文档库 最新最全的文档下载
当前位置:文档库 › 三角形的角平分线夹角规律探索

三角形的角平分线夹角规律探索

三角形的角平分线夹角规律探索

三角形内外角平分线所形成的夹角规律探索

如图1,△ABC 中,BO 、CO 是角平分线,则∠BOC 与∠A 的关系是:________________

如图2,若BO 为内角∠ABC 的平分线,CO 为外角∠ACD 的平分线,则∠BOC 与∠A 之间的关系是__________________________.

如图3,若BO 、CO 分别为外角∠DBC 和∠BCE 的平分线,则∠BOC 与∠A 之间的关系是___________________________________.

E

D

A

D

C B

A

C

B A

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

三角形外角定理.doc

北师大版八上第七章第五节 《三角形内角和定理2》 教学设计 郑州市第七十五中学郑红莉

《三角形内角和定理2》教学设计 郑州市第七十五中学郑红莉 一课标要求 掌握三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,证明三角形任意两边之和大于第三边。 二基于对教材的理解 本节课是北师大版八年级上册第七章第五节《三角形内角和定理》第2 课时的内容,学生在前一节课中已经学习了三角形内角和定理的证明和应用,因此本节课是对三角形知识学习的延伸,主要涉及三角形的外角定义,三角形两个外角定理及应用,同时进一步熟悉和掌握证明的步骤、格式、方法、技巧。 三基于对考试要求的分析 能利用三角形内角和定理推论进行角度计算和角度数量关系证明。 四基于对学情的分析 1、学生已有知识基础。 学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。 2、已有的活动经验 具备一定的学习能力,包括自学和交流,具备有条理的思考分析和表达能力,思维正逐步由具体走向抽象,当然依然倾向于通过形象

的材料来理解相关知识和概念。 3、学习本节可能出现的难点 学生仅具备初步的利用定理推理证明的能力,但如何证明几何中的不等关系可能存在困难,另外证明的方法、技巧有待提高。 4、学生座次表 A C A C A B B D B D B D A C A C A C B D B D B D A C A C A C 前后四人为一组,A 为组长,每一组课堂表现有积分累计 B D B D B D AB 层通过预习能描述判断三角形外角,并能推理证明三角形外角有关定理及进行有关应用, CD层通过自学及与同桌交流能说出三角形 外角定义,并能结合图形会描述三角形外角的两个定理及简单的应用。五学习目标 1.通过视频引入活动一,会判断和作出三角形的外角; 2.通过猜想、同桌交流,能描述有关三角形外角的两个定理及推理验证过程; 3.通过小组合作,会运用三角形内角和定理的两个推论解决相关问题 【学习重点】三角形有关外角的两个定理的应用 【学习难点】会用三角形的内角和定理的两个推论解决几何证明和几

角平分线定理

2 1O E D A B C 第十一讲 角平分线定理 【学习目标】 1、掌握角平分线的定理和逆定理。 2、能应用角平分线定理和逆定理进行作图和证明。 3、进一步掌握推理证明的方法,拓发展演绎推理能力,培养思维能力。 【知识要点】 1、 角平分线性质定理的证明及应用。 定理:角平分线上的点到这个角的两边的距离相等。 定理解释:“点到这个角边的距离”实际上就是“点到这角两边所作垂线段的长度”,定理即表明这两条垂线段相等。 2、 角平分线的性质定理的逆定理的证明以及应用。 逆定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 3、 定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 4、用尺规作角的平分线: 【典型例题】 例1、 如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O ,且∠1 =∠2。 求证:OB = OC 。 例2、已知,如图,CE ⊥AB ,BD ⊥AC ,∠B =∠C ,BF =CF 。求证:AF 为∠BAC 的平分线。

