文档库 最新最全的文档下载
当前位置:文档库 › 自动化专业英语论文

自动化专业英语论文

自动化专业英语论文
自动化专业英语论文

The Single-chip Microcomputers

Abstract: nowadays, almost nobody are not familiar with the computer. Exactly, people’s life will not continue without the computer. Now, the computer is more and more likely to be used in an automatic system design to imit ate human being’s brain. This essay will introduce something about Single-chip Microcomputers.

Keywords: SCM, semiconductor, computer

1.the history of the SCM

Modern computer technology, industrial revolution, the world economy from the capital into the economy to knowledge economy. Field in the electronic world, from the 20th century into the era of radio to computer technology in the 21st century as the center of the intelligent modern era of electronic systems. The basic core of modern electronic systems are embedded computer systems (referred to as embedded systems), while the microcontroller is the most typical and most extensive and most popular embedded systems.

Fifties and sixties in the 20th century, the most representative of the advanced electronic technology is wireless technology, including radio broadcasting, radio, wireless communications (telegraph), Amateur Radio, radio positioning, navigation and other telemetry, remote control, remote technology. The early radio technology to promote the development of electronic technology, most notably electronic vacuum tube technology to semiconductor electronic technology. The development of semiconductor technology lead to the production of integrated circuit, forming the modern electronic technology leap from discrete electronics into the era of era of integrated circuits. Semiconductor integrated circuits in the basic digital logic circuits first breakthrough. A large number of digital logic circuits, such as gates, counters, timers, shift registers, and analog switches, comparators, etc., for the electronic digital control provides excellent conditions for the traditional mechanical control to electronic control. Power electronic devices and sensor technology to make the original to the radio as the center of electronic technology turned to mechanical engineering in the field of digital control systems, testing in the field of information collection, movement of electrical mechanical servo drive control object.

Semiconductor and integrated circuit technology will bring us a universal age of electronic technology, wireless technology as the field of electronic technology a part of. 70 years into the 20th century, large scale integrated circuit appeared to promote the conventional electronic circuit unit-specific electronic systems development.

Now comes the embedded systems,and the Single-chip Microcomputer or MCU is a typical. If you meet the massive data-processing computer system known as general-purpose computer system, then the system can be the embedded

object (such as ships, aircraft, motorcycles, etc.) in a computer system called the embedded computer. Embedded system is primarily a computer system, followed by it being embedded into the object system, objects in the object system to achieve required data collection, processing, status display, the output control functions, as embedded in the object system, embedded system computer does not have an independent form and function of the computer. SCM is entirely in accordance with the requirements of embedded system design, so SCM is the most typical embedded systems. SCM is the early application of technical requirements in accordance with the design of embedded computer chip integration, hence the name single chip. Subsequently, the MCU embedded applications to meet the growing demands of its control functions and peripheral interface functions, in particular, highlight the control function, so has international name the single chip microcontroller (MCU, Microcontroller Unit).

2.About common single chip

STC microcontroller STC's mainly based on the 8051 microcontroller core is a new generation of enhanced MCU, the instruction code is fully compatible with the traditional 8051, 8 to 12 times faster, with ADC, 4 Road, PWM, dual serial ports, a global unique ID, encryption of good, strong anti-interference. PIC Microcontroller: MICROCHIP's products is its prominent feature is a small, low power consumption, reduced instruction set, interference, reliability, strong analog interface, the code of confidentiality is good, most of the chip has its compatibleFLASH program memory chips. EMC SCM: Elan's products in Taiwan, with much of the PIC 8-bit microcontroller compatible, and compatible products, resources, compared to the PIC's more, cheap, there are many series of options, but less interference. ATMEL microcontroller (MCU 51): ATMEl company's 8-bit microcontroller with AT89, AT90 two series, AT89 series is the 8-bit Flash microcontroller 8051 is compatible with the static clock mode; AT90 RISC MCU is to enhance the structure, all static methods of work, containing the line can be Flash MCU programming, also known A VR microcontroller. PHLIPIS 51PLC Microcontroller (MCU 51): PHILIPS company's MCU is based on the 80C51 microcontroller core, embedded power-down detection, simulation and on-chip RC oscillator and other functions, which makes 51LPC in highly integrated, low cost, low power design to meet various applications performance requirements. HOLTEK SCM: Sheng Yang, Taiwan Semiconductor's single chip, cheap more categories, but less interference for consumer products. TI company microcontroller (MCU 51):

