文档库 最新最全的文档下载
当前位置:文档库 › 精细陶瓷的应用与研究

精细陶瓷的应用与研究

精细陶瓷的应用与研究
精细陶瓷的应用与研究

西安电子科技大学2011学年第 2 学期

课程电子陶瓷工艺原理课程题目精细陶瓷的应用与研究

学生姓名吴宪洋

学号05091065

班级05091102

任课教师张显

专业电子科学与技术

所属学院技术物理学院

精细陶瓷的应用与研究

摘要:

精细陶瓷在社会上被人们所认识已经历了相当一段时间,这期间,在产业界以及大学、研究机构等部门,许多技术人员和研究人员对精细陶瓷产生了兴趣,并进行了研究开发。随着对上述精细陶瓷兴趣的增长以及研究的深入,就提出了各种各样关于精细陶瓷的问题,这对于精细陶瓷来说,也是令人非常欣喜的事情。也就是说,由于许多人对此产生了兴趣,想出了关于精细陶瓷的各种利用方法,其应用范围就逐渐扩大了。但是,另一方面,也恐怕有对精细陶瓷的认识停滞在一知半解的水平上,从而对精细陶瓷抱有过大希望的可能,精细陶瓷它以抗高温、超强度、多功能等优良性能,在新材料世界独领风骚。本文主要论述了精细陶瓷的制作工艺及其发展趋势。

关键词:精细陶瓷、特种陶瓷、功能陶瓷、烧结技术、成型方法与粘合剂引言:

新材料是发展高新技术的物质基础,也是改造传统产业的必备条件,因此材料科学被列为对世纪六大高科技领域(生物、信息、能源、材料、空间技术和海洋工程)之一。特种陶瓷(又称高性能陶瓷,先进陶瓷,精细陶瓷,高技术陶瓷等)是新材料的一个组成部分,由于它具有其他材料所没有的各种优良性能,例如:耐高温、高强度、重量轻、耐磨、耐腐蚀、优异的电、磁、声、光、热学件能等,它在国民经济中的能源、电子、航空航天、机械、汽车、冶金、石油化工和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。除此之外,在当今世界各国把环境保护作为重要的问题来考虑时,以环境保护、生活优化为背景的环境净化功能陶瓷的研究与开发也必然对改善人类生存环境,实施可持续发展战略起到积极的推

动作用。由此可见,特种陶瓷在国民经济建设及国防建设中的作用和地位是十分重要的。

目前特种陶瓷的研发方向主要有一下几个方面:

①特种陶瓷基础技术的研究,例如烧结机理、检测技术和粉末制备技术等;

②超导陶瓷的研究;

③特种陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而许多国家都把它作为一项主要内容而加以研究;

④陶瓷的纤维化是研制隔热材料、复合增强材料等的重要基础,目前国外,尤其是日本对陶瓷纤维及晶须增强金属复合材料的研究极为重视,其研究主要集中于碳化硅及氮化硅;

⑤多孔陶瓷由于具有特殊结构,所以引起了各界的重视;

⑥陶瓷与陶瓷或陶瓷与其它材料复合(陶瓷纤维增强陶瓷,陶瓷纤维增强金属)问题也是现阶段的研究重点。

⑦在非氮化物陶瓷中,目前国外研究最多的是陶瓷发动机,高压热交挽器及陶瓷刀具等;

⑧随着生物化学,生物医学这些新兴学科的发展,生物陶瓷的开发研究也变得越来越重要。

但是结构陶瓷本身面临最大的问题是成本高、可靠性和重复性的问题。因此,研究开发低成本、高可靠性的制备技术是扩大特种陶瓷应用领域,保证其持续发展的重要问题。这就要求在新的科研理论和实践成果来为精细陶瓷业的稳步发展提供更加先进的技术支持。

一、精细陶瓷的简介:

fine ceramics 又称高性能陶瓷、高技术陶瓷。按其用途可分成工程陶瓷和功能陶瓷两大类。前者主要利用它们的高硬度、高熔点、耐磨损、耐腐蚀性能,又称结构陶瓷;后者主要利用它们的光、声、电、热、磁等物理特性,又称电子陶瓷。按化学组成可分成氧化物类和非氧化物类。前者包括各

种氧化物和含氧酸盐;后者包括氮化物、碳化物、硼化物等。前一类一般作功能陶瓷用,后一类作工程陶瓷用。有些品种用于制造发动机部件、汽车部件、电视机、吹风机、火灾警报器、高温挤型模具等。还可用于制造耐高温喷嘴,适合国防的需要。

特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。按照化学组成划分有:

①氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。

②氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。

③碳化物陶瓷:碳化硅、碳化硼、碳化铀等。

④硼化物陶瓷:硼化锆、硼化镧等。

⑤硅化物陶瓷:二硅化钼等。

⑥氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。

⑦硫化物陶瓷:硫化锌、硫化铈等。

⑧砷化物陶瓷:硒化物陶瓷,碲化物陶瓷等。

除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。

二、精细陶瓷与传统陶瓷的主要区别

精细陶瓷与传统陶瓷的根本区别在于可以从原料的选择制备、后续的制

造工艺方法实施严格控制,可以制造得到实际中需要的具有不同性能要求的陶瓷材料。

①在原料上,突破了传统陶瓷以粘土为主要原料的界限,特种陶瓷一般以氧化物、氮化物、硅化物、硼化物、碳化物等为主要原料。主要区别在于精细陶瓷原料的各种化学组成、形态、粒度和分布等得到可以精确控制。

②在成分上,传统陶瓷的组成由粘土的成分决定,所以不同产地和炉窑的陶瓷有不同的质地。由于特种陶瓷的原料是纯化合物,因此成分由人工配比决定,其性质的优劣由原料的纯度和工艺,而不是由产地决定。

③在制备工艺上,成型上多用等静压、注射成型和气相沉积等先进方法,可获得密度分布均匀和相对精确的坯体尺寸,坯体密度也有较大提高;烧结方法上突破了传统陶瓷以炉窑为主要生产手段的界限,广泛采用真空烧结,保护气氛烧结、热压、热静压、反应烧结和自蔓延高温烧结等等手段。

④在性能上,特种陶瓷具有不同的特殊性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘以及在磁、电、光、声、生物工程各方面具有的特殊功能,从而使其在高温、机械、电子、宇航、医学工程各方面得到广泛的应用。

制作工艺:

一、成形方法与结合剂的选择:

特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。常见陶瓷成形方法、结合剂种类及用量如下所示:

特种陶瓷成形方法、结合剂种类和用量

成形方法结合剂举例 <结合剂用量(质量%)

千压法聚乙烯醇缩丁醛等 1~5

浇注法丙烯基树脂类 1~3

挤压法甲基纤维素等 5~15

注射法聚丙烯等 10~25

等静压法聚羧酸铵等 0~3 结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂(具有分散剂和润滑功能)等,为满足成形需要,通常采用多种有机材料的组合。选择结合剂,要考虑以下因素:

