文档库 最新最全的文档下载
当前位置:文档库 › XPS在催化剂研究中的应用

XPS在催化剂研究中的应用

XPS在催化剂研究中的应用
XPS在催化剂研究中的应用

XPS在催化剂研究中的应用

摘要 (1)

Abstract (1)

1引言 (2)

2 XPS的基本原理 (2)

3 XPS应用基础 (3)

4 X射线光电子能谱在催化剂研究中的应用 (5)

5 展望 (11)

6结论 (11)

参考文献 (12)

致谢 ..................................................................................... 错误!未定义书签。

摘要

X射线光电子能谱(XPS)是一种能够测定材料表面中元素的构成、实验式,以及其中所含元素化学态的表面化学分析技术。它的灵敏性,非结构破坏性测试能力和可获得化学态信息的能力,使其成为表面分析的极有力工具。本文简介XPS的原理并举出一些XPS在催化剂表征技术中的应用的实例。

关键词: XPS;催化剂;表面分析;

Abstract

X-ray Photoelectron Spectroscopy (XPS) is one of tile common techniques on surface analysis, which can determine the elements of the materials and also can give the information of the elements chemical states. Its sensitive,non-destructive testing capability and structural chemical state information available capacity,making it an extremely powerful tool for surface analysis. This article introduces the principle of XPS and analyses its application in catalyst characterization techniques.

Keywords: XPS;catalyst;Surface analysis

1引言

X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。近几十年来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究[1]。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。

2 XPS的基本原理

具有足够能量的入射光子(hν)同样品相互作用时,光子把它的全部能量转移给原子、分子或固体的某一束缚电子,使之电离。此时光子的一部分能量用来克服轨道电子结合能(E B),余下的能量便成为发射光电子(e-)所具有的动能(E K),这就是光电效应。可表示为

A + hνA+* + e-

由于原子、分子或固体的静止质量远大于电子的静止质量,故在发射光电子后,原子、分子或固体的反冲能量(Er)通常忽略不计。上述过程满足爱因斯坦能量守恒定律

hν = E B + E K

对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能E B,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能E K hν = E B + E K+ΦE B = hν-E K-Φ

仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能E K,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成[2]。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。

3 XPS应用基础

3.1 元素定性

各种原子相互组合形成化学键时,内层轨道基本保留原子轨道的特征。因此可以利用XPS内层光电子峰以及俄歇峰这两者的峰位和强度,作为“指纹”,进行元素定性鉴定。因此使用宽扫描全谱图,可分析出周期表中除H和He以外的所有元素。对于每一个元素都具有为数不多的特征峰(一般指强峰),峰之间的强度比例也有一定的规律,不同元素的特征峰之间很少有重叠现象。这些数据都已经整理成册,可以方便地进行查阅。因此根据谱图就可以明确标示样品中所存在的元素。此方法的特点是谱图简单,“指纹”特性强,并且往往为原位非破坏性测试技术。

图1 部分元素的标准结合能表

图1列出了若干周期表中的一些元素的最强特征峰出现的位置。由图可见,有的为单峰,有的为双峰,但是不管如何各元素最强特征峰之间很少有重叠现象。因此,这些特征峰便成了识别元素的标记,可以根据特征峰出现的位置定性分析样品表面的元素组成,这是XPS的一个重要用途。

图2 Au﹑Cr﹑Mg的轨道列表

图2简单列出了Au﹑Cr﹑Mg三种元素的不同轨道电子峰的结合能,如果谱图中有这些相同能量的峰出现,则有可能含有该元素。

3.2 化学价态的鉴定

元素的特征峰是原子壳层内能级结构的直接反映,而元素所处的化学和物理环境会造成特征峰的移动。原子中的内层电子受核电荷的库仑引力和核外其他电子的屏蔽作用,任何外层价电子分布的变化都会影响内层电子的屏蔽作用。因而处于不同化学环境下的同一原子,其内能级谱会出现分立的分峰,称为化学位移

效应,可用于分析元素的化学态。

图3 Ti及TiO2中2p3/2峰的峰位及2p1/2峰的峰位之间的距离如图3所示,钛由单质变成氧化物,受氧元素的影响,其2p3/2峰的峰位及2p1/2峰的峰位之间的距离由6.15减小至5.7。

3.3 半定量分析

在XPS研究中,确定样品中不同组分的相对浓度是十分重要的。利用峰面

积和原子灵敏度因子法进行XPS定量测量比较准确。值得注意的是,对具明显

摔激伴峰的过渡金属的谱图,测量峰面积时应该也包括摔激伴峰的面积;强光电子线的X射线伴峰有时会干扰待测组成峰的测量,在测量前必须运用数学方法扣除X射线卫星峰。

采用元素灵敏度因子法通过计算F1s and C1s峰的面积计算出聚四氟乙烯中C/F 的相对浓度。

图4 Quantitative analysis of polytetrafluoroethylene

(by peak area of F1s and C1s)

3.4 深度分布

利用XPS研究深度分布有以下几种方法:(1)转动样品,改变出射角θ,研究样品各种信息随取样深度的变化。在改变θ时,注意谱峰强度的变化,就可以推定不同元素的深度分布;(2)测量同一元素不同动能的光电子峰强度比;(3)从有无能量损失峰鉴别体相原子或表面原子。对于表面原子峰两侧应对称且无能量损失峰。对于深层分布的原子,因出射的光电子要经历非弹性散射,使其能量损失,于是光电子峰低动能侧背景有提升;(4)离子刻蚀,逐层剥离表层,然后逐一对表面进行分析。

4 X射线光电子能谱在催化剂研究中的应用

4.1 XPS研究加氢脱硫催化剂中活性元素的化学态

Co-Mo/Al2O3加氢脱硫催化剂只有在处于硫化态时才有催化活性,在实际操作中,硫化温度较低或时间不够长均可能导致硫化不完全,且硫化后的催化剂在贮存和转移过程中很容易被氧化,因此,硫化态催化剂中的活性金属通常具有多种化学态。以Mo为例进行分析:

氧化态加氢脱硫催化剂中Mo通常以MoO3形式存在,其Mo3d5/2结合能约

为232.0eV。图5为硫化态Co-Mo/Al2O3的Mo3dXPS谱,从图谱可知,该样品中的Mo主要有3种价态:+4﹑+5﹑+6。其中Mo3d5/2结合能为228.8eV的谱峰对应于+4价的MoS2和Co-Mo-S相,Co-Mo/Al2O3催化剂的活性组分,研究人员常用n(Mo4+)/n(Mo total)来判断该催化剂中Mo的硫化度,如本样品中Mo的硫化度为83.5%。需要指出的是,MoS2和Co-Mo-S相的Mo3d5/2结合能仅相差0.2eV,超出XPS的能量分辨能力(0.2eV),因此很难将它们区分开。此外,+4价的MoO2和MoOxSy的Mo3d5/2结合能仅比MoS2高约0.2~0.4eV,3种+4价的Mo 的谱峰和很难分开。位于230.2eV处的Mo3d5/2峰对应于+5价Mo2O5和MoOxSy;结合能为232.6eV的Mo3d5/2峰来自+6价MoO3和MoOxSy。催化剂中的非硫态Mo主要是催化剂未硫化完全导致的[2]。

图5 硫化态Co-Mo/Al2O3催化剂的Mo3d+S2sXPS拟合谱

4.2催化剂组分相互作用的研究

固体催化剂的活性常常受到载体上金属组分状态的影响,而金属组分的状态却往往与浸渍物质、载体的性质有关。如果是多元金属催化剂、金属组分的状态还要受到第二元、第三元金属的影响。因此,研究浸渍物质或负载组分与载体之间的相互作用将有助于提高对催化剂表面的真实状态的认识。

4.2.1 金属载体间相互作用

金属负载量不同的硫化态CoMo/A12O3催化剂的Mo(3d)XPS能谱示于图6 如图所示,Mo(3d)在229.0和232.2 eV显示出强双重带,归属于Mo4+物种;在232.6和235.8eV处较弱的谱峰归属于未硫化的Mo6+物种。230.7和233.9eV处的峰对应于O-M-S相中Mo5+物种。硫化过程是经S和O原子的交换完成,因此O原子被弱电负性的S原子取代使Mo6+的结合能减小。比较各催化剂的XPS结合能数据可以看出,负载量的增加没有改变Mo物种的结合能数据,表明金属负载量的变化没有改变催化剂中Mo的物种类型。Mo物种的硫化度由Mo4+所占总Mo物种的比例(Mo(s)%)来计算,结果列于表1。由表1可以看出,Mo的硫化度以下列顺序增加GDSl

图6 Decomposition of Mo(3d)+S(2s) spectra of the sulfided Co-Mo/A12O3 samples

表1 Quantitative XPS result of the species over

the sulfided CoMo/A12O3 samples catalysts

4.2.2 金属组分间相互作用

王毅等对由合成气制备C2含氧化合物的Rh基催化剂中各活性组分间的相互作用进行了研究。几种不同组分催化剂的Rh 3 d XPS测定结果如图所示。1% Rh/ SiO2中Rh3d5/ 2的结合能出现在308 eV左右,而且峰型也不对称,这意味着催化剂中存在着非化学计量的低价态的Rh物种Rh0和Rh+等。加入了Mn后,Rh3d5/ 2的结合能位移到308.8 eV,表明在该催化剂中,Rh主要以高价氧化物的形态存在加入Li后,Rh3d5/ 2的XPS谱明显分裂为两个峰,其中结合能较高的峰大约在309.9 eV ,对应于Rh2O3,它的形成与催化剂中大量存在的Mn物种有关。在307eV左右出现了一个明显的峰,是金属Rh的特征峰。由此可见,Li作为给电子助剂,促进了催化剂中Rh物种的还原,从而使其周围的Rh物种显示了明显的金属Rh的特性[4]。

.

图7 几种催化剂的XPS谱图

李金林等[5]对Co-Mo-K/Al2O3中K的进行了研究。表2列出了含钾与不含钾的氧化态催化剂Co Mo的结合能值。可以看出,钾的引入对Co Mo结合能几乎没有影响,因此我们认为钾在体系中不具有电子效应,而仅具有分散效应。

表2 不同催化剂的XPS结合能值

4.4 XPS对各种终态效应分析

对于一些光电子线化学位移很小的元素、过渡元素、稀土元素等,用结合能的的化学位移不能有效地进行化学价态分析。在这种情况下,除利用俄歇参数来对其化学状态进行分析外,还可以借助震激效应、多重分裂等各种终态效应,可以从线形及伴峰结构方面进行分析,同样也可以获得化学价态的信息。

C1s的结合能在不同的碳物种中有一定的差别。在石墨和碳纳米管材料中,其结合能均为284.6 eV;而在C60材料中,其结合能为284.75 eV。由于C 1s峰的结合能变化很小,难以从C1s峰的结合能来鉴别这些纳米碳材料。震激峰的结构有较大的差别,因此可以从C1s的震激峰的特征结构进行物种鉴别。

在石墨、石墨烯和碳纳米管材料中,由于C原子以sp2杂化存在,并在平面方向形成共轭π键。这些共轭π键的存在可以在C1s峰的高能端产生震激伴峰。这个峰是其共轭π键的指纹特征峰,可以用来鉴别这些纳米碳材料。C60材料的震激峰的结构与石墨和碳纳米管材料的有很大的区别,这些峰是由C60的分子结构决定的。在C60分子中不仅存在共轭π键,并还存在σ键。因此,在震激峰中

还包含了σ键的信息。

图8 几种碳纳米材料的C1s光电子峰和震激峰谱图

4.5失活及中毒机理的研究

吴芹等[5]利用X-光电子能谱(XPS)探讨了氨气引起CO偶联反应Pd/α-Al2O3催化剂失活的原因。分析认为氨分子在活性组分Pd上的竞争吸附阻碍了催化剂表面上CO偶联反应及活性组分Pd的氧化还原循环,导致催化荆活性下降。图(A)~(D)分别为活性完全丧失和活性部分恢复的催化剂的Pd、N 的XPS 图。与标准数据相比,图中Pd3d5/2结合能为335.1eV的谱峰可确定为零价钯的谱峰,其右数第3个较矮的峰C是它的自旋分裂峰;Pd3d5/2结合能为337.9eV 的谱峰B可确定为二价钯的谱峰,其右数第四个较矮的峰D是它的自旋分裂峰。从图A、B中可以看出,与活性完全丧失的催化剂相比,当催化剂活性有些恢复时,二价钯峰明显减小;由图C、D可见,活性部分恢复的催化剂比活性完全丧失的催化剂N的强度减弱。因此随着二价钯峰的减弱,N的原子百分数也减小,说明由于氨气中N元素孤对电子的存在,有利于氨气吸附在二价钯上,引起催化剂活性降低。