Texas Instruments MSP430 provides the TMS370 and two series of general-purpose microcontroller. TMS370 MCU is the 8-bit CMOS MCU with a variety of storage mode, a variety of external interface mode, suitable for real-time control of complex situations; MSP430 MCU is a low power, high functionality integrated 16-bit low-power microcontroller, especially for applications that require low power consumption occasions Taiwan Sonix's

single, mostly 8-bit machines, some with PIC 8-bit microcontroller compatible, cheap, the system clock frequency may be more options there PMW ADC internal noise filtering within the vibration. Shortcomings RAM space is too small, better anti-interference.

3. Fundamentals of Single-chip Microcomputers

In contrast to general-purpose CPUs, microcontrollers do not have an address bus or a data bus, because they integrate all the RAM and non-volatile memory on the same chip as the CPU. Because they need fewer pins, the chip can be placed in a much smaller, cheaper package.Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but often results in decreased net cost of the embedded system as a whole. (Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU + external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board). This trend leads to design.A microcontroller is a single integrated circuit, commonly with the following features:central processing unit - ranging from small and simple 4-bit processors to sophisticated 32- or 64-bit processors input/output interfaces such as serial ports (UARTs) other serial communications interfaces like I2C, Serial Peripheral Interface and Controller Area Network for system interconnect peripherals such as timers and watchdog RAM for data storage ROM, EPROM, EEPROM or Flash memory for program storage clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit many include analog-to-digital converters. This integration drastically reduces the number of chips and the amount of wiring and PCB space that would be needed to produce equivalent systems using separate chips and have proved to be highly popular in embedded systems since their introduction in the 1970s.

参考文献:《自动化专业英语》王宏文PART3 UINT4 Fundamentals of Single-chip Microcomputer

胡寿松,等.自动控制原理[M].北京:科学出版社,2008

《51单片机入门与提高》郭天祥

丁往道,等.英语写作手册[M].北京:外语教学与研究出版社,1994

《THE AUTOMATION》The microcomputer

电气专业英语论文

Page1 Electrical Energy Transmission(电能输送) From reference 1 Growing populations and industrializing countries create huge needs for electrical energy. Unfortunately, electricity is not always used in the same place that it is produced, meaning long-distance transmission lines and distribution systems are necessary. But transmitting electricity over distance and via networks involves energy loss. So, with growing demand comes the need to minimize this loss to achieve two main goals: reduce resource consumption while delivering more power to users. Reducing consumption can be done in at least two ways: deliver electrical energy more efficiently and change consumer habits. Transmission and distribution of electrical energy require cables and power transformers, which create three types of energy loss: the Joule effect, where energy is lost as heat in the conductor (a copper wire, for example); magnetic losses, where energy dissipates into a magnetic field; the dielectric effect, where energy is absorbed in the insulating material. The Joule effect in transmission cables accounts for losses of about 2.5 % while the losses in transformers range between 1 % and 2 % (depending on the type and ratings of the transformer). So, saving just 1 % on the electrical energy produced by a power plant of 1 000 megawatts means transmitting 10 MW more to consumers, which is far from negligible: with the same energy we can supply 1 000 - 2 000 more homes. Changing consumer habits involves awareness-raising programmers, often undertaken by governments or activist groups. Simple things, such as turning off lights in unoccupied rooms, or switching off the television at night (not just putting it into standby mode), or setting tasks such as laundry for non-peak hours are but a few examples among the myriad of possibilities. On the energy production side, building more efficient transmission and

