的16通道同步数据采集系统设计 摘要: 介绍了基于STM32及AD7606的同步数据采集系统的软硬件设计。主控芯片采用基于ARMCortex-M4内核的STM32F407IGT6,实现对AD采集数据的实时计算并通过以太网络进行数据传输。A7606为16位、8通道同步采样模数数据采集系统[],利用两片AD7606,可以实现对16路通道的实时同步采样。经过测试,该系统可以实现较高精度的实时数据采集。 0引言 [此处找书介绍STM32],该芯片主频可达168MHz,具有丰富的片内外设,并且与前代相比增加了浮点运算单元(FloatingPointUnit,FPU),使其可以满足数据采集系统中的 [介绍AD7606] 1系统总体方案设计 整个系统由传感器模块、信号调理模块、数据采集模块、处理器STM32、及通信模块及上位机系统组成。系统整体结构框图如图1所示。本系统是为液态金属电池性能测试设计,需要测量电池的充放电电压、电流以及交流加热系统的电压、电流,并以此计算出整个液态金属电池储能系统的效率。因此两片AD7606的16个通道分为两组,每组8个通道,这两组分别测量4路直流、交流的电压和电流信号。AD7606通过并行接口与STM32连接,STM32读取AD采样数据后进行计算,并将数据通过网络芯片DP83848通过UDP协议发送给上位机。上位机负责显示各通道采集信息、绘制波形以及保存数据等。 图1系统整体结构框图 2系统硬件设计 2.1模拟信号采集电路设计

linux系统时间与硬件时间的设置及同步

linux 的系统时间有时跟硬件时间是不同步的 Linux时钟分为系统时钟(System Clock)和硬件(Real Time Clock,简称RTC)时钟。系统时钟是指当前Linux Kernel 中的时钟,而硬件时钟则是主板上由电池供电的时钟,这个硬件时钟可以在BIOS中进行设置。当Linux启动时,硬件时钟会去读取系统时钟的设置,然后系统时钟就会独立于硬件运作。 Linux中的所有命令(包括函数)都是采用的系统时钟设置。在Linux中,用于时钟查看和设置的命令主要有date、hwclock和clock。其中,clock和hwclock用法相近,只用一个就行,只不过clock命令除了支持x86硬件体系外,还支持Alpha硬件体系。 1、date 查看系统时间 # date 设置系统时间 # date --set “07/07/06 10:19" (月/日/年时:分:秒) 2、hwclock/clock 查看硬件时间 # hwclock --show 或者# clock --show 设置硬件时间

# hwclock --set --date="07/07/06 10:19" (月/日/年时:分:秒) 或者# clock --set --date="07/07/06 10:19" (月/日/年时:分:秒) 3、硬件时间和系统时间的同步 按照前面的说法,重新启动系统,硬件时间会读取系统时间,实现同步,但是在不重新启动的时候,需要用hwclock或clock命令实现同步。 硬件时钟与系统时钟同步:# hwclock --hctosys(hc代表硬件时间,sys代表系统时间)或者# clock --hctosys 系统时钟和硬件时钟同步:# hwclock --systohc或者# clock --systohc

分布式数据采集系统中的时钟同步[图]