(A)(B)

( C) ( D)

图9 Pd/α-Al2O3催化剂的XPS图谱

(A)完全失活催化剂(Pd)(B)活性部分恢复催化剂(Pd)

(C)完全失活催化剂(N)(D)活性部分恢复催化剂(N)

4.6 金属分散度的测定

不同的测试方法,分散度的具体定义是不完全一样的。金属组分在载体表面的分散度与其表面颗粒的大小成反比。在负载量较低的情况下,金属覆盖载体表面的面积也比较小,因此,有时有无金属组分对载体元素的特征峰的强度并无多大改变。而金属粒子的大小却对金属组分自身的特征峰有很大影响,这是因为电子能谱是一种表面分析技术,粒子线度比其光电子的平均自由程越大,其峰越弱。所以在电子能谱测量中,如果其它条件相同或不起作用时,便可用金属组分的峰强同载体组分的峰强之比表征金属组分的相对分散度。

图10为两类均采用浸渍法制备的不同的Ir催化剂的XPS图谱。其中A、B催化剂载体分别为245和280m2/g,Ir含量为10-35wt%。XPS图谱表明,在Ir负载量接近的情况下,A催化剂的强度比Rd(Ir4f/Al2p)比B催化剂的大2-3倍,说明A催化剂晶粒比较小,B催化剂晶粒比较大,A的分散度比B好。其它测试催化剂分散度的方法如H2吸附法、X衍射法、电子显微镜法进一步验证了XPS法结果的正确性。XPS法测定样品分散度与其它方法相比具有样品用量少、速度快、所得结果较符合规律的特点,其是分散度半定量分析的一种可取方法。

图10 Ir/Al2O3催化剂的XPS谱图

5 展望

XPS作为新型的表面分析科学的重要组成部分,仍在发展之中。针对上存在的局限性,今后的发展将着重在一下几个方面:

1)围绕谱仪的改进。激发光源单色化﹑微束化﹑能量可调节化及束流增强化;

设计制造心性能量分析器﹑透镜等,进一步提高能量分辨率和传输率。

2)加强对XPS有关理论研究。提供对化学位移更成熟的理论,更有效指导对化

学价态的鉴别;提供对定量分析更成熟的理论,以提高定量分析的精度等。

3)通过改进实验方法或适当配件,使得对非导体样品测试中必然遇到的荷电校

正问题,尽可能完善准确的解决。

4)发展多功能技术,与其他表面分析技术(如UPS﹑AES﹑SIMS﹑STM等)联合

应用,使分析结果更全面﹑完善﹑正确﹑可靠。

6结论

XPS技术1960年代末商品化以来,在短短的三十多年中它已从物理化学家的实验发展为广泛应用的实用表面分析工具。XPS的优点是其样品处理的简单性和适用性与高信息量。XPS的最大特色在于能获取丰富的化学信息,对样品表面的损伤最轻微,定量分析好。表面的最基本XPS分析可提供表面存在的所有元素(除H和He外)的定性和定量信息。此方法的更高级应用课产生关于表面的化学组成和形态的更详细的信息。因而XPS被认为是一种可利用的最强力的分析工具。

参考文献

[1]文美兰.X射线光电子能谱的应用介绍. 化工时刊,2006,20(8): 54-56.

[2]俞宏坤.X射线光电子能谱(XPS). 上海计量测试,2003,30(4): 45-47.

[3]邱丽美,齐和日玛,流清河,徐广通.X射线光电子能谱法研究加氢脱硫催化剂中活性元素的化学态. 石油学报,2011,27(4): 638-642.

[4]王毅,宋真,马丁,罗洪原.由合成气制备C2含氧化合物用铑基催化剂中

各组分间的相互作用. 催化学报,1998,19(6): 533-537.

[5]李金林,孔渝华,张曼征.Co-Mo-K/Al2O3水煤气变换催化剂结构的研究.

.催化学报,1991,12(5): 340-345.

[6]吴芹,高正虹,何琲,许根慧.CO偶联反应Pd/α-Al2O3. 天津理工学院学报,2003,19(4): 25-29.

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

催化剂的制备和应用

摘要: 均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。 关键词: 分子筛膜包覆载体膜催化反应器 Coated with molecular sieve membrane preparation and application of the catalyst Abstract:uniform, continuous, the synthesis and application of dense molecular sieve membrane is widely https://www.wendangku.net/doc/df12933603.html,ing molecular sieve membrane is screening and catalysis, in traditional particle catalyst or carrier cladding molecular sieve membrane formation on the surface of composite catalyst, can realize the coupling of membrane separation and catalytic process, increase the selectivity of reactants, improve the target product yield.In recent years was reviewed in this paper in different types of particle catalyst or carrier surface preparation methods of synthesis of molecular sieves membrane, describes the molecular sieve membrane coated type composite catalyst used for the results of different catalytic reaction system.At the same time, on the basis of induction and summary of existing research results discussed coated with molecular sieve membrane research and development trend of catalyst. Keywords:molecular sieve membrane coated carrier membrane catalytic reactor 1引言 分子筛膜具有较高的热稳定性,较好的化学稳定性。耐腐蚀性以及与特种材料的生物相容性,自首次支撑体分子筛膜专利报道至今,沸石分子筛膜的研究及生产已经成为膜科学技术领域的研究热点之一。图1分子筛膜论文和专利发表数量随年份的趋势图。支撑体分子筛膜的使用拓宽了分子筛的应用范围,避免了直接使用分子筛粉末床层带来的高压降及成型时加入粘结剂带来的使用效率降低等问题,使分子筛膜规模化的工业应用成为可能。加上分子筛具有筛分效应,较大的比表面积,可控的客体-吸附质相互作用,使其可用于膜催化和分离。分子筛膜在膜分离、膜催化反应器、化学传感器、电极材料、光电器件、低介电常数材料以及保护层方面均有潜在的应用前景。