①结合剂能被粉料润湿是必要条件。当粉料的临界表面张力(yoc)或表面自由能(yos)比结合剂的表面张力(yoc)大时,才能很好地润湿。

②好的结合剂易于被粉料充分润湿,且内聚力大。当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生红结合(一次结合),同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力(二次结合)。虽然水也能把杨料充分润湿,但水易挥发,分子量较小,内聚力小,不是好的结合剂。按各种有机材料内聚力大小顺序,用基表示可排列如下:

一CONH一>-CONH2>一COOH>一OH>-NO2>-COOC2H5>一COOCH5>-CHO>=CO>-CH3>= CH2>-CH2

③结合剂的分子量大小要适中。要想充分润湿,希望分子量小,但内聚力弱。随着分子量增大,结合能力增强。但当分子量过大时,围内聚力过大而不易被润湿,且易使坯体产生变形。为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。

④为保证产品质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。

在原料配制中,用粉碎、混合等机械方法和结合剂、分散剂配合,达到分散,尽可能不含有凝聚粒子。结合剂受到种类及其分子量,粒子表面的性质和溶剂的溶解性等影响,吸附在原料粒子表面上,通过立体稳定化效果,起到防止粉末原料凝聚的作用。在成形工序中,结合剂给

原料以可塑性,具有保水功能,提高成形体强度和施工作业性。一般来说,结合剂由于妨碍陶瓷的烧结,应在脱脂工序通过加热使其分解挥发掉。因此,要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。

二、陶瓷注射成形和成形用结合剂

氮化硅等特种陶瓷材料具有高强度、高耐磨性、低密度(轻量化)、耐热性、耐腐蚀性等优良性能,适用于制造涡轮加料机叶轮、摇臂式烧嘴、辅助燃烧室等汽车用陶瓷部件。这些部件要求复杂的形状、高精度尺寸和高可靠性。不允许有内在缺陷(裂纹、气孔、异物等)和表面缺陷。

能满足这些质量要求的成形技术之一,就是陶瓷注射成形法。陶瓷注射成型技术来源于高分子材料的注塑成型,借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成型的,成型之后再把高聚物脱除。比传统的陶瓷加工工艺要简单的多,能制造出各种复杂形状的高精度陶瓷零部件,且易于规模化和自动化生产。

目前,由清华大学材料科学与工程系杨金龙教授发明的CiM(陶瓷胶态注射成型方法及装置)技术在国内该领域中处于领先水平。

陶瓷的注射成型技术有着诸多优点,用它制备复杂形状的陶瓷元件,不仅产品尺寸精度高、表面条件好,而且省去了后加工操作,降低了生产成本,缩短了生产周期,还具有自动化程度高、适合于大规模生产的特点。该工艺一般包括下列步骤:陶瓷粉的选取、粘结剂的选取、陶瓷粉与粘结剂的均匀混合、注射成型、脱脂、烧结。其中脱脂是关键。

起初的陶瓷成型注射技术是将大量的高分子树脂与陶瓷粉体混练在一起后得到混合料,然后装入注射机于一定温度注入模具,迅速冷凝后脱模而制成坯体。该技术适合制备湿坯强度大,尺寸精度高,机械加工量少,坯体均一的产品,适于大规模生产。对形状复杂、厚度较薄产品的制备有着明显的优越性。但是由于含有大量的高分子粘结剂,使陶瓷

坯体的脱脂成为不可逾越难题,并且有毛坯易变形,容易形成气孔等缺点。

粘结剂能使粉末填充成预期形状,它对整个工艺有重要的影响。理想的粘结剂应该具有以下特点:

①在成型温度下纯粘结剂的粘度在1Pa?s以下,流动时不发生与粉体的分离,冷却后有足够的强度和硬度;

②为惰性物质,与粉体不发生反应;

③在成型和混合温度以上才分解,分解的产物无毒、无腐蚀性且残余灰分少;

④膨胀系数低,由热膨胀或结晶引起的残余应力低;

⑤符合环保要求,价廉、安全、不吸湿、无易挥发组分,贮藏寿命长。

目前使用的大多数粘结剂可分为3类:蜡基或油基粘结剂、水基粘结剂和固体聚合物溶液。

①蜡基粘结剂通常含3-4个组分,聚合物控制着流动粘度、生品(烧结前的坯体)强度和脱脂的特征。短分子链的成型性能好且可使成型元件中的定向作用减至最小。蜡或油是主填充剂,在脱脂的初期被除去。表面活性剂用于改善粉末与粘结剂的相容性。增塑剂用来调节聚合物的流动特性。

②水基粘结剂含有水溶性聚合物、凝胶或水玻璃。这类粘结剂通常采用低压成型以避免粉末与粘结剂的分离和减少模具磨损及残余应力。由于水易于除去,这使得制造较厚的元件成为可能。粘结剂溶液的凝固或胶凝使生品具有了强度。在烧结前,水从生品中蒸发或升华出去,使变形降至最低程度。

③新型的、采用聚苯乙烯的固体聚合物溶液的粘结剂配方已经被采用以避免变形。主填充剂用溶液浸渍法除去。由于聚苯乙烯的骨架结构没法被削弱,所以避免了生品的变形。主填充剂是一种小的有机物分子,它既有苯环又有极性集团。苯环使它在混合时可溶于聚苯乙烯,极性集团则使它在脱脂时可溶于水或醇等溶剂中。

常见的粘结剂有聚丙烯(PP)、无规则聚丙烯(APP)、聚乙烯(PE)、乙烯一醋酸乙烯共聚体(EVA)、聚苯乙烯(PS)、丙烯酸系树脂等。其中PE具有优异的成形性;EVA与其他树脂的相溶性好,流动性、成形性也好;APP具有与其他树脂相溶性好、富于流动性和脱脂性的特征;PS 流动性好。助剂有蜡石石蜡、微晶石蜡、变性石蜡、天然石蜡、硬脂酸、配合剂等。成形材料的流动性可以使用高式流动点测定器和熔化分度器进行评价。当脱脂具有结合剂的含量多时,则脱脂性有降低的倾向,助剂的石蜡多者,脱脂性好。如果有机材料在特定的温度区域不能全部飞散掉,就会影响陶瓷的烧结,因此,需要考虑热分解特性,加以选择。

三、陶瓷挤压成形和成形用结合剂

堇青石由于具有耐热性、耐腐蚀性、多孔质性、低热膨胀性等优良材料特性,所以广泛用作汽车尾气净化催化剂用载体。堇青石蜂窝状物利用原料粒子的取向,产生出蜂窝状结构体的低热膨胀,可用挤压成形法来制造。

根据堇青石分子组成(2MgO·2Al2O3·5SiO2),原料可选用滑石、高岭土和氧化铝。成形用坯土从口盖里面的供给孔进入口盖内,经过细分后,向薄壁扩展,再结合,由此求得延伸性和结合性好的质量。另外,作为挤压成形后的蜂窝状体,为了保持形状,坯土的屈服值高者好,也就是说,选择结合剂应使坯土的流动性和自守性两个性能达到最佳化。