机械类英语论文及翻译翻译

High-speed milling High-speed machining is an advanced manufacturing technology, different from the traditional processing methods. The spindle speed, cutting feed rate, cutting a small amount of units within the time of removal of material has increased three to six times. With high efficiency, high precision and high quality surface as the basic characteristics of the automobile industry, aerospace, mold manufacturing and instrumentation industry, such as access to a wide range of applications, has made significant economic benefits, is the contemporary importance of advanced manufacturing technology. For a long time, people die on the processing has been using a grinding or milling EDM (EDM) processing, grinding, polishing methods. Although the high hardness of the EDM machine parts, but the lower the productivity of its application is limited. With the development of high-speed processing technology, used to replace high-speed cutting, grinding and polishing process to die processing has become possible. To shorten the processing cycle, processing and reliable quality assurance, lower processing costs. 1 One of the advantages of high-speed machining High-speed machining as a die-efficient manufacturing, high-quality, low power consumption in an advanced manufacturing technology. In conventional machining in a series of problems has plagued by high-speed machining of the application have been resolved. 1.1 Increase productivity High-speed cutting of the spindle speed, feed rate compared withtraditional machining, in the nature of the leap, the metal removal rate increased 30 percent to 40 percent, cutting force reduced by 30 percent, the cutting tool life increased by 70% . Hardened parts can be processed, a fixture in many parts to be completed rough, semi-finishing and fine, and all other processes, the complex can reach parts of the surface quality requirements, thus increasing the processing productivity and competitiveness of products in the market. 1.2 Improve processing accuracy and surface quality High-speed machines generally have high rigidity and precision, and other characteristics, processing, cutting the depth of small, fast and feed, cutting force low, the workpiece to reduce heat distortion, and high precision machining, surface roughness small. Milling will be no high-speed processing and milling marks the surface so that the parts greatly enhance the quality of the surface. Processing Aluminum when up Ra0.40.6um, pieces of steel processing at up to Ra0.2 ~ 0.4um.

《土木工程专业英语》段兵延第二版全书文章翻译精编版

第一课 土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。他们建造供水和废水处理厂,设计空气净化器和其他设备以最小化甚至消除由工业加工、焚化及其他产烟生产活动引起的空气污染。他们也采用建造特殊倾倒地点或使用有毒有害物中和剂的措施来控制有毒有害废弃物。此外,工程师还对垃圾掩埋进行设计和管理以预防其对周围环境造成污染。

微电子专业英语

微电子学专业词汇 A be absorb in 集中精力做某事 access control list 访问控制表 active attack 主动攻击 activeX control ActiveX控件 advanced encryption standard AES,高级加密标准 algorithm 算法 alteration of message 改变消息 application level attack 应用层攻击 argument 变量 asymmetric key cryptography 非对称密钥加密 attribute certificate属性证书 authentication 鉴别 authority 机构 availability 可用性 Abrupt junction 突变结 Accelerated testing 加速实验 Acceptor 受主 Acceptor atom 受主原子 Accumulation 积累、堆积 Accumulating contact 积累接触 Accumulation region 积累区 Accumulation layer 积累层 Active region 有源区 Active component 有源元 Active device 有源器件 Activation 激活 Activation energy 激活能 Active region 有源(放大)区 Admittance 导纳 Allowed band 允带 Alloy-junction device 合金结器件 Aluminum(Aluminium) 铝 Aluminum – oxide 铝氧化物 Aluminum passivation 铝钝化 Ambipolar 双极的 Ambient temperature 环境温度 Amorphous 无定形的,非晶体的 Amplifier 功放扩音器放大器Analogue(Analog) comparator 模拟比较器 Angstrom 埃 Anneal 退火

电气毕业论文英语文献原文 翻译

外文翻译院(系) 专业班级 姓名 学号 指导教师 年月日

Programmable designed for electro-pneumatic systems controller John F.Wakerly This project deals with the study of electro-pneumatic systems and the programmable controller that provides an effective and easy way to control the sequence of the pneumatic actuators movement and the states of pneumatic system. The project of a specific controller for pneumatic applications join the study of automation design and the control processing of pneumatic systems with the electronic design based on microcontrollers to implement the resources of the controller. 1. Introduction The automation systems that use electro-pneumatic technology are formed mainly by three kinds of elements: actuators or motors, sensors or buttons and control elements like valves. Nowadays, most of the control elements used to execute the logic of the system were substituted by the Programmable Logic Controller (PLC). Sensors and switches are plugged as inputs and the direct control valves for the actuators are plugged as outputs. An internal program executes all the logic necessary to the sequence of the movements, simulates other components like counter, timer and control the status of the system. With the use of the PLC, the project wins agility, because it is possible to create and simulate the system as many times as needed. Therefore, time can be saved, risk of mistakes reduced and complexity can be increased using the same elements. A conventional PLC, that is possible to find on the market from many companies, offers many resources to control not only pneumatic systems, but all kinds of system that uses electrical components. The PLC can be very versatile and robust to be applied in many kinds of application in the industry or even security system and automation of buildings.