例3、如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A )的距离为300米.请用量角器和刻度尺在图中标出工厂的位置. 例4、如右图,E 、D 分别是AB 、AC 上的一点,∠EBC 、∠BCD 的角平分线交于点M ,∠BE D 、∠EDC 的角平分线交于N . 求证:A 、M 、N 在一条直线上. 证明:过点N 作NF ⊥AB ,NH ⊥ED ,NK ⊥AC ,过点M 作MJ ⊥BC ,MP ⊥AB ,MQ ⊥AC ∵EN 平分∠BED ,DN 平分∠EDC ∴NF __________NH ,NH __________NK ∴NF __________NK ∴N 在∠A 的平分线上 又∵BM 平分∠ABC ,CM 平分∠ACB ∴__________=__________,__________=__________ ∴__________=__________ ∴M 在∠A 的__________上 ∴M 、N 都在∠A 的__________上 ∴A 、M 、N 在一条直线上 例5、如图1,OC 平分∠A O B ,P 是OC 上一点,D 是OA 上一点,E 是OB 上一点,且PD =PE ,求证:∠+∠=?P D O P E O 180。

角平分线定理在几何证明题中的妙用

角平分线定理在几何证明题中的妙用 颜庆波 利用角平分线的有关定理,我们不但可以用尺规作图的方法将角二、四、八、…等分,而且还可以利用它们简捷地证明几何问题。 例1 如图1,OC平分∠A O B,P是OC上一点,D是OA上一点,E是OB上一点,且PD=PE,求证:∠+ 1 O 8 0。 D E P ∠=? O P 例2 如图2,在?A B C中,∠B A C的平分线与BC边的垂直平分线相交于点P。过点P作AB、AC(或延长线)的垂线,垂足分别是M、N。求证:BM=CN。

初二数学几何证明难题 例3:已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) A F G C E B O D

例4:已知:如图,P是正方形ABCD内点,∠PAD=∠PDA =o 15.求证:△PBC是正三角形. 例5:已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.

求证:∠DEN=∠F. 例6:如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)

例7:如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二) 例8:设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)E

例9:已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数.

角平分线定理专题

1.如图,2是/ DE = DG* △ ADG*U A AED 的而枳分别为 35,见I △ EDF 的而积为( ) 2 - A ?25 B ? 5.5 C ? 7.5 2?如图f 是ZAOB 平分线OC 上一点f D 丄OB,垂足为D, 若PD=2M 点P 到边OA 的距离是 3?如图,AABC 的三边AB,BC,CA 长分别是20,30,40,M 三条角平分线将Z\ABC 分为 三个三角形,则 S. .ABO : S A BCO : S/.CAO ,: .r \ ' _______________ ? 4. (2016?怀化)如图,OP 为Z AOB 的角平分线,PC 丄OA, PD 丄OB,垂足分别是C, D,则下 列结论错误的是() 4 PC=PD B ? ZCPD=Z DOP C ? ZCPO = Z DPO D ? OC = OD 5. (2016?淮安)如图,在PtAABC 中,ZC=90°,以顶点A 为圆心,适当长为半径画弧,分 别交AC, AB 于点M, N,再分别以点M, N 为圆心,大于扌MN 的长为半径画弧,两弧交于 点P ,作射线AP 交边BC 于点D,若CD=4, AB = 15,则厶ABD 的面积是( 6. 如图,AABC 中,ZC=90°, AD 平分Z BAC 交BC 于点D ?已知BD : CD = 3 : 2,点D 到 AB 的距禽是6,则BC 的长是 _________ 7. 如图所示,已知AABC 的周长是20, OB, OC 分别平分Z ABC 和Z ACB, OD 丄BC 于点D, 且OD = 3,贝U ABC 的面积是. _______ 之定理专题(基础题) B.2 C. 4 1 5 B. 30 C ? 45 D ? 60 () 為DF 丄AB ,垂足为& A D. B D B O A D H