原料粉末、结合剂、助剂(润滑剂、界面活性剂等)及水经机械混练后,用螺杆挤压机连续式挤压或用油压柱塞式挤压机挤压成形。一般来说,挤压成形使用的结合剂只要用低浓度水溶液,便可显示出高粘性的结合性能。常用的有甲基纤维素(MC)、羧甲基纤维素(CMC)、聚氧乙烯(PEO)、聚乙烯醇(PVA)、羟乙基纤维素(HEC)等。MC能很好溶于水中,当加热时很快胶化。CMC能很好溶于水中,分散性、稳定性也高。PVA 广泛地用于各种成形。润滑剂可减少粉体间的摩擦,界面活性剂可提高原料粉末与水的润湿性。

缺乏可塑性,具有膨胀特性的坯土使挤压不够光滑,表面缺陷增加。因此,对结合剂的性能应有评价指标。评价还土的可塑性方法,有施加扭曲、压缩、拉伸等应力,求出应力与变形之间的关系,用毛细管流变计的方法、粘弹性的方法等。用这种方法可以评价坯土的自守性和流动性。在用粘弹性的方法评价时,可得出结合剂配合量增加到一定程度时,自守性和流动性均会增加的结果。也就是说,结合剂配合量的增加有助于原料的可塑性增加。

有机材料是特种陶瓷的主要结合剂,合理选用这些有机材料是保证产品质量的关键。在生产中,应根据粉料的特性、制品的形状、成形方法综合进行选择。

四、陶瓷烧结技术:

一、烧结机理

将颗粒状陶瓷坯体置于高温炉中,使其致密化形成强固体材料的过程,即为烧结。烧结开始于坯料颗粒间空隙排除,使相应的相邻的粒子结合成紧密体。但烧结过程必须具备两个基本条件:

①应该存在物质迁移的机理;

②必须有一种能量(热能)促进和维持物质迁移。

现在精密陶瓷烧结的机理已出现了气相烧结、固相烧结、液相烧结及反应液体烧结等四种烧结模式。它们的材料结构机理与烧结驱动力方式各不相同。最主要的烧结机理是液相和固相烧结,尤其是传统陶瓷和大部分电子陶瓷的烧结依赖于液相形成、粘滞流动和溶解再沉淀过程,而对于高纯、高强结构陶瓷的烧结,则以固相烧结为主,它们是通过晶界扩散或点阵扩散来达到物质迁移的。

二、精密陶瓷烧结使用的窑炉

陶瓷材料与制品最终烧制成功,可以在各种窑炉中烧成。可以是间歇式窑炉,也可以采用连续式窑炉。前者烧成为周期性,适合小批量或特殊烧成方法。后者用于大规模生产与相对低的烧成条件。精细陶瓷使用最广泛的是电加热炉。烧成温度与所需气氛确定窑炉方式的选择。许多高精尖的精细陶瓷制品需要采用超高温窑炉进行烧制。按照传统陶瓷烧成温度高低的划分。烧成温度在1100℃以下为低温、1100℃~1250℃为中温,1250℃~1450℃为高温烧成,1450℃以上为超高温烧成。如高纯氧化铝陶瓷、碳化硅及氮化硅陶瓷都需超高温烧结。目前国内精细陶瓷制品烧成使用的超高温窑炉,主要从日、美等国进口,目前日本某窑炉公司已能制造烧成温度达1800℃、温差为0℃的超高温窑炉。发展精细陶瓷产品,必须首先将超高温窑炉国产化,藉以降低设备投资,使产品尽快投产,意义很大。

三、精细陶瓷主要烧结技术

精细陶瓷烧结主要有以下几种技术方法:

①常压烧结:又称无压烧结。属于在大气压条件下坯体自由烧结的过程。在无外加动力下材料开始烧结,温度一般达到材料的熔点0.5-0.8即可。在此温度下固相烧结能引起足够原子扩散,液相烧结可促使液相形成或由化学反应产生液相促进扩散和粘滞流动的发生。常压烧结中准确制定烧成曲线至关重要。合适的升温制度方能保证制品减少开裂与结构缺陷现象,提高成品率。

②热压烧结与热等静压烧结:热压烧结指在烧成过程中施加一定的压力(在10~40MPa),促使材料加速流动、重排与致密化。采用热压烧结方法一般比常压烧结温度低100℃左右,主要根据不同制品及有无液相生成而异。热压烧结采用预成型或将粉料直接装在模内,工艺方法较简单。该烧结法制品密度高,理论密度可达99%,制品性能优良。不过此烧结法不易生产形状复杂制品,烧结生产规模较小,成本高。连续热压烧结生产效率高,但设备与模具费用较高,又不利于过高过厚制品的烧制。热等静压烧

结可克服上述弊缺,适合形状复杂制品生产。目前一些高科技制品,如陶瓷轴承、反射镜及军工需用的核燃料、枪管等、亦可采用此种烧结工艺。

③反应烧结:这是通过气相或液相与基体材料相互反应而导致材料烧结的方法。最典型的代表性产品是反应烧结碳化硅和反应烧结氮化硅制品。此种烧结优点是工艺简单,制品可稍微加工或不加工,也可制备形状复杂制品。缺点是制品中最终有残余未反应产物,结构不易控制,太厚制品不易完全反应烧结。除碳化硅、氮化硅反应烧结外,最近又出现反应烧结三氧化二铝方法,可以利用Al粉氧化反应制备Al2O3和Al2O3-Al复合材料,材料性能好。

④液相烧结:许多氧化物陶瓷采用低熔点助剂促进材料烧结。助剂的加入一般不会影响材料的性能或反而为某种功能产生良好影响。作为高温结构使用的添加剂,要注意到晶界玻璃是造成高温力学性能下降的主要因素。如果通过选择使液相有很高的熔点或高粘度。或者选择合适的液相组成,然后作高温热处理,使某些晶相在晶界上析出,以提高材料的抗蠕变能力。

⑤微波烧结法:系采用微波能进行直接加热进行烧结的方法。目前已有内容积1立方米,烧成温度可达1650℃的微波烧结炉。如果使用控制气氛石墨辅助加热炉,温度可高达2000℃以上。并出现微波连续加热15米长的隧道炉装置。使用微波炉烧结精细陶瓷,在产品质量与降低能耗方面,均比其它窑炉优越。

⑥电弧等离子烧结法:其加热方法与热压不同,它在施加应力同时,还施加一脉冲电源在制品上,材料被韧化同时也致密化。实验已证明此种方法烧结快速,能使材料形成细晶高致密结构,预计对纳米级材料烧结更适合。但迄今为止仍处于研究开发阶段,许多问题仍需深入探讨。(7)自蔓延烧结法:是通过材料自身快速化学放热反应而制成精密陶瓷材料制品。此方法节能并可减少费用。国外有报道说可用此法合成200多种化合物,如碳化物、氮化物、氧化物、金属间化合物与复合材料等。