加氢精制的催化剂

加氢精制的催化剂 加氢精制催化剂一般以钨、镍等为活性组分,以硅、铝等为载体(或担体)。 担体有两大类: 1、中性担体,如活性氧化铝、活性碳、硅藻土等 2、酸性担体,如硅酸镁、硅酸铝、分子筛等。 一般来说担体本身没有活性,在选择担体时一般选择中性担体。因为中性担体本身的裂解活性不高,用它制备的催化剂表现出较强的加氢活性和较弱裂解活性。 担体的作用: 1、担体具有较大的比表面,能使活性组分很好的分散在其表面上,从而更有效地发挥活性组分的作用,节省活性组分的用量。 2、担体做为催化剂的骨架起到提高催化剂的稳定性和机械强度的作用,并保证催化剂具有一定的形状和大小,减少流体阻力。 3、担体能够改善催化剂的导热性,防止活性组分因局部过热而引起烧结失活。 加氢装置催化剂的装填很重要,如果催化剂装填质量差,疏密不均,不但会造成催化剂装填量减少,更重要的是会使物料走“短路”或床层下陷,造成反应器床层物料和温度不均,物料和催化剂接触时间不等,严重影响到催化剂的寿命和产品的质量。 为确保催化剂的运输和装填安全,目前绝大多数催化剂在运

输时是氧化态,活性较低。为了使催化剂具有更高的活性和稳定性,提高催化剂抗中毒能力,催化剂在使用前需要预硫化。预硫化一般使用CS2或其它硫化物,在氢气的存在下先反应生成硫化氢,然后再进一步反应将催化剂中的活性组分转化成较高活性的“硫化态”。 硫化反应方程 CS2+4H2=CH4+2H2S 3NiO+H2+2H2S =Ni3S2+3H2O WO3+H2+2H2S = WS2+3H2O 催化剂的初活稳定(钝化):硫化后的催化剂活性极高,直接进质量较差的焦化汽柴油会立即积炭,使催化剂活性大幅度下降,因此需要用航煤或直硫柴油进行初活稳定,以适当降低催化剂活性,延长催化剂的使用周期。用直馏航煤做稳定油,因直馏航煤中的烯烃含量很低,进入反应系统后基本不会在催化剂表面积炭,起不到初活稳定的作用或初活稳定的作用很小。而直馏柴油的质量介于航煤和焦化柴油之间,在初活稳定期间可以在催化剂表面形成一定的积炭而适当降低催化剂的活性,从而保证在正常生产期间的温度控制。 催化剂在长期运行中表面会逐步结焦,其活性会逐步降低,因此当催化剂活性降低到一定程度后需要对催化剂进行烧焦再生。目前一般采用器外再生技术。 空速对加氢精制的影响 空速是单位时间的进料量与催化剂藏量之比,有体积空速和重量空速两种表示方式。降低空速意味着原料与催化剂接触时间的增加,加氢深度增加,因此产品质量可提高,但是降低空速可促进加氢裂化反应,降低产品液收,增加氢耗,增加催化剂的积炭,降低空速也意味着在反应器内的催化剂数量不变时,降低了处理量;加大空速会导致反应深度的下降,此时需提高反应温度来提高反应深度。空速高低变化可用提高或降低反应温度来补偿对反应深度的影响。 氢油比对加氢精制的影响

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

光催化原理、应用

广州和风环境技术有限公司 https://www.wendangku.net/doc/df12933603.html,/ 光催化原理、应用及常见问题 更多有关废气处理核心技术,请百度:和风环境技术。接下来和风带领大家认识一下。 随着全球工业化进程的加速,环境污染问题日益严重,环境治理已受到世界各国的广泛重视,其中政府在环境治理方面投入了巨大的人力、物力和财力对环境净化材料和环境净化技术的研究和产业化提供支持,其中,光催化材料和光催化技术占有重要的地位。TiO2是一种常用的光催化材料,具有活性高、稳定性好,几乎可以无选择地将有机物进行氧化,不产生二次污染,对人体无害,价格便宜等诸多优点,成为最受重视和具有广阔应用前景的光催化材料。 光催化材料在紫外光或太阳光的作用下,激发价带上的电子(e-)跃迁到导带,在价带上产生相应的空穴(h+),光生空穴与光催化材料表面的水反应,生成羟基自由基,而光生电子与光催化剂表面的氧反应,生成超氧负离子。羟基自由基和超氧负离子具有较强的氧化还原电位,可将挥发性有机物氧化分解成无害的CO2和H2O,达到净化空气、分解挥发性有机物的目的。二氧化钛光催化材料在光照下能一直持续释放自由基,对挥发性有机物进行氧化分解,而自己不发生变化,具有长期活性。

广州和风环境技术有限公司 https://www.wendangku.net/doc/df12933603.html,/ 1、光催化反应原理 羟基自由基和超氧负离子是除氟之外,最强的氧化剂,但是氟对人体和环境有着巨大的危害,在很多场合不再使用。 2、常温催化材料 光催化材料是一种常温催化材料,可在室温及稍高温度下进行反应(通常低于65℃)。提高光催化材料性能的途径有三个:一个是降低纳米催化材料粒子的粒径,目的在于提高光催化材料的比表面积;二是通过金属掺杂、过渡金属掺杂和非金属离子掺杂改变半导体催化剂的性质来提高光催化性能;三是通过表面修饰和敏化,改变半导体催化剂的表面的形貌和结构,而引起表面性能的优化。 3、光催化材料应用中的影响因素 湿度的影响:光催化反应中,羟基自由基来源于水,所以必须保持有一定的湿度才能持续产生羟基自由基;在闭环的光催化反应中,已经证实随着水的不断消耗,光催化性能在不断的下降。 氧分量的影响:光催化反应中,超氧负离子来源于氧,所以在21%含量的