分布式数据采集系统中的时钟同步[图] 在高速数据传输的分布式数据采集系统中,各个组成单元间的时钟同步是保证系统正常工作的关键。由于系统工作于局域网,于是借鉴了IEEE1588时钟同步协议的原理,设计出简易、高效的时钟同步方案,并在基于局域网的分布式数据采集系统中实现微秒级的精确同步。鉴于方案的高可行性和高效性,可将其推广到其他分布式局域网系统中。 引言 随着网络技术的发展,各种分布式的网络和局域网都得到了广泛的应用[1]。分布式数据采集系统广泛应用于船舶、飞机等采集数据多、实时性要求较高的地方。同步采集是这类分布式数据采集系统的一个重要要求,数据采集的实时性、准确性和系统的高效性都要求系统能进行实时数据通信。因此,分布式数据采集系统中的一个关键技术就是实现数据的同步传输。由于产生时钟的晶振具有频率漂移的特性,故对于具有多个采集终端的分布式系统,如果仅仅在系统启动时进行一次同步,数据的同步传输将会随着系统运行时间的增长而失步。因此时钟的同步就是保证数据同步传输的关键所在。2002年提出的IEEE1588标准旨在解决网络的时钟同步问题。它制定了将分散在测量和控制系统内的分离节点上独立运行的时钟,同步到一个高精度和高准确度时钟上的协议。 由于分布式数据采集系统工作于局域网的环境中,于是借鉴IEEE1588标准中的思想,设计出一种针对基于局域网的分布式系统的时钟同步的机制,成功地在分布式数据采集系统中实现了μs级的同步。 1 时钟同步原理及实现 时钟同步原理借鉴了IEEE1588协议中的同步原理。IEEE1588 定义了一个在工业自动化系统中的精确同步时钟协议(PTP 协议),该协议与网络交流、本地计算和分配对象有关。IEEE1588 时钟协议规定,在进行时钟同步时,先由主设备通过多播形式发出时钟同步报文,所有与主设备在同一个域中的设备都将收到该同步报文。从设备收到同步报文后,根据同步报文中的时间戳和主时钟到从时钟的线路延时计算出与主时钟的偏差,对本地的时钟进行调整[2]。 系统由各个单元的系统控制板(简称“系统板”)来完成同步的工作。同步模型与IEEE1588时钟协议一致,采用主从结构。主从单元采用相同频率的晶振,此时时钟同步的关键就是解决时钟相位对准问题和时钟漂移的问题。 系统中采用的时间同步算法,是借鉴IEEE1588的同步原理,主要是采用约定固定周期同步的算法。和IEEE1588同步算法一样,同步过程分为两个阶段: 延迟测量阶段和偏移测量阶段。下面以一主一从模式为例介绍其原理。 1.1 延迟测量 延迟测量阶段用来测量网络传输造成的延迟时间[3]。定义一个延迟请求信息包(Delay Request Packet) ,简称“Delay_Req”。延迟测量示意图。 图1 延迟测量示意图 为了简化程序,采用固定的周期测量网络延迟,一般系统每工作一个小时进行一次测量。从属时钟TSd 时刻发出延迟请求信息包Delay_Req ,主时钟收到Delay_ Req 后再立刻返回一个延时响应包delay_back发送给从属时钟,因此从属时钟就可以非常准确地计算出网络延时: TM2 →TS2∶Delay1 = TS2-Offset-TM2 TS3 →TM3∶Delay2 = TM3-(TS3 - Offset) 其中的Offset为从时钟与主时钟之间的时间偏差。 因为网络延迟时间是对称相等的,所以: Delay =(Delay1 + Delay2)/2=((TS2-TM2)+(TM3-TS3))/2 需要说明的是,在这个测量过程中,假设传输介质是对称均匀的,且线路是对称的[4]。

同步数据采集系统的设计

Yibin University 基于TMS320F2812同步数据采集系统的设计 专业:电子信息科学与技术 学生姓名:王蓟 学生学号: 120302007 院系:物理与电子工程学院 年级、班: 2012级励志班 指导教师:文良华 2015年6月20日

摘要 为了实现高速同步数据采集,本文介绍了一种基于TMS320F2812 DSP芯片与AD转换芯片ADS8365构成的高速、并行高精度数据采集系统,主要内容包括两种芯片功能的介绍、硬件接口电路的设计及相关软件设计等。 关键词:TMS320F2812;ADS8365;数据采集;同步采样

Abstract To implement high-speed simultaneous data collection,this paper designed a hig h-speed,high-precision simultaneous data acquisition system,which is built based on two main modules:TMS320F2812 DSP chip of TI and AD converter of ADS8365.The d esign of hardware interface circuits and related software,the introduce of these two c hips etc. are described in this paper. Key words:TMS320F2812;ADS8365;data acquisition;simultaneous sample

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

域控的系统时间无法与北京时间同步的解决方案

域控的系统时间无法与北京时间同步的解决方案 某日, XX同事跑过来说, 我的XP的时间怎么不对啊, 比手机慢了3分钟, 我信誓旦旦的说, 这个与域控服务同步的, 没有问题, 肯定是你的手机时间错啦! ---但是既然有同事提醒, 我打开北京时间的官网一比对, 那个时候的汗那...确实慢了3分钟, 我想, DC也可能不对, 立马VNC, 哇靠, 确实如此! 查看DC注册表, 我现在的时间, 应该是跟服务器CMOS的硬件同步, 查阅MS-KB, 此方案通过同步外部时间服务器(推荐:https://www.wendangku.net/doc/d817740208.html,)来解决此问题并实现LAN内唯一特许经营时间提供商(世博专供). 以下转自Microsoft, 版权归属MS.由任何疑问, 请电联800. https://www.wendangku.net/doc/d817740208.html,/kb/816042/zh-cn 配置Windows 时间服务以使用外部时间源 要将内部时间服务器配置为与外部时间源同步,请按照下列步骤操作: 1. 将服务器类型更改为NTP。为此,请按照下列步骤操作: a. 单击“开始”,单击“运行”,键入regedit,然后单击“确定”。 b. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Parameters\Type c. 在右窗格中,右键单击“Type”,然后单击“修改”。 d. 在“编辑值”的“数值数据”框中键入NTP,然后单击“确定”。 2. 将AnnounceFlags设置为5。为此,请按照下列步骤操作: . 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\AnnounceFlags a. 在右窗格中,右键单击“AnnounceFlags”,然后单击“修改”。 b. 在“编辑DWORD 值”的“数值数据”框中键入5,然后单击“确定”。 3. 启用NTPServer。为此,请按照下列步骤操作: . 找到并单击下面的注册表子项:

基于STM32及AD7606的16通道同步数据采集系统设计

基于STM32及AD7606的16通道同步数据采集系统设计 摘要: 介绍了基于STM32及AD7606的同步数据采集系统的软硬件设计。主控芯片采用基于ARM Cortex-M4内核的STM32F407IGT6,实现对AD 采集数据的实时计算并通过以太网络进行数据传输。A7606为16位、8通道同步采样模数数据采集系统[],利用两片AD7606,可以实现对16路通道的实时同步采样。经过测试,该系统可以实现较高精度的实时数据采集。 0 引言 [此处找书介绍STM32],该芯片主频可达168MHz,具有丰富的片内外设,并且与前代相比增加了浮点运算单元(Floating Point Unit,FPU),使其可以满足数据采集系统中的 [介绍AD7606] 1 系统总体方案设计 整个系统由传感器模块、信号调理模块、数据采集模块、处理器STM32、及通信模块及上位机系统组成。系统整体结构框图如图1所示。本系统是为液态金属电池性能测试设计,需要测量电池的充放电电压、电流以及交流加热系统的电压、电流,并以此计算出整个液态金属电池储能系统的效率。因此两片AD7606的16个通道分为两组,每组8个通道,这两组分别测量4路直流、交流的电压和电流信号。AD7606通过并行接口与STM32连接,STM32读取AD 采样数据后进行计算,并将数据通过网络芯片DP83848通过UDP 协议发送给上位机。上位机负责显示各通道采集信息、绘制波形以及保存数据等。 STM32F407IGT6 霍尔直流传感器 上位机软件DP83848 直流信号 交流信号 交流互感器 调理电路 调理电路 AD7606 AD7606 图1 系统整体结构框图 2 系统硬件设计 2.1 模拟信号采集电路设计 模拟信号的采集包含直流电压、电流,交流电压、电流四部分。直流信号的采集分别使用霍尔电压传感器HNV025A 和霍尔电流传感器HNC100B ,两种传感器的电路原理图类似,仅以霍尔电压传感器电路原理图为例说明,如图2-1所示。HNV025A 为电流型霍尔电压传感器,可以提高信号的抗干扰能力,其输入输出电流比为10mA/25mA 。因此在图中被测电压经过电阻R1转换为电流信号,传感器输出的电流信号经过R2变为电压信号。R3和C1组成一阶低通滤波器进行滤波。

智能变电站时间同步系统

智能变电站时间同步系统 摘要随着智能电网的全面发展,并实现电网的信息化、数字化、自动化、互动化,网络智能接点的正常工作和作用的发挥,离不开统一的时间基准。 【关键词】时间同步智能变电站 时间同步系统为我国电网各级调度机构、发电厂、变电站、集控中心等提供统一的时间基准,以满足各种系统和设备对时间同步的要求,?_保实时数据采集时间一致性,提高线路故障测距、相量和功角动态监测、机组和电网参数校验的准确性,从而提高电网事故分析和稳定控制水平,提高电网运行效率和可靠性。 1 时间的基本概念 时间是物理学的一个基本参量,也是物资存在的基本形式之一,是所谓空间坐标的第四维。时间表示物资运行的连续性和事件发生的次序和久暂。与长度、质量、温度等其他物理量相比,时间最大的特点是不可能保存恒定不变。“时间”包含了间隔和时刻两个概念。前者描述物资运动的久暂;后者描述物资运动在某一瞬间对应于绝对时间坐标的读数,也就是描述物资运动在某一瞬间到时间坐标原点之间的距离。

2 时钟配置方案及特点 智能变电站宜采用主备式时间同步系统,由两台主时钟、多台从时钟、信号传输介质组成,为被授时设备、系统对时。主时钟采用双重花配置,支持北斗二代系统和GPS标准授时信号,优先采用北斗二代系统,主时钟对从时钟授时,从时钟为被授时设备、系统授时。时间同步景点和授时精度满足站内所以设备的对时精度要求。站控层设备宜采用SNIP对时方式,间隔层和过程层设备采用直流IRIG-B码对时方式,条件具备时也可以采用IEEE1588网络对时。 在智能变电站中,时间装置的技术特点及主要指标如下:(1)多时钟信号源输入无缝切换功能。具备信号输入 仲裁机制,在信号切换时IPPS输出稳定在0.2 us以内。 (2)异常输入信息防误功能。在外界输入信号收到干 扰时,仍然能准确输出时间信息。 (3)高精度授时、授时性能。时间同步准确度优于1us,秒脉冲抖动小于0.1us,授时性能优于1us/h。 (4)从时钟延时补偿功能。弥补传输介质对秒脉冲的 延迟影响。 (5)提供高精度可靠的IEEE1588时钟源。 (6)支持DL/T860建模及MMS组网。 (7)丰富的对时方式,配置灵活。支持RS232、RS485、空触点、光纤、网络等多种对时方式。

相关文档
相关文档 最新文档