⑦气相沉积法:分物理气相法与化学气相法两类。物理法中最主要有溅射和蒸发沉积法两种。溅射法是在真空中将电子轰击一平整靶材上,将靶材原子激发后涂覆在样品基板上。虽然涂覆速度慢且仅用于薄涂层,但能够

控制纯度且底材不需要加热。化学气相沉积法是在底材加热同时,引入反应气体或气体混合物,在高温下分解或发生反应生成的产物沉积在底材上,形成致密材料。此法的优点是能够生产出高致密细晶结构,材料的透光性及力学性能比其它烧结工艺获得的制品更佳。随着微电子、数据存储、先进显示与光学涂层越来越多的需求,对精密陶瓷薄膜的需求大幅增长。社会需求与高科技发展是精密陶瓷烧结水平不断提高与优化的原动力,精密陶瓷烧结技术将不断取得新进步。

发展新动向:

一、重要地位

特种陶瓷有热压铸、热压、静压及气相沉积等多种成型方法,这些陶瓷由于其化学组成、显微结构及性能不同于普通陶瓷,故称为特种陶瓷或高技术陶瓷,在日本称为精细陶瓷。特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,如高强度、高硬度、高韧性、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、光电、电光、声光、磁光等。由于性能特殊,这类陶瓷可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等方面。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此特种陶瓷的发展十分迅速,在技术上也有很大突破。特种陶瓷在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。本世纪初特种陶瓷的国际市场规模预计将达到500亿美元,因此许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必定会占据十分重要的地位。

二、技术新发展

首先,在粉末制备方面,目前最引人注目的是超高温技术。利用超高温技术不但可廉价地研制特种陶瓷,还可廉价地研制新型玻璃,如光纤维、磁性玻璃、混合集成电路板、零膨胀结晶玻璃、高强度玻璃、人造骨头和齿棍等。此外,利用超高温技术还可以研制出象钽、钼、钨、钒铁合金和钛等能够应用于太空飞行、海洋、核聚变等尖端领域的材料。例如日本在4000—15000℃和一个大气压以下制造金钢石,其效率比现在普遍采用的低温低压等离子体技术高一百二十倍。

超高温技术具有如下优点:

①能生产出用以往方法所不能生产的物质;

②能够获得纯度极高的物质:

③生产率会大幅度提高;

④可使作业程序简化、易行。

目前,在超高温技术方面居领先地位的是日本。据统计,2000年日本超高温技术的特种陶瓷市场规模也将会超过20万亿日元。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶K凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。在这几种方法中,绝大部分是近年开发研究出来的或是在近期得以完善的。

其次,在成型方面,特种陶瓷成型方法大体分为干法成型和湿法成型两大类:

①干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等;

②湿法成型大致可分为塑性成型和胶态浇注成型两大类。

近些年来胶态成型和固体无模成型技术在特种陶瓷的成型研究中也取得了较为快速的发展。

陶瓷胶态成形是高分散陶瓷浆料的湿法成形,与干法成形相比,可以有效控制团聚,减少缺陷。无模成形实际上是快速原型制造技术(Rapid prototyping manufacturing technology , RP &M) 在制备陶瓷材料中的应用。特种陶瓷材料胶态无模成形过程是通过将含或不含粘结剂的陶瓷浆料在一定的条件下直接从液态转变为固态,然后按照RP &M 的原理

逐层制造得到陶瓷生坯的过程。成形后的生坯一般都具备良好的流变学特性,可以保证后处理过程中不变形。

特种陶瓷成型技术未来的发展将集中于以下几个发面:

a. 进一步开发已经提出的各种无模成形技术在制备不同陶瓷材料中的应用;

b. 性能更加复杂的结构层以及在层内的穿插、交织、连接结构和成分三维变化的设计;

c. 大型异形件的结构设计与制造;

d. 陶瓷微结构的制造及实际应用;

e. 进一步开发无污染和环境协调的新技术。

然后,在烧结方面,特种陶瓷制品因其特殊的性能要求,需要用不同于传统陶瓷制品的烧成工艺与烧结技术。随着特种陶瓷工业的发展,其烧成机理、烧结技术及特殊的窑炉设施的研究取得突破性的进展。

目前特种陶瓷的主要烧结方法有:常压烧结法、热压烧结/热等静压烧结法、反应烧结法、液相烧结法、微波烧结法、电弧等离子烧结法、自蔓延烧结法、气相沉积法等。

最后,在特种陶瓷的精密加工方面,特种陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差,加工难度大。因此,研究特种陶瓷材料的磨削机理,选择最佳的磨削方法是当前要解决的主要问题。

近年来兴起的磨削加工方法主要有:

a. 超声波振动磨削加工方法。

b. 在线电解修整金刚石砂轮磨削加工方法。

c. 电解、电火花复合磨削加工工艺。

d. 电化学在线控制加工方法。

采用刀具加工陶瓷也引起了人们的极大兴趣。目前,这方面的工作仅处于研究实验阶段,由于用超高精度的车床和金刚石单晶车刀进行加工,以微米数量级的微小吃刀深度和微小的走刀量,能获得0.1微米左右的加工精度,因而许多国家把这种加工技术作为超精密加工的一个方

面而加以开发研究,在我国,清华大学新型陶瓷与精细工艺国家重点实验室在这方面的研究成果已位居世界前列。

三、应用新发展

特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要说明。

①耐热性能优良的特种陶瓷可望作为超高温材料用于原子能有关的高温结构材料、高温电极材料等。

②隔热性优良的特种陶瓷可作为新的高温隔热材料,用于高温加热炉、热处理炉、高温反应容器、核反应堆等。

③导热性优良的特种陶瓷极有希望用作内部装有大规模集成电路和超大规模集成电路电子器件的散热片。

④耐磨性优良的硬质特种陶瓷用途广泛,目前的工作主要是集中在轴承、切削刀具方面。

⑤高强度的陶瓷可用于燃气轮机的燃烧器、叶片、涡轮、套管等;在加工机械上可用于机床身、轴承、燃烧喷嘴等。目前,这方面的工作开展得较多,许多国家如美国、日本、德国等都投入了大量的人力和物力,试图取得领先地位。这类陶瓷有氮硅、碳化硅、塞隆、氮化铝、氧化锆等。

⑥具有润滑性的陶瓷如六方晶型氮化硼极为引人注目,目前国外正在加紧研究。

⑦生物陶瓷方面目前正在进行将氧化铝、磷石炭等用作人工牙齿、人工骨、人工关节等研究,这方面的应用引起人们极大关注。

⑧一些具有其他特殊用途的功能性新型陶瓷(如远红外陶瓷等)也已开始在工业及民用领域发挥其独到的作用。

参考文献:

[1] 《最新精细陶瓷技术》/[日]工业调查会编辑部编;陈俊彦译.-北京:中国建筑工业出版社,1988.4

[2]外文期刊Synthesis of ZrO2-SiO2 mesocomposite with high ZrO2 content via a novel sol-gel method 2005,84(1/3

[3] 期刊论文Sol-Gel法制备ZrO2粉的析晶机制- 稀有金属材料与工程2005,34(z1)

[4]杨守峰张世新田杰谟,《精细陶瓷成型新工艺-快速自动成型》/中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文2000年度

[5]王祖德.建材无机非金属新材料的开发与发展[J].新材料产业,2009(10):19-23.