加氢精制催化剂的组成、制备及其性能评价

加氢精制催化剂的组成、制备及其性能评价 前言: 加氢精制是石油加工的重要过程之一,它主要是通过催化加氢脱除原油和石油产品中的S、N、O以及金属有机化合物等杂质[1]。加氢精制主要包括加氢脱硫(HDS)、加氢脱氮(HDN)和加氢脱金属(HDM)等工艺,一般在催化加氢过程中是同时进行的。其具体流程图[1]如下所示: 近年来,由于原油的质量逐渐变差以及对重油的加工利用的比例逐渐增大,给加氢精制过程提出了更高的要求。出于对环保的重视,世界各国普遍制订了严格的环保法规,对汽油、柴油等燃料油中N和S含量作出了严格的限制。此外,又对汽油中的苯、芳烃、烯烃含量、含氧化合物的加入量以及柴油十六烷值和芳烃含量等也有严格的限制指标。这些清洁燃料的生产均与加氢技术的发展密切相关[2]。因而加氢精制技术已成为石油产品改质的一项重要技术,其核心又在于加氢精制催化剂的性能。 一、催化加氢催化剂的组成及其制备方法 1.加氢催化剂的组成 加氢精制催化剂一般都是负载型的,是有载体浸渍上活性金属组分而制成[3]。载体一般均是Al2O3。 (1)活性组分 其活性组分主要是由钼或钨以及钴或镍的硫化物相结合而成[4]。目前工业上常用的加氢精制催化剂是以钼或钨的硫化物为主催化剂,以钴或镍的硫化物为助催化剂所组成的。对于少数特定的较纯净的原料,以加氢饱和为主要目的时,也有选用含镍、铂或钯金属的加氢催化剂的。 钼或钴单独存在时其催化活性都不高,而两者同时存在时互相协合,表现出很高的催化活性。所以,目前加氢精制的催化剂几乎都是由一种VIB族金属与一种VIII族金属组合的二元活性组分所构成。 (2)载体 γ-Al2O3是加氢精制催化剂最常用的载体。一般加氢精制催化剂要求用比表面积较大的氧化铝,其比表面积达200~400m2/g,孔体积在0.5~1.0cm3/g之间。[1]氧化铝中包含着大小不同的孔。不同氧化铝的孔径分布是不同的,这取决于制备的方法和条件。此

第二章催化剂制备、性能评价及使用技术

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

加氢精制催化剂安全生产要点(2021新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 加氢精制催化剂安全生产要点 (2021新版)

加氢精制催化剂安全生产要点(2021新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。 生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。

2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还可因防护用品等操作失误造成灼烫、伤害等危害。 3安全要点 3.1浸渍定期对浸渍液制备、浸渍罐等易被腐蚀的设备进行检查鉴定,防止物料因设备腐蚀而泄漏造成事故;经常对有毒、有害作业岗位作业人员的防护措施的正确实施进行检查,纠正冒险或违章作业,防止中毒和化学灼伤。 3.2成品焙烧炉对每批进行活化的催化剂进炉前,应检查控制粉状物不能太多和太湿;检查并严格控制活化温度在480?20℃和料层超温的紧急放料措施及操作机构应灵活好用;经常对燃料系统运行情况进行严格检查,随时督促消除发现的隐患;焙烧作业中特别是活化炉放料时,应督促作业人员佩戴防烫护具,防止烫伤。 3.3其他部位 3.3.1混捏挤条机的孔板和螺栓,在运转挤条前要经仔细检查,不能有裂纹等缺陷,防止挤条时折断伤人。

光催化原理及应用

姓学号:0903032038 合肥学院 化学与材料工程系 固 体 物 理 姓名:杜鑫鑫 班级:09无机非二班 学号:0903032038 课题名称:光催化原理及应用 指导教师:韩成良

光催化原理及应用 引言:目前,全球性环境污染问题受到广泛重视。光催化反应可对污水中的农 药、染料等污染物进行降解,还能够处理多种有害气体;光催化还可应用于贵金属回收、化学合成、卫生保健等方面。光催化反应在化工、能源及环境等领域都有广阔的应用前景。本文论述了主要光催化剂类型及光催化技术的应用研究成果。 关键词:光催化、应用、发展、环境、处理 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。 在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO 2 是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀), 无毒,廉价,原料来源丰富。 TiO 2 在紫外光激发会产生电子-空穴对,锐钛 型TiO 2 激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水处理,有毒污水控制,空气净化,杀菌消毒等领域。 主要的光催化剂类型: 1.1 金属氧化物或硫化物光催化剂 常见的金属氧化物或硫化物光催化剂有TiO,、ZnO、WO 3、Fe 2 O 3 、ZnS、CdS 和PbS等。其中,CdS的禁带宽度较小,与太阳光谱中的近紫外光段有较好的匹配性,可以很好地利用自然光源,但容易发生光腐蚀,使用寿命有限。TiO,具

催化剂在工艺中的作用

催化剂在化学工艺中的作用 化学化工学院09级5班杨兴平学号:200910240535 摘要:20世纪特别是下半叶以来,由于催化科学和技术的飞速发展,使得数以 百计的工业催化剂开发成功,而数量更多的催化剂,在深刻认识的基础上,得以更新换代。新型催化剂正日益广泛和深入地渗透于石油炼制工业、化学工业、高分子材料工业、生物化学工业、食品工业、医药工业以及环境保护工业的绝大部分工艺过程中,起着举足轻重的作用。本文对催化剂在化学工艺中的作用进行一下简单介绍。 关键词:催化剂的用途;化学工业;分类;制作方法;纳米催化剂;展望 一、催化剂概述: (一) 定义 在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。 (二) 基本特性 ①催化剂能够加快化学反应速率,但本身并不进入化学反应的计量。②催化剂对反应具有选择性,即催化剂对反应类型、反应方向和产物的结构具有选择性。 ③催化剂只能加速热力学上可能进行的反应,而不能加速热力学上不能进行的反应。④催化剂只能改变化学反应的速率,而不能改变化学平衡的位置。⑤催化剂不改变化学平衡,意味着对正方向有效的催化剂,对反方向的反应也有效。(三) 用途 在化工生产、科学家实验和生命活动中,催化剂都大显身手。例如,硫酸生产中要用五氧化二钒作催化剂。由氮气跟氢气合成氨气,要用以铁为主的多分组催化剂,提高反应速率。在炼油厂,催化剂更是少不了,选用不同的催化剂,就可以得到不同品质的汽油、煤油。汽车尾气中含有害的一氧化碳和一氧化氮,利用铂等金属作催化剂可以迅速将二者转化为无害的二氧化碳和氮气。酶是植物、动物和微生物产生的具有催化能力的蛋白质,生物体的化学反应几乎都在酶的催化作用下进行,酿造业、制药业等都要用催化剂催作。 1、催化剂在无机化工中的作用 在生产基本无机化工原料的领域中,主要以三酸两碱为核心,它们的产量巨大,是重要的化工原料。其中的硫酸和硝酸分别被称为“化学工业之母和炸药工业之母”,它们在工业和国防部门,都具有重要的价值。 生产硫酸过程中,SO2转化为SO3所用的催化剂,最初是NO2,但设备庞