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

(名师整理)最新中考数学专题复习《角平分线定理》精品教案

中考数学人教版专题复习:角平分线定理 考点考纲要求分值考向预测 角平分 定理 1. 理解并掌握角平线定义、角 平分线定理及逆定理; 2. 应用定理解决问题。 3~5 分 本类问题主要考查填空、选 择题,内容以角平分线定理 为主,难度不大,各省市题 量也不多,但要注意在综合 性问题中应用这一知识点。 1. 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 2. 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【重要提示】 ①三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 1

②三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等(即内心)。 3. 角平分线定理:角平分线上的点到这个角的两边的距离相等。(利用全等三角形进行证明ASA) 4. 角平分线定理的逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 【方法指导】 1. 三角形的三条内角平分线交于一点,并且到三条边的距离相等。有时候做三角形面积问题时经常使用。 2. 当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路。 3. 有角平分线考虑向角两边作垂线。 4. 三角形中有时候从内角平分线作垂线,有时候作外角平分线,注意区分。 【随堂练习】 如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线。若CD=3,则△ABD的面积为。 2

答案:解:作DE⊥AB于E。∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3。∴△ABD的面积为1 ×3×10=15。故答案是15。 2 思路分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高AB于E。根据角平分线的性质求得DE的长,即可求解。 即可,需作DE⊥ 典例精析 例题1 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是() D. 5 A. 3 B. 4 C. 6 思路分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可。 3

三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明 一、定理 三角形内角平分线分对边为两部分与两邻边成比例. 二、证明 已知:如图,2∠1∠=. 求证: BC AC BD AD =. 方法一:利用平行线作等比代换. 证明:作DE//BC ,DE 交AC 于点E ,则EC AE BD AD =.3∠2∠=,BC AC DE AE = 又2∠1∠=,∴3∠1∠=,于是DE=EC. ∴BC AC DE AE BD AD == 方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换. 如图,作BE//DC ,BE 交AC 的延长线于点E ,则CE AC BD AD =,E ∠1∠=,3∠2∠=.

又2∠1∠=,得E ∠3∠=,于是 BC=CE , 则BC AC BD AD =. 方法三:进行逆推分析,若在AC 的延长线上作一个CE=BC ,则只要BE//DC. 延长AC 到点E ,使CE=BC ,连接BE ,则)(E ∠3∠21 3∠+=.又∠ACB 2 12∠=, ∠E ∠3∠+=ACB ,∴3∠2∠=,于是 BE//DC. 则CE AC BD AD ==BC AC . 证法4:如图20.改变△ADC 的一个内角的大小,把它改造为△AEC ,使之与△BDC 相似并作等量代换. 第一种情况:当BC AC ≠ 时,不妨设BC AC >,B CAB ∠∠<,以AC 为一边,在CAB ∠的同侧,作B CAE ∠∠=,AE 与CD 的延长线交于点E.又2∠1∠=,∴△ACE ∽△BCD. 则BC BD AC AE =,而E CA E B ∠∠-1∠-180∠-2∠-1804∠3∠=°=°==. ∴AE=AD ,于是 BC BD AC AD =,即BC AC BD AD =.

角平分线的性质定理教案

角平分线的性质定理教案 慧光中学:王晓艳 教学目标:(1)掌握角平分线的性质定理; (2)能够运用性质定理证明两条线段相等; 教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线定理的应用; 教学方法:引导学生发现、探索、研究问题,归纳结论的方法 教学过程: 一,新课引入: 1.通过复习线段垂直平分线的性质定理引出角平分线上的点具有什么样的特点 操作:(1)画一个角的平分线; (2)在这条平分线上任取一点P,画出P点到角两边的距离。 (3)说出这两段距离的关系并思考如何证明。 2.定理的获得: A、学生用文字语言叙述出命题的内容,写出已知,求证并给予证明, 得出此命题是真命题,从而得到定理,并写出相应的符号语言。 B、分析此定理的作用:证明两条线段相等; 应用定理所具备的前提条件是:有角的平分线,有垂直距离。 3.定理的应用 二.例题讲解: 例1:已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F。 求证:PE=PF (此题已知中有垂直,缺乏角平分线这个条件)