[6]付志伟.现代技术陶瓷发展现状研究[J].艺术与设计(理论),2009(11):239-241.

最新特种陶瓷-考试重点

普通陶器:即指土陶盆、罐、缸、瓮,以及耐火砖等具有多孔性着色坯体的制品,原料颗粒比较粗。 瓷:用高岭土等烧制成的材料,质硬且脆,比陶质细致,也称瓷器 瓷石:主要含石英和绢云母。由于它是石质,一般是用机器粉碎。瓷石是天然配好的制瓷原料,在1200-1250℃的温度下可以单独烧成瓷器,这就是所谓的“一元配方”。 高岭土:元代,景德镇发现了高岭土,并将其掺入瓷石中,即所谓的“二元配方”,它提高了原料中铝的含量,使瓷胎可以耐受1280-1300℃的高温,这是提高瓷胎坚固性的必要条件。 陶瓷:以无机非金属物质为原料,在制造或使用过程中经高温(540℃以上)煅烧而成的制品和材料。狭义:无机非金属材料中的一种类型(水泥、玻璃、陶瓷等)。广义:一切无机非金属材料及制品统称陶瓷。 特点:1、原料丰富(Clarke value,占地壳总量的70-80%)2、性能优越:(抗压)强度高、耐高温、耐磨损、耐腐蚀、抗氧化等3、与金属、高分子、复合材料呈四足鼎立之势 传统陶瓷:由粘土等硅酸盐天然原料为主的坯料制成的日用餐具、耐火材料、水泥、瓶玻璃、卫生洁具等。 近代陶瓷:以Al2O3、ZrO2、TiO2、SiC、Si3N4等人工原料或合成原料为坯料制成的陶瓷。 特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成、严格控制成型及烧结工艺所合成的,达到设计的微观结构和精确的尺寸精度,并具有优异特性的陶瓷。日本称技术陶瓷 结构陶瓷:用于机械结构零件的陶瓷。 功能陶瓷:具有特殊的电、磁、声、光、热、化学及生物功能的陶瓷。 陶瓷材料的结构与性能 1、材料的成分、显微组织结构与性能(一体化,正交化试验方法) 2、材料的结构受到组成及加工工艺的制约 3、显微结构的研究指导材料工艺的制订与优化 特种陶瓷的主要研究领域1、优化结构,获得优异性能2、材料的性能评价与可靠性 单相多晶体:陶瓷的相组成主要由单一相的多个晶体组成 多相多晶体:除了晶相(可能多相)外,还有气孔和玻璃相 晶相的结构:晶粒大小(晶粒度)、分布、形态,结晶特性、取向、晶界及表面形态 晶相:决定陶瓷基本性能的主导物相。单相多晶、多相多晶 晶形:晶体在形成、生长过程中,习惯性地、自发地按一定的规律生长和发育成一定的几何形态。(自形晶:完整(完全发育)晶体;半自形晶和他形晶:生长受到抑制,部分完整或很不完整。) 主晶相:决定材料基本性能。次生相:对陶瓷性能起重要调节性能。(析出相) 玻璃相:配料中引入的各种杂质组分经高温烧结的物理、化学反应,形成液相,冷却时转变为玻璃相(常分布于晶界部位)。 结构与作用—烧结体中起粘结作用,粘结晶相,连续分布—填充气孔、烧结体致密化—降低烧结温度,促进烧结—抑制晶体长大、防止晶形转变(低温烧结)—有利于杂质、添加物的重新分布—液相量依陶瓷的用途而定(液相量↑易变形,耐火度↓强度↓介电性↓)—热处理,促进玻璃相晶化—

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

耐火材料的分类

耐火材料的分类 ?作者:单位:中国水泥网收集资料[2007-11-5] 关键字:耐火材料-分类 ?摘要: 耐火材料的定义:耐火度大于1580℃的无机非金属材料为耐火材料。 耐火材料是材料工业的一部份,因用于热工窑炉而得名耐火材料。耐火材料分为常规耐火材料和特种耐火材料,常规耐火材料是指用于冶金炉、水泥窑、玻璃窑等热工窑炉炉衬的材料,多半由天然原料加工而成的。特种耐火材料用料纯度高,多为氧化物合成材料,用于特殊的冶炼设备,或是窑炉的特殊部位。 耐火材料品种繁多,常用的分类有四种。 一、按主晶相酸、碱性质分类 1、酸性材料制品:这类产品中以石英(SiO2)为第一相,SiO2属酸性氧化物,帮而得名。硅砖是酸性材料的代表产品;半硅砖、耐碱砖、耐酸砖中SiO2含量60%到80%,是半酸性材料。 2、碱性材料制品:以MgO、CaO为主晶相,因MgO、CaO是碱土氧化物,故而称为碱性耐火材料。它们的熔点高,抗碱性渣(C/S>2)侵蚀能力很强,属于高级耐火材料,但它们易于水化。镁铬砖、白云石砖、橄榄石砖等产品,主要华化学成份也是MgO、CaO也属于碱性材料。 3、中性材料制品:以Al2O3、ZrO2为主晶相,它们的化学行为可变,当遇到碱性氧化物时表现出酸性特点,如生成MgO、Al2O3、Al2O3、ZrO2;遇到有强酸性氧化物时又表现碱性特点。如生成黏土砖、高铝砖、菒来石砖是中性材料代表产品。锆英石制品也是中性产品。 二、按组成耐火材料主要成份分类 所谓主要成份是指第一相和第二相成份,含量大约占化学成份总量的90%左右。现代耐火材料技术发展越来越多项材料配料,故出现第二相、第三相成份,调节第二相、第三相成份即可产生新的技术,在化学组成上超出了第一相分类局限性,是应用最普遍的一种分类方法。 1、硅铝系列品:要硅铝系列材质中,主要成分是SiO2、Al2O3,它包括黏土砖、高铝砖、硅线石、蓝晶石、红柱石、莫来石砖等制品。 2、镁铬系列制品:镁铬系列中主要成分是MgO、Cr2O3,方镁石为第一相,镁铬尖晶石为第二相,属于这个系列的产品有镁铬砖和铬镁砖。 3、镁铝系列品:主要成分是MgO、Al2O3,由于它们生成MgO.Al2O3,镁铬系列制品中都含有镁质材料。 4、镁钙系列产品:主要成分是以MgO、CaO。它们都有极高的熔点,是重要的镁质材料。