新型催化剂在精细化工过程中的应用

新型催化剂在精细化工过程中的应用 化工091班何宝坤学号090006050117 摘要:化工业的发展使得各种新型化工材料得到了广泛的运用,分子筛催化剂作为一种新型催化剂,其微孔结构十分均匀,并且能够让适当的分子进入内部,这种特性使得气体和液体分子分离、离子交换及催化反应在化工业生产上得到了广泛的运用,分子筛催化剂因此在化工原料中逐渐成为新型催化剂。根据实际经验和相关的化工知识本文对分子筛催化剂这种新型催化剂在精细化工过程中的应用情况进行分析。 关键词:新型脂肪醇;精细化工;运用 催化剂制备共性技术及新型催化材料的开发得到高度重视,催化剂制备精细化是改进和提高催化剂性能的重要途径,而催化新材料则是催化剂更新换代和品种多样化的物质基础。新型催化剂和相应的催化工艺的出现,往往以催化新材料和精细化制备工艺为重要前提。国际上自20世纪80年代以来,在此方面的研究十分活跃,政府和许多公司投入大量人力和物力从事研究开发,并在相关领域中长期坚持研究。如联碳公司的磷铝、磷硅铝、金属磷铝分子筛和铑催化体系的磷配体,飞马公司的ZSM分子筛、法国石油研究院的金属有机络合物、杜邦公司的白钨矿结构氧化物、海湾石油公司的层状硅酸盐和硅铝酸盐、英国石油公司的石墨插层化合物、埃克森公司的双、多金属簇团等。 随着纳米技术在催化剂领域的应用,新研制的催化剂的效能大大提高。如:粒径小于0.3nm的镍和铜-锌合金的纳米颗粒的加氢催化剂的效率比常规镍催化剂高10倍。美国科学家发现一种称为钛硅酸盐ETS-4的物质能够作为良好的分子筛。当温度升高时,ETS-4会逐渐脱水,微孔的尺寸随之减小。利用这种方法,可以在3到4埃的范围内精确地调整微孔尺寸。 在开发新材料的基础上,借助催化剂制造精细化技术,有效地调节催化剂孔结构、孔分布、晶粒尺寸、粒径分布、形貌等,并通过控制活性组分分析与载体间相互作用等方法,提高催化剂性能。由于精准控制分子筛的结构使其呈现多样性,以及工业应用取得了意想不到的辉煌成就,使人们更加注意新型催化材料和精细化制备技术的开发。目前,较为活跃的研究领域主要

催化剂在生活中的应用

催化剂在生活中的应用 参加者:李洋班级:高一(2)班地点:合肥市时间:暑假 现将此次实践活动的有关情况报告如下: 催化剂会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进反应。 催化剂在工业上也称为触媒。化学催化剂的应用历史很长,特别在石油化工、精细化工、有机化工和生 物化工中,可以说,催化技术已成为化学工业最关键的核心技术之一。据统计,到目前为止,人类所掌握 的化学反应80%以上必须在催化剂存在下才能实现。在化学工业生产中,最常用的催化剂是无机酸和无机 碱。催化剂对化学反应速率的影响非常大,有的催化剂可以使化学反应速率加快到几百万倍以上。催化剂 一般具有选择性,它仅能使某一反应或某一类型的反应加速进行。例如,加热甲酸发生分解反应,一半进 行脱水,一半进行脱氢。催化剂在现代化学工业中占有极其重要的地位。现在几乎有半数以上的化工产品, 在生产过程里都采用催化剂。例如,合成氨生产采用铁催化剂,硫酸生产采用钒催化剂,乙烯的聚合以及 用丁二烯制橡胶等三大合成材料的生产中,都采用不同的催化剂。 由氯酸钾分解制取氧气,除了用二氧化锰作催化剂以外,还可用氧化铁、粗食盐、氧化铜、氧化镁、氧化 铬、褐色细砂、粘土等作催化剂。但它们的催化作用,依次减弱。 燃煤催化剂一般选择最廉价的原料——废弃物。试验证明, 许多废弃物具有明显的催化燃烧作用, 且具 有环境保护的效能。常用燃煤催化剂的废气物有: 第一,煤灰。煤灰是煤中灰分在燃烧过程形成的剩余物。 煤中的灰分是内在的催化剂。灰分过多不利于燃烧, 过少也很难着火。第二, 造纸黑液。造纸厂排放的碱 性黑液含有大量K2CO3, Na2CO3, KOH, NaOH 和Ca( OH) 2 等, 它是效果较好的燃煤催化剂。将干燥的 造纸黑液适量加入煤中, 可使煤的着火温度降低30 ℃~50 ℃, 促使煤完全燃尽。另外, 它还有脱硫作用, 脱硫率可达到35%~58% , 这对环境保护是有利的。第三, 碱厂废液。碱厂废液中含有大量CaCO3 和少 量CaCl2, 适当加入这种废液有利于煤着火燃烧, 同时也具有脱硫作用, 脱硫率可达到44%以上。第四, 铁矿石粉, 铁矿开采过程中产生的铁矿石粉, 其中富含Fe2O3, 是较好的燃煤催化剂原料。有的铁矿石山 不具备开采价值, 经多年的风化, 山坡多积存大量的铁矿石粉末, 可以收集使用。第五, 草木灰。草木灰中 含有KOH , 冲水过滤后可以得到溶液, 晒干后便可从溶液中提取用作燃煤催化剂的粗品KOH。第六, 石 灰。生石灰和熟石灰均可作为燃煤催化剂原料, 其中要特别强调的是Ca2+明显具有脱硫的作用。除上述 几种之外, 其他可用作燃煤催化剂的废弃物还有很多, 例如废弃的白泥、炼铁炉炉渣、电石废渣以及某些 化工厂的废液等等。 总的来说, 燃煤催化剂提高了煤的挥发分析出速率, 降低了煤的着火温度, 缩短了点火延迟时间, 加 快了焦炭燃尽速率, 并具有脱硫脱氮的明显作用( 提高了固硫率和固氮率) 。其次, 加入催化剂后, 锅炉燃 烧趋于完全, 在锅炉蒸发量略有增大的情况下, 煤耗量有所降低, 汽煤比相对提高6.02%。尽管变化幅度 不大, 却说明催化剂能够改善锅炉燃烧工况, 提高了锅炉热效率。 ( 1) 在煤中添加某些碱金属或碱土金属化合物可不同程度地起到促进燃烧作用。燃煤催化剂在煤炭燃 烧中能有效地降低煤炭着火温度, 同时起到促进燃烧和减少污染排放的作用。催化剂为原料煤在燃烧过程 中提供了燃烧初期必需的氧气, 提高了煤炭颗粒的燃烧速度, 即使煤质不好, 通过添加催化剂, 也可以保 证锅炉的燃烧情况和出力负荷, 充分利用了煤炭资源。 ( 2) 含催化剂C 的矿粉是效率较好的催化剂, 价廉、来源广、有很好的工业应用前景; 煤脱硫助燃材 料, 适用于各种工业锅炉、电站锅炉燃煤过程中SO2 的脱除。 ( 3) 在煤燃烧以及煤中S 与N 向SO2 及NO 转化的过程中, FeCl3 既起到催化剂的作用, 同时又 起吸收剂的作用。FeCl3 催化作用表现在降低了SO2 和NO 生成反应的表观活化能。 ( 4) 煤脱硫助燃材料”内含有钙、镁和催化剂, 煤炭燃烧时, 产生的二氧化硫、三氧化硫与钙化合成亚硫 碳