例2:已知:如图,⊙O与∠MAN的边AM交于点B、C,与边AN交于点 E、F, 圆心O在∠MAN的角平分线AQ上。 求证:BC=EF (此题已知中有角平分线,缺乏垂直这个条件) 三:课堂小结: ①应用角平分线的性质定理所具备的前提条件是:有角的平分线,有垂 直距离; ②若图中有角平分线,,可尝试添加辅助线的方法:向角的两边引垂线段.四:巩固练习 1.已知:如图,△ABC中,D是BC上一点,BD=CD,∠1=∠2求证:AB=AC 分析:此题看起来简单,其实不然。题中虽然有三个条件(∠1= ∠2;BD=CD,AD=AD),但无法证明△ABD ≌△ACD,所以必须添加一些线帮助解题。

八年级数学上册第12章角平分线定理使用中的几种辅助线作法(人教版)

角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 例题、如图所示,在△ABC 中,∠ABC=3∠C,AD 是∠BAC 的平分线,BE⊥AD 于F 。 求证:1 ()2 BE AC AB =- 证明:延长BE 交AC 于点F 。 因为角是轴对称图形,对称轴是角的平分线所在的直线, 所以AD 为∠BAC 的对称轴, 又因为BE⊥AD 于Fs , 所以点B 和点F 关于AD 对称, 所以BE=FE= 1 2 BF ,AB=AF ,∠ABF=∠AFB。 因为∠ABF+∠FBC=∠ABC=3∠C, ∠ABF=∠AFB=∠FBC+∠C, 所以∠FBC+∠C+∠FBC=3∠C, 所以∠FBC=∠C,所以FB=FC , 所以BE= 12FC=12(AC -AF )=1 2(AC -AB ), 所以1 ()2 BE AC AB =-。 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 如图所示,∠1=∠2,P 为BN 上的一点,并且PD⊥BC 于D ,AB +BC=2BD 。 求证:∠BAP+∠BCP=180°。 证明:经过点P 作PE⊥AB 于点E 。 因为PE⊥AB,PD⊥BC,∠1=∠2, 所以PE=PD 。 在Rt△PBE 和Rt△PBC 中 BP BP PE PD =?? =? 所以Rt△PBE≌Rt△PBC(HL ), 2 1F E D C B A N P E D C B A

所以BE=BD 。 因为AB +BC=2BD ,BC=CD +BD ,AB=BE -AE , 所以AE=CD 。 因为PE⊥AB,PD⊥BC, 所以∠PEB=∠PDB=90°. 在△PAE 和Rt△PCD 中 PE PD PEB PDC AE DC =?? ∠=∠??=? 所以△PAE≌Rt△PCD, 所以∠PCB=∠EAP。 因为∠BAP+∠EAP=180°, 所以∠BAP+∠BCP=180°。 三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段 例题、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠2 证明:过点P 作PE⊥AB 于点E ,PG⊥AC 于点G ,PF⊥BC 于点F . 因为P 在∠EBC 的平分线上,PE⊥AB,PH⊥BC, 所以PE=PF 。 同理可证PF=PG 。 所以PG=PE , 又PE⊥AB,PG⊥AC, 所以PA 是∠BAC 的平分线, 所以∠1=∠2。 2 1P F E C B A

三角形内外角平分线定理上课讲义

三角形内外角平分线 定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 ABC AD BAC AB BD AC CD ∠=在中,若为的平分线,则:

求证: BA/AC=BD/DC 证明2:过D作DE⊥AB于E,DF⊥AC于F; ∵∠BAD=∠CAD;(已知) ∴ DE=DF; ∵ BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比) BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD是△ABC中∠BAC的外角∠CAF的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD的平行线。 证明1:过C作CE∥DA与BA交于E。则: BA/AE=BD/DC ∵∠DAF=∠CEA;(两线平行,同位角相等) ∠DAC=∠ECA;(两线平行,内错角相等) ∠DAF=∠DAC;(已知) ∴∠CEA=∠ECA;(等量代换) ∴ AE=AC; ∴ BA/AC=BD/DC 。