特种陶瓷整理版

1名词解释 特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。 粉体颗粒:指在物质的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。 团聚体:由一次颗粒通过表面力吸引或化学键键合形成的颗粒,它是很多一次颗粒的集合体。 胶粒:即胶体颗粒。胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。 6什么是固相法、气相法、液相法,简述工艺流程 固相法就是以固态物质为出发原料,通过一定的物理与化学过程来制备陶瓷粉体的方法。 固相原料——配料——混合——合成——粉碎——粉体 气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成粉体的方法。 蒸发-凝聚法(PVD):原料——高温气化——急冷——粉体 蒸发-凝聚法是将原料加热至高温(用电弧或等离子流等加热),使之气化,接着在电弧焰和等离子焰与冷却环境造成的较大温度梯度条件下急冷,凝聚成微粒状物料的方法。 气相化学反应法(CVD):金属化合物蒸气——化学反应——粉体 气相化学反应法是挥发性金属化合物的蒸气通过化学反应合成所需物质的方法。 液相合成法也称湿化学法或溶液法。溶液法从均相的溶液出发,将相关组分的溶液按所需的比例进行充分的混合,再通过各种途径将溶质与溶剂分离,得到所需要组分的前驱体,然后将前驱体经过一定的分解合成处理,获得特种陶瓷粉体,可以细分为脱溶剂法、沉淀法、溶胶-凝胶法、水热法等。 溶液制备——溶液混合——脱水——前驱体——分解合成——粉体 7常用的气相法有哪些,各有何特点(3个)

特种陶瓷的制备工艺综述及其发展趋势

特种陶瓷的制备工艺综述及其发展前景 摘要:本文主要介绍了粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法以及未来的发展趋势。目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些面临急需解决的问题。当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。压力成形不能满足形状复杂性和密度均匀性的要求。多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;粉末冶金;陶瓷材料 引言 陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。因此研究特种陶瓷制备技术至关重要。 1 陶瓷原料的制备方法 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。 由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著

文字特种陶瓷定义

文字特种陶瓷定义 特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类,在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。如:电、磁、光、热、声、化学、生物等功能,以及耦合功能。如压电、热电、电光、声光、磁光等功能。 特种陶瓷的分类 特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。按照化学组成划分有: ①氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、氧化钛、氧化钍、氧化铀等。 ②氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。 ③碳化物陶瓷:碳化硅、碳化硼、碳化铀等。 ④硼化物陶瓷:硼化锆、硼化镧等。 ⑤硅化物陶瓷:硅化钼等。 ⑥氟化物陶瓷:氟化镁、氟化钙、氟化镧等。 硫化物陶瓷:硫化锌、硫化铈等。还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。 人们为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。 随着科学技术的发展,人们可以预期现代陶瓷将会更快地发展,产生更多更新的品种。 特种陶瓷的制作工艺 1、成形方法与结合剂的选择 特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。常见陶瓷成形方法、结合剂种类及用量如下 所示:

镁铬砖的分类及应用

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/df16866092.html,) 镁铬砖的分类及应用 镁铬砖是以氧化镁(MgO)和三氧化二铬(Cr2O3)为主要成分,方镁石和尖晶石为主要矿物组分的耐火材料制品。这类砖耐火度高,高温强度大,抗碱性渣侵蚀性强,热稳定性优良,对酸性渣也有一定的适应性。下面简单介绍一下镁铬砖的分类及应用。 一、分类标准 本标准适用于镁砂及铬铁矿制成的镁铬砖。 1、分类 ①砖按理化指标分为MGe-20、MGe-16、MGe-12、MGe-8四种牌号。 ②砖的分型应符合YB844-75《耐火制品的分型和定义》的规定。 ③砖的形状和尺寸按GB2074-80《炼铜炉用镁铬砖形状及尺寸》的规定,并可按需方图纸生产。 2、技术要求表 指标项目MGe-20MGe-16MGe-12MGe-8 MGO,%,不小于40 45 55 60 Cr2O3,%,不小于20 16 12 8 1550 1550 1550 1550 0.20MPa荷重软化开始温度,℃, 不低于

显气孔率,%,不大于23 23 23 23 常温耐压强度,MPa,不小于24.5 24.5 24.5 24.5 ①砖的理化指标应符合表1的规定。 ②砖的尺寸允许偏差及外观应符合表2的规定。 ③宽度0.26~0.50mm,长度不大于40mm的裂纹,每面不得超过三条。 3、试验方法 ①砖的检验制样按GB7321-87《致密定形耐火制品试验的制样规定》进行。 ②化学分析按GB5070-85《镁铬质耐火材料化学分析方法》进行。 ③荷重软化温度的检验按YB370-75《荷重软化温度检验方法》进行。 ④显气孔率的检验按GB2997-82《致密定形耐火制品显气孔率、吸水率、体积密度和真气孔率试验方法》进行。

特种陶瓷的概述

特种陶瓷概述 10机电一体化3班xxx 指导老师xxx 摘要:本文回顾了陶瓷材料的发展历史,着重评述了特种陶瓷如工程结构陶瓷、生物陶瓷、功能陶瓷等的发展现状,并展望了特种陶瓷的未来发展。 关键词:特种陶瓷、分类、应用、发展及其新动向 1 前言 信息技术、能源和材料是现代文明的三大支柱,材料是人类生产活动和生活必须的物资基础。从现代科学技术发展史可以看到,每一项重大的新技术发现,往往都有赖于新材料的发展。随着能源开发、空间技术、激光技术、传感技术等新技术的出现,现有的一般用途的材料已难以满足要求,开发和有效利用高性能材料和功能材料开始引人瞩目。陶瓷材料具有高强度、耐高温、耐腐蚀、耐磨等特点,因而成为新材料的发展中心。 2 特种陶瓷的定义及分类 特种陶瓷(special ceramics)又叫精细陶瓷(fine ceramics)、先进陶瓷(advanced ceramics)、高技术陶瓷(high-technology ceramics)、或高性能陶瓷(high-performance ceramics)。一般认为,特种陶瓷是“采用高精度的原材料,具有精确控制的化学组成、按照便于控制的制作技术加工的、便于进行结构设计,并具有优异特性的陶瓷”。它的出现与现代工业忽然高技术密切相关。近20年来,由于冶金、汽车、能源、生物、航天、通信等领域的发展对新材料的需要陶瓷材料在国内外已经逐步形成了一个新兴的产业。而特种陶瓷在许多方面都突破了传统陶瓷的概念和范畴,是陶瓷发展史上的一次革命性的变化。 特种陶瓷按照显微结构和基本性能,可分为结构陶瓷、功能陶瓷、智能陶瓷、纳米陶瓷和陶瓷基复合材料。 结构陶瓷:用于高压高温、抗辐射、抗冲击、耐腐蚀、耐磨等环境下的陶瓷材料,可分为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷等。 功能陶瓷:具有接受特殊敏感功能的陶瓷制品,可分为电功能陶瓷、磁功能陶瓷、光功能陶瓷、生物功能陶瓷。 智能陶瓷:能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷材料,主要有压电陶瓷、形状记忆陶瓷和电流陶瓷。 纳米陶瓷:晶粒或颗粒处于纳米范围(1-100nm)的陶瓷,包括纳米陶瓷粉体、纳米陶瓷纤维、纳米陶瓷薄膜、纳米陶瓷块体。 陶瓷基复合材料:由陶瓷基体和增强体所组成的复合材料,其性能比单一材料的性能优越。初具有陶瓷的高强度、高硬度,良好的耐磨性、耐热性、耐腐蚀性等特点外,还使陶瓷的韧性大大提高,强度和模量也有一定提高。主要有纤维增强、晶须增强、颗粒增强陶瓷基复合材料。 根据陶瓷的性能,吧它们分为高强度陶瓷、高温陶瓷、高韧性陶瓷、铁电陶瓷、压电陶瓷、电解质陶瓷、半导体陶瓷、电介质陶瓷、光学陶瓷(既透明陶瓷)、磁性瓷、耐酸陶瓷和死亡陶瓷。 按照化学组成划分有: 1、氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、