加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术 ?加氢精制技术应用概况 ?加氢精制主要反应及模型化合物加氢反应历程 主要反应 模型化合物加氢反应历程 典型工艺流程 ?加氢精制工艺技术 重整原料预加氢催化剂及工艺 二次加工汽油加氢精制催化剂及工艺 煤油加氢精制催化剂及工艺 劣质二次加工柴油加氢精制催化剂及工艺 进口高硫柴油加氢精制催化剂及工艺 焦化全馏分油加氢精制催化剂及工艺 石蜡加氢精制催化剂及技术 ?加氢精制催化剂 加氢精制技术应用概况 抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。 FRIPP加氢精制技术开发的经历:

?1950s 页岩油加氢技术 ?1960s 重整原料预精制技术 ?1970s 汽、煤、柴油加氢精制技术 ?1980s 石油蜡类加氢精制技术 ?1990s 重质馏分油加氢精制技术、渣油加氢处理技术 FRIPP加氢精制系列催化剂: ?轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98 ?重质馏分油 3926、3936、CH-20、3996 ?柴油临氢降凝 FDW-1 ?石油蜡类 481-2、481-2B、FV-1 ?渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列 FRIPP加氢精制催化剂工业应用统计(1999年): 加氢精制主要反应及模型化合物加氢反应历程 加氢精制主要反应 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下:

催化剂的制备及贵金属催化剂的回收

论文题目:催化剂的制备及贵金属催化剂的回收课程名称:石油化工 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月29日

催化剂的制备及回收 摘要:在工业领域,催化剂是一种重要的化学制品,不但能够促进化学反应的发生,还能控制化学反应的速率,在工业领域有着重要的应用。对于有些化学反应来讲,如果没有催化剂的介入,将无法正常实现。然而,在参与反应后很多催化剂很难回收利用或已经中毒。 关键词:催化剂;回收技术;贵金属;催化剂中毒 Preparation Of Catalysts And Recycling Abstract:In industry, the catalyst is an important chemical products, not only to promote the chemical reaction, but also to control the chemical reaction rate, in the industrial field has important applications. For some chemical reactions in terms of, if not the catalyst intervention will not work properly achieved. However, after involved in the reaction a lot of catalyst is difficult to recycle or have been poisoned. Keywords: Catalyst; recycling technology; precious metals; catalyst poisoning 引言 催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,贝采里乌斯偶然发现,白金粉末可以加快酒精和空气中的氧气发生化学反应,生成了醋酸。后来,人们把这一作用叫做触媒作用或催化作用,希腊语的意思是“解去束缚”。后来,经过科学家们的不断研究和总结,将催化剂普遍定义[1]为--催化剂是一种能够改变一个化学反应的速度,却不能改变化学反应热力学平衡位置,本身在化学反应中不被明显的消耗的化学物质。 1 催化剂的主要分类 催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂, 1.1 均相催化剂 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作