(完整word版)机械专业英语文章中英文对照

英语原文 NUMERICAL CONTROL Numerical control(N/C)is a form of programmable automation in which the processing equipment is controlled by means of numbers, letters, and other symbols, The numbers, letters, and symbols are coded in an appropriate format to define a program of instructions for a particular work part or job. When the job changes, the program of instructions is changed. The capability to change the program is what makes N/C suitable for low-and medium-volume production. It is much easier to write programs than to make major alterations of the processing equipment. There are two basic types of numerically controlled machine tools:point—to—point and continuous—path(also called contouring).Point—to—point machines use unsynchronized motors, with the result that the position of the machining head Can be assured only upon completion of a movement, or while only one motor is running. Machines of this type are principally used for straight—line cuts or for drilling or boring. The N/C system consists of the following components:data input, the tape reader with the control unit, feedback devices, and the metal—cutting machine tool or other type of N/C equipment. Data input, also called “man—to—control link”,may be provided to the machine tool manually, or entirely by automatic means. Manual methods when used as the sole source of input data are restricted to a relatively small number of inputs. Examples of manually operated devices are keyboard dials, pushbuttons, switches, or thumbwheel selectors. These are located on a console near the machine. Dials ale analog devices usually connected to a syn-chro-type resolver or potentiometer. In most cases, pushbuttons, switches, and other similar types of selectors are digital input devices. Manual input requires that the operator set the controls for each operation. It is a slow and tedious process and is seldom justified except in elementary machining applications or in special cases. In practically all cases, information is automatically supplied to the control unit and the machine tool by cards, punched tapes, or by magnetic tape. Eight—channel punched paper tape is the most commonly used form of data input for conventional N/C systems. The coded instructions on the tape consist of sections of punched holes called blocks. Each block represents a machine function, a machining operation, or a combination of the two. The entire N/C program on a tape is made up of an accumulation of these successive data blocks. Programs resulting in long tapes all wound on reels like motion-picture film. Programs on relatively short tapes may be continuously repeated by joining the two ends of the tape to form a loop. Once installed, the tape is used again and again without further handling. In this case, the operator simply loads and

土木工程专业英语论文.doc

Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword: Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and

电子信息专业英语复习资料

电子信息专业英语复习资料 一、基本术语(英译汉) 1.probe探针 2.real time operational system 实时操作系统 3.debugger 调试器 4.sourse code 源代码 5.software radio wireless LAN 软件无线电网络 6.base station 基站 7.top-down approach 自顶向下分析法 8.variable 变量 9.data compress 数据压缩 10.signal conditioning circuit 信号调理电路 11.Chebyshev Type Ⅰfilter 切比雪夫Ⅰ型滤波器 12.vertical resolution 垂直分辨率 13.device driver 设备驱动 https://www.wendangku.net/doc/de17993357.html,piler 编译器 15.template 模板 16.concurrent process 并发进程 17.object recognition 目标识别 18.Discrete Time Fourier Transform 离散傅立叶变换 https://www.wendangku.net/doc/de17993357.html,bined circuit 组合逻辑电路 20.impedance transform 阻抗变换器 21.voltage source 电压源22.passive component 无源器件 23.quality factor 品质因数 24.unit-impulse response 单位脉冲响应 25.noise origin 噪声源 26.Domino effect 多米诺效应 27.output load 输出负载 28.cordless phone 无绳电话 29.Antenna 天线 30.harmonic interference 谐波干涉 31.Parallel Resonant 并联谐振 32.voltage control oscillator 压控振荡器 33.adaptive delta modulation 自适应增量调制 34.amplitude modulation 调幅 二、缩略语(写出全称) 1.LSI:large scale integration 2.PMOS :p-type metal-oxide semiconductor 3.CT:cycle threshold 4.MRI:magnetic resonance imaging 5.ROM:read-only memory 6.DRAM :dynamic random access memory 7.TCXO :temperature compensated X'tal (crystal) Oscillator https://www.wendangku.net/doc/de17993357.html,B:Universal Serial Bus 9.DCT:discrete cosine transform