特种陶瓷教学大纲

《陶瓷工艺学》教学大纲

的物理化学变化。 本章难点:配方计算包括由化学组成计算配方,由实验公式计算配方,由矿物组成计算配方,由分子式计算配方,以及更换原料时的重配计算。可塑泥团的流变特性,陶瓷泥浆的流变特性及影响因素。矿物煅烧时的变化。 第三章釉层的工艺基础(6学时) 3.1 釉料的组成 3.1.1 釉的分类 3.1.2 确定釉料组成的依据 3.1.3 釉料配方的计算 3.2 釉层的形成 3.2.1 釉层形成过程的反应 3.2.2 釉料与坯体的作用 3.2.3 釉层的显微结构 3.3 釉层的性质 3.3.1 釉层的物理化学性质 3.3.2 坯-釉适应性 3.3.3 釉的析晶 本章重点:铅釉,石灰釉,长石釉的主要特性,釉料成分的种类,确定釉料组成的依据,釉料冷却过程的变化,釉的熔融温度范围,釉的粘度与表面张力,釉的化学稳定性,坯釉适应性,釉熔体的析晶过程,影响釉熔体析晶的因素,析晶对釉面光学性质的影响。 本章难点:釉料加热过程的变化,釉层中气泡的产生,釉料与坯体的作用,长石质透明釉,乳浊釉的显微结构,釉的热膨胀性,釉的弹性,釉的硬度,釉的介电性质。 第四章生产过程(16学时) 4.1 原料的处理 4.1.1 原料的精选 4.1.2 原料的预烧 4.1.3 原料的合成 4.2 坯料的制备 4.2.1 坯料的种类和质量要求 4.2.2 原料的细粉碎 4.2.3 泥浆的脱水 4.2.4 造粒及陈腐和真空处理 4.3 陶瓷成型方法与模具 4.4 生坯的干燥 4.4.1 干燥的工艺问题 4.4.2 干燥制度确定 4.4.3 干燥方法 4.5 施釉 4.5.1 釉浆的制备 4.5.2 施釉 4.6 烧成 4.6.1 烧成制度的制订 4.6.2 低温烧成与快速烧成 4.6.3 烧成新方法

关于耐火材料原料的分类

耐火材料是由各种不同种类的耐火原料在特定的工艺条件下加工生产而成。耐火材料在使用过程中会受到各种外界条件的单独或复合作用,因此要有多种具有不同特性的耐火材料来满足特定的使用条件,其所用的耐火原料种类也是多种多样的。 耐火原料的种类繁多,分类方法也多种多样。按原料的生成方式可分为天然原料和人工合成原料两大类,天然矿物原料是耐火原料的主体。自然界中存在的各种矿物是由构成这些矿物的各种元素所组成。现在已探明氧、硅、铝三种元素的总量约占地壳中顽强素总量的90%,氧化物、硅酸盐和铝硅酸盐矿物占明显优势,是蕴藏量十分巨大的天然耐火原料。天然耐火原料的主要品种有:硅石、石英、硅藻土、蜡石、粘土、铝矾土、蓝晶石族矿物原料、菱镁矿、白云石、石灰石、镁橄榄石、蛇纹石、滑石、绿泥石、锆英石、珍珠岩、铬铁矿和石墨等。天然原料通常含杂质较多,成分不稳定,性能波动较大,只有少数原料可直接使用,大部分都要经过提纯、分级甚至煅烧加工后才能满足耐火材料的生产要求。 能作耐火原料用的天然矿物原料的种类是有限的,对制作现代工业所特殊要求的高质量和高技术耐火材料,它们无法满足要求。人工合成耐火原料在近几十年的发展十分迅速。这些合成的耐火原料可以完全达到人们预先设计的化学矿物组成与组织结构,质量稳定,是现代高性能与高技术耐火材料的主要原料。常用的人工合成耐火原料有:莫来石、镁铝尖晶石、锆莫来石、堇青石、钛酸铝、碳化硅等。 按耐火原料的化学组分,可分为氧化物原料与非氧化物原料。随着现代科学技术的发展,某些有机化合物已成为高性能耐火原料的前驱体或辅助原料。 按化学特性,耐火原料又可分为酸性耐火原料,如硅石、粘土、锆英石等;中性耐火原料,如刚玉、铝矾土、莫来石、铬铁矿、石墨等;碱性耐火原料,如镁砂、白云石砂、镁钙砂等。 按照其在耐火材料生产工艺中的作用,耐火原料又可分为主要原料和辅助原料。主要原料是构成耐火材料的主体。辅助原料又分为结合剂和添加剂。结合剂的作用是耐火材料坯体

特种陶瓷材料

特种陶瓷材料 电气05 黄纯 内容摘要:材料是人类用以制作有用物件的物质,是人类社会进步的物质基础和先导。人类历史的发展无不伴随着材料的发明,应用和发展。从原始社会以来,人类经历了石器时代,青铜时代和铁器时代。现在已经跨进按照人类需要设计材料,合成材料和应用材料的新时代。目前,材料的发展水平和利用程度已成为人类文明进步的标志。 关键词:特种精细陶瓷材料性能形成基础应用发展 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。陶瓷材料分为普通陶瓷(传统陶瓷)材料和特种陶瓷(现代陶瓷)材料两大类。 普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。 特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应

各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。 人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。陶瓷的概念就发展成为可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。 研究陶瓷的结构和性能的理论的展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。这里应该和量子力学,纳米技术,表面化学等学科关联起来。陶瓷学科成为一个综合学科。 陶瓷材料又称精细陶瓷,它以抗高温、超强度、多功