催化剂在环境保护中的重要应用

催化剂在环境保护中的重要应用 环境问题是人类不能回避的现实问题,如何消除、减轻或根除由于人类的生产活动而产生的一系列有害污染物质,是人类面临的一个重要课题。目前迫切希望解决的问题有:温室效应、臭氧层破坏、酸雨范围的扩大化、重金属等环境污染物质的排放、热带雨林的减少和土壤沙漠化等。其中前三个问题是由排放到大气中的化学物质引起的。例如:二氧化碳(CO2)、甲烷(CH4)和亚氧化氮(N2O)都与温室效应有关,氟利昂及N2O破坏臭氧层,二氧化硫(SO2)和NO X是形成酸雨和光化学烟雾的主要因素,除掉或减少这些污染物质主要是通过化学方法来解决,以环境保护为目的的催化化学在解决此类问题中起着核心作用。环保催化是指利用催化剂控制环境不能接受的化合物排放的化学过程,创造舒适环境所用的催化剂。 除去SO2用的环保催化剂 SO2几乎全部由煤和石油燃烧时产生。利用催化剂可以在重油使用前先回收30%—90%的硫,使用的催化剂主要是以Al2O3为载体的Co (Ni)-Mo系列元素;由燃烧排出的硫,传统的除去方法大都采用石灰石泥浆吸收法及其他一些修正方法将硫转化成石膏,但费用较高,这是一般经济实力不强的国家负担不起的,因此,有人提出了以V2O5为催化剂,将SO2氧化制成硫酸,或者以CeO2/ nMgO.MgAl2O3为催化剂先将SO2氧化成SO3,再和固相MgO 反应生成MgSO4,以控制SO X的排放量,最后再将其还原回收H2S。由于将H2S 转化为工业上有用的硫磺,在工艺上比较麻烦,为此近年来,有人又提出了用钙钛矿型稀土复合氧化物和萤石型复(混)合氧化物作催化剂,将SO2直接还原成工业上有用的单质硫的方法,其中钙钛矿型稀土类催化剂主要集中在镧系上,如LaTiO3、LaCoO3、La1 - xSrxCoO3(X = 0.3,0.6,0.7)、La2O2S 以及La2O3的水解产物如LaOOH 等;萤石型复(混)合氧化物作催化剂主要有CeO2、Cu2Ce2O 的复(混)合氧化物,CdZr2O7、Tb2Zr2O7、GeZr2O7等。所用的还原剂主要集中在CO、CH4和H2上。另外,还有人以焦炭为催化剂,采用炭还原的方法;以NiO/MgO为催化剂,以氨为还原剂FeO/ r—Al2O3为催化剂,CO为还原剂等,将SO2还原为单质硫,SO2的转化率均在80%以上,所以,这种催化还原法可以从根本上控制SO2所带来的污染。 除去NO X用的环保催化剂 脱NO X是环境保护中防止形成酸雨的最重要的问题,也是环保催化剂研究中最活跃的课题。大部分是高温燃烧时空气中N2和O2产生的,采取控制的措施有两点:一是燃烧方法的改进;二是对产生的NO X作后处理。后处理的方法是催化还原法,即在固体催化剂存在下,利用各种还原性气体(H2、CO、烃类和NH3等),以至碳和NO X反应使之转化为N2气的方法。工业排放尾气的脱NO X 所用催化剂为V2O5—TiO2,这种催化剂既可用在燃烧时产生的尾气,又可用在重油燃烧时产生的尾气。美国和德国最近开发的一种价廉的分子筛催化剂,这种分子筛催化剂可用于已经脱SO X的尾气,但这种催化方法用的NH3价格相当贵,而且在未完全反应的情况下,NH3也是一种危险品,且车载很困难。为了取代NH3,日本开发了一种以Cu离子交换的分子筛为催化剂,碳氢化合物(HC)为还原剂,将NO X分解为N2。除了上述催化还原法外,NO X还可通过催化剂直接分

光催化技术在污水处理方面的应用

光催化技术在污水处理方面的应用 罗鸣 大学化学与化工学院 摘要:近年来,随着我国经济上的飞速发展,环境的污染也非常严重。国家相继推出政策不允许继续以牺牲环境为代价来谋取经济利益。因此,如何让环境恢复到原生态和保证现有的环境不被污染是现如今我们不得不面对的重要问题。其中水资源是人类赖以生存的根本,如何处理污水就成为了重中之重。光催化技术是近些年的新兴的技术,有良好的发展前景。由于TiO2有良好的光催化性质,在污水处理方面被广泛使用。本文就光催化技术的原理以及在各种污水处理方面的应用进行研讨。 关键词:光催化技术污水处理纳米TiO2 1.前言 随着世界工业化发展,水污染日益严重,水中的污染物也呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常见的净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污染物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。但是,随着对水污染的广泛关注,污水处理技术已经日益完善。由于光催化技术无污染、安全等特点,利用光催化技术处理与降解污染物已经成为了环境领域的研究热点。该技术可以不用另外的电子受体进行操作,操作的条件比较容易控制,结构也比较简单,氧化能力很强,同时还没有二次污染。它可以把水中包含的有机污染物完全的降解成为水或者二氧化碳等,把无机污染物被还原成了无害物或者被氧化。而且所需的光催化剂有无毒、廉价、稳定以及能够重复的使用等优点。 2.TiO 2 光催化机理 光催化技术是使用n 型的半导体为催化剂的,其中TiO2给我们的效果最好,因此成为了最受人们关注的光催化剂。 TiO2光催化的基本原理是:TiO2吸收一个等于或者大于它的带隙能量的光子,可以激发一个价带电子从它的价带跃迁至导带 , 从而产生电子(e-)和空穴(h+)对。如图 1 [1]所示,带有负电荷的电子和带有正电荷的空穴,可以与水以及水中的溶解氧(O2)、氢离子(H+)、氢氧根离子(OH-)发生反应生成氢氧自由基(·OH)、超氧自由基(O2·-)、单基态氧(1O2)和双氧水(H2O2),它们被统称为含氧自由基。此外为了降低电子空穴对的重新结合,一般采用向污水入氧气或者空气的方法,氧气能够迅速与电子反

微孔分子筛催化剂的制备及应用

2 银川能源学院 工业催化 学生姓名席坤 学号 1310140108 指导教师王伟 院系石油化工学院 专业班级能源化工1302班 微孔分子筛催化剂的制备及应用 (银川能源学院能源化工1302班1310140108 席坤) 摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子

筛催化剂在不同反应中的应用。 关键词:催化剂;微孔;分子筛;应用 一、引言 分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。自1756年,瑞典科学家 A.F.Cronstedt 在研究矿物时发现了最早的天然沸石分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。 二、微孔分子筛的合成方法[3] 传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。 1、水热体系合成法 又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。 2、非水体系合成法 非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。 3、蒸汽相体系合成法 蒸汽相体系合成法区别于水热体系合成法和非水体系合成法,蒸汽相体系合成法是

相关文档
相关文档 最新文档