机械类英语文章

What is Hydraulic? A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, no parts and hydraulic oil. The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump. Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement. Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve. Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars. Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories. Hydraulic principle It consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called "hydraulic press"; the said oil-filled "hydraulic machine." Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI,Can be the same size in all directions to the transmission of liquid. "By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel. History of the development of hydraulic

电子电气类专业英语单词汇总

课一A Communications 通讯 1. equation n.相等, 平衡, 综合体, 2. communication n. 通信, 通讯, 交通communicate v.沟通, 通信, 3. triode n.三极管 4. storage n. 存储 5.transmission n. 传输, 传送, transmit v. 传输, 转送, 传达, 传导 6. amplifier n.放大器,扩音器 amplify v. 扩大,放大,增强amplification n. 扩大,放大 7. oscillator n.振荡器 8. correlate v. 是相互关联 correlation n.相互关系, 相关(性) 9. transmitter n.发射机 transmit receive transmission reception (发射) (接收) 10.subsequent adj.随后的 课一B Capacitors 电容 1.capacitor n. 电容器 2.capacitance n. 电容量(值) Resistor resistance capacitor capacitance inductor inductance 3. fixed adj. 固定的 variable adj. 可变的 4. dielectric n. 电介质,绝缘材料 adj. 绝缘的 5. relatively adv. 相对地 absolutely adv.绝对地 6. maximum adj. 最大的 n. 最大值 minimum adj. 最小的 n. 最小值 7. farad n. 法(拉) F ohm n. 欧姆Ω Henry n. 亨(利)H 8. trimmer n. 调整者, 整理者, 9. screwdriver n. 螺丝起子,改锥课二A Radio T ransmitter无线电发射机 1. radio transmitter 无线电发射机 radio n. 无线电,无线 2. telecommunication n.电信,电信学, 无线电通信 telephone n.电话,电话机 telegraph n.电报, 电报机, 电讯报 3. transmit v. 传输, 转送, 传达, 传导, 发射, 发报 transmit receive transmission reception transmitter receiv er (发射) (接收) 4. intelligence n.信息、情报、智能 information/message n.信息 5. potential adj.潜在的, 可能的, 势 的, n.潜能, 潜力, 电位 6. generate v.产生,发生 generation n.产生, 发生, 一代,7. frequency n.频 low frequency 几个Hz到几十kHz high frequency 几个MHz到几十 MHz radio frequency 几百MHz到几 个GHz 8. pulse signal 脉冲信号 9. wavelength n.波长用λ表示 10. output n.输出,产量 input n.输入 11. band n. 带,波段,频带 课二B Electromotive Force 电动势 1. electromotive adj.电动的,电动 势的 electromotive force 电动势 2.driving adj.驱动的 driving force n. 驱动力 driving unit 传动装置 3. volt n. 伏特 4. distinguish v.区分 5. potential difference 电位差 课三A Time Constant 时常数 1.nuclear adj.原子能的, n.核武器, 有核国 nuclear arms 核武 nuclear energy 核能 2.constant n.常数 adj.不断, 不断的, time constant 时间常数 3. instantaneously adv.瞬间地,即刻 instant n.瞬息, 一会儿, 时刻 4. dependent adj. 依赖的,依赖于,取决于 5. capacitiv e adj.电容的,容性的 capacitor n.电容器 capacitance n.电容值 6.discharge n.放电v.放电 charge n.电荷,充电v.充电 7.universal 普遍的, 全体的, 通用的, 课三B RL Time Constant RL时序常数 1.inductor n.电感器 inductance n.电感值(量) inductive adj.感应的; 电感的 2. function n.功能, 函数,作用, 3. Decay n.衰减v. 衰减 decay constant 衰减常数 decay factor 衰减因子 4. reverse adj.反向的, 相反, 逆转的 5. peak value 峰值

相关文档
相关文档 最新文档