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

第二节角平分线定理

第二节角平分线定理 【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求A D·DC的值。(2001年全国竞赛题)

【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。 对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分 ∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀 请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2 211n m n m =,从而得到21x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。

三角形外角的定理教案

第2课时三角形外角的定理 【学习目标】 1.了解三角形的外角定义,掌握三角形外角的两个定理. 2.能综合运用三角形内角和定理及外角的两个定理进行几何证明与计算. 【学习重点】 三角形外角的性质定理. 【学习难点】 运用三角形外角性质定理进行有关计算时能准确地推理. 学习行为提示:每组抽一位学生上黑板做,其余学生在座位上完成,组长检查每组完成情况,最后老师给每组评分. 学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.情景导入生成问题 旧知回顾: 1在△ABC中,若∠A+∠B=∠C,则△ABC的形状是直角三角形. 2.一个三角形的三个内角中,至少有(B) A.一个锐角B.两个锐角C.一个钝角D.一个直角 3.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为(C) A.50°B.55°C.60°D.65° 自学互研生成能力 知识模块一三角形外角的定理

先阅读教材第181页例2上面的内容,然后完成下面的问题: △ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的外角. 学习行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分. 展示目标:通过知识模块一的展示掌握证明三角形外角定理的方法;通过对知识模块二的展示,总结运用三角形外角的定理进行几何证明和计算的一般方法和步骤.问题1你能在图中画出△ABC的其他外角吗?∠1与其他角有什么关系?能证明你的结论吗? 【说明】结合图形,学生通过观察、思考、讨论等一系列活动,既巩固了对概念的理解,又让学生进行证明,培养了学生的推理论证能力. 【归纳结论】三角形内角和定理的推论:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角. 知识模块二运用三角形外角的定理进行证明 你能运用所学的知识解决下面的问题吗? 问题2(1)已知:在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC. 第(1)题图第(2)题图 (2)已知如图,P是△ABC内一点,连接PB、PC.求证:∠BPC>∠A.

解三角形的角平分线问题(最新版)

解三角形专题------角平分线与三角形4心 秒杀秘籍一:张角定理 在△ABC 中,D 为BC 边上的一点,连接AD ,设βα=∠=∠CAD BAD ,,则一定有 AB AC AD β αβαsin sin )sin(+ =+,(证明:等积法) 【例1】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,△ABC=120°,BD△BC 交AC 于点D ,且BD=1,则2a +c 的最小值为 . 【例2】在在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知点D 在BC 边上,AD△AC ,sin△BAC= 3 2 2,AB=23,AD=3,则CD 的长为 【例3】(2015年全国课标卷II )在△ABC 中,D 是BC 上的点,AD 平分△BAC ,△ABD 的面积是△ACD 面积的2倍.(1)求 C B sin sin 的值;(2)若22,1==DC AD ,求BD 和AC 的长. 秒杀秘籍二:角平分线张角定理,当βα=时, ①)(21cos c AD b AD +=α(角平分线张角定理) ②ααtan sin )(2 1 2AD c b AD S ABC ≥+=?(角平分线面积) 证明: ααα ααααtan sin 2sin 2sin sin )(21sin )11(212sin 21?? ==≥+=+?== S AD S AD bc AD c b AD AD c b bc bc S 【例4】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,b cosC=a ,点M 在线段AB 上,且△ACM=△BCM ,若b=6CM=6,则cos△BCM=( )4 6. 4 7. 4 3. 4 10 . D C B A 【例5】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3 2π =∠ABC ,△ABC 的平分线交AC 于点D ,BD=1,则a +c 的最小值为 . 【例6】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,32π =∠ABC ,BD 平分△ABC 交AC 于点D ,BD=2,则△ABC 的面积的最小值为( )36.3 5.3 4.33.D C B A 秒杀秘籍3:角平分线之斯库顿定理 如图,AD 是△ABC 的角平分线,则DC BD AC AB AD ?-?=2 .就其位置关系而言:中方=上积-下积 求证:AC AB DC BD AD ?=?+2

角平分线定理专题

角平分线定理专题(基础题) 1. 如图,AD 是 的角平分线, ,垂足为F , , 和 的面积分别为60和35,则 的面积为 A. 25 B. C. D. 2.如图,P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD=2,则点P 到边OA 的距离是 A.1 B.2 C. D.4 3.如图,△ABC 的三边AB,BC,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BCO ∶S △CAO 等于________. 4.(2016·怀化)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是( ) A .PC =PD B .∠CPD =∠DOP C .∠CPO =∠DPO D .OC =OD 5.(2016·淮安)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于1 2MN 的长为半径画弧,两弧 交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 6.如图,△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D.已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是______ 7.如图所示,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,则△ABC 的面积是. ______

三角形内外角平分线定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ∠DAC=∠ECA ;(两线平行,内错角相等) ∠DAF=∠DAC ;(已知) ∴ ∠CEA=∠ECA ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

角平分线定理

【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求AD·DC的值。(2001年全国竞赛题) 【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。

对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且 EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2211n m n m =,从而得到2 1x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。 【说明】三角形角平分线的性质为比例关系的转化提供了新的方法,从而开阔了解题思路,另外在证明几何题时,还应注意合比、等比性质的应用。 本题是由线段成比例证明两条直线平行的,这是证两条直线平行的新方法,对于题设

三角形内外角平分线定理

三角形内外角平分线定 理 -CAL-FENGHAI.-(YICAI)-Company One1

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

角平分线定理的多种证明方法

三角形内角平分线定理的多种证明方法 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 证明:方法一:(面积法) 三角形ABM面积S=(1/2)*AB*AM*sin∠BAM, 三角形ACM面积S=(1/2)*AC*AM*sin∠CAM, 所以三角形ABM面积S:三角形ACM面积S=AB:AC 又三角形ABM和三角形ACM是等高三角形,面积的比等于底的比, 即三角形ABM面积S:三角形ACM面积S=BM:CM 所以AB/AC=MB/MC 方法二(相似形) 过C作CN平行于AB交AM的延长线于N 三角形ABM相似三角形NCM, AB/NC=BM/CM, 又可证明∠CAN=∠ANC 所以AC=CN,所以AB/AC=MB/MC 方法三(相似形) 过M作MN平行于AB交AC于N 三角形ABC相似三角形NMC, AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN 所以AN=MN,所以AB/AC=AN/NC 所以AB/AC=MB/MC 方法四(正弦定理) 作三角形的外接圆,AM交圆于D, 由正弦定理,得, AB/sin∠BMA=BM/sin∠BAM, AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180 sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, 所以AB/AC=MB/MC 阅读下面材料,按要求完成后面作业。 三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

已知:△ABC中,AD是角平分线(如图1),求证:=。 分析:要证=,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似,现在B、D、C在一条直线,△ABD与△ADC不相似,需要考虑用别的方法换比。 在比例式=中,AC恰好是BD、DC、AB的第四比例项, 所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、DC、AB的 第四比例项AE,这样,证明=,就可转化证=。 (1)完成证明过程: 证明: (2)上述证明过程中,用到了哪些定理(写对两个即可) 答:用了:①____________;②_____________。 (3)在上述分析和你的证明过程中,主要用到了下列三种数学思想的哪一种:①数形结合思想②转化思想③分类讨论思想答:____________。 (4)用三角形内角平分线定理解答问题: 如图2,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BD=7cm,求BC之长。 (1)证明:过点C作CE//AD交BA的延长线于点E, 则∠E=∠BAD=∠DAC=∠ECA,所以AE=AC,由CE//AD, 可得=,∴=。 (2)两直线平行,同位角相等;等腰三角形的判定;三角形相似的判定的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

相关文档
相关文档 最新文档