日用陶瓷材料的应用及其发展

日用陶瓷材料的应用与发展 法学092 刘婷09437105 陶瓷材料是人类应用时间最早,并且应用领域最广的材料之一。它是一种天然或人工合成的粉状合成物,经过成型或高温烧结,由金属元素和非金属的无机化合物构成的固体材料。 陶瓷具有耐高温、耐腐蚀、耐磨损、原料丰富、成本低廉等诸多优点。现在,最受关注的三大固体材料是金属材料、高分子材料,以及陶瓷材料。按照其用途的不同,通常可将陶瓷材料分为工业、艺术和日用陶瓷三大类。其中工业陶瓷是指应用于各种工业的陶瓷制品,包括建筑陶瓷、化工陶瓷、电子陶瓷和特种陶瓷几大类;艺术陶瓷主要指花瓶、雕塑等以陈列欣赏和美化环境为主要作用的陶瓷;而日用陶瓷主要是指如餐具、茶具、洁具等日常生活中应用的陶瓷制品。本文主要研究日用陶瓷的应用形式及其发展趋势。 陶瓷材料与其他材料 相对而言,金属材料具有良好的延展性和可塑性,具有良好的热传导性,可是其耐温性和耐腐蚀性较差。高分子材料具有耐腐蚀性和可加工性,色彩丰富,但是其机械强度,耐高温性和耐磨性较差。陶瓷具有高硬度、耐磨、耐酸、耐碱、耐热、耐冷等优越的性能,肌理富于变化,色彩丰富而且不褪色,造型可塑性强,在丰富人们的物质和精神生活,美化环境,以及提升生活品质等方面可达到作用,是其他材料不可替代的。陶瓷致命的缺点在于高脆性和韧性差,这是材料结构所决定的。在室温下,陶瓷材料分子结构几乎不会产生滑移和位错运动,材料处于受力状态时无法通过塑性变形来松弛应力[2]。但是随着生产技术的发展和陶瓷新品种的开发,必然可在其原有基础上逐步改善其容易碎裂的不足,满足相应的产品设计要求。 现在,金属材料和高分子材料越来越多的应用于餐具,容器等日用产品,走

特种陶瓷的应用与发展

创新实验设计与训练报告

特种陶瓷的应用与发展 摘要:特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。 关键字:特种陶瓷应用发展前景 特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。 按照化学组成划分有:氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷,其他还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。 除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。 为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。 随着科学技术的发展,人们可以预期现代陶瓷将会更快地发展,产生更多更新的品种。 特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,如高强度、高硬度、高韧性、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、光电、电光、声光、磁光等。由于性能特殊,这类陶瓷可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等方面。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此特种陶瓷的发展十分迅速,在技术上也有很大突破。特种陶瓷在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。本世纪初特种陶瓷的国际市场规模预计将达到500亿美元,因此许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必定会占据十分重要的地位。 特种陶瓷的应用

耐火材料

一、填空题 1,硅酸盐矿物显微结构:硅酸盐结合物胶结晶体颗粒晶体颗粒直接结合 成结晶网2,熔渣让耐火材料破坏的三种方式:单纯溶解、反应溶解、侵入变质溶解 3,让坯料重新分布的力:静电引力、机械结合力、内摩擦力 4,镁砖的分类:烧 成镁砖、不烧镁砖、再结合镁砖5,颗粒料的组成原则:两头大,中间小 6,氧化铝含量:<%72(莫来石) >%72(莫来石,刚玉) 7,测耐火材料的抗拉性的 两种方法:动态法、静态法 8,ZrO2增韧机理:①应力诱导相变增韧 ②微裂纹增韧 ③裂纹分支增韧④裂纹偏转和弯曲增韧 9,铬镁质材料:方镁石,尖晶石 其基质有三种:M2S 、 CMS 、 C3MS2 1.耐火材料的概念:指主要由无机非金属材料构成的且耐火度不低于1580℃的材料和 制品。耐火材料的品种和质量取决与耐火材料的原料和其生产工艺。 2.耐火材料 分类Ⅰ、化学矿物组成分类:氧化硅质、硅酸盐质、刚玉质、镁质、白云石质、橄榄 石质、尖晶石质、含炭质、含锆质、特殊等耐火材料。Ⅱ、按耐火度高低分为:①普 通耐火制品(耐火度1580-1770℃)、②高级耐火制品(耐火度1770-2000℃)、特级 耐火制品(耐火度2000℃以上)。Ⅲ、按制品形状和尺寸分为:标准砖、异形砖、特 异型砖等。Ⅳ、按化学性质分类:酸性耐火材料、中性耐火材料、碱性耐火材料。 (化性分类对了解耐火材料的化学性质,判断在使用过程中它们之间及耐火材料与接 触物间化学作用情况有着重要意义)3、氧化硅耐火材料为典型的酸性耐火材料, 其矿物组成为:主晶相为磷石英和方石英,基质为石英玻璃相。 4、两种矿物组成:①结晶相(主晶相和次晶相):主晶相是耐火制品结构的主体而且熔点较高的结晶相。其性质、数量、结合状态直接决定着耐火材料的性质。次晶相又称第二固相,也是熔 点较高的晶体,提高耐火制品中固相间的直接结合,改善制品性能。②玻璃相:基质 是指填充于主晶相之间的不同成分的结晶矿物(次晶相)和玻璃相,也称结合相。硅 砖的主晶相:磷石英、方石英粘土砖的主晶相:莫来石、方石英5、耐火材料的气孔 存在形态分类:封闭在制品中不与外界想通的闭口气孔,一端封闭另一端与外界相通 的开口气孔,两端都与外界相通的贯通气孔。气孔的存在主要影响材料的致密度,显 气孔率高时,材料结构疏松,强度低,抗渣性能弱。 耐火材料的化学组成是决定其矿物组成、组织结构的基础。根据各种化学成分的含量 和作用分为:主成分、杂质和外加成分三种。。主成分:指耐火材料中占绝大多数的,对材料高温性质起决定性作用的化学成分。杂质:指耐火材料中不同于主成分的,含 量微少而对耐火材料的抵抗高温性质带来危害的化学成分。外加成分:常称为外加剂,是在耐火制品生产中为特定目的另外加入的少量成分。 矿物:由相对固定的化学组分构成的有确定的内部结构和物理性质的单质或化合物 密度分为:体积密度、视密度、真密度。①体积密度d b:指材料的质量M与其含材料 的实体积Vb和全部气孔体积之和的总体积V b之比 d b=M/V b=M/(Vt+Vc+Vo)。②视密度(表观)da:指材料的质量与其含材料的实体积和封闭气孔体积之和的体积之比。 da=M/(Vt+Vc)③真密度dt:指材料质量与其实体积之比.dt=M/Vt 主晶相:指构成结构结构的主体且熔点较高,对材料的性质起支配作用的一种晶相,(其性质,数量,分布和结合状态直接决定耐火制品性质)。次晶相:又称第二晶相 或第二固相,指耐火材料中在高温下与主晶相和液相并存的,一般其数量较少和对材 料高温性能的影响较主晶相为小的第二种晶相。基质:指在耐火材料大晶体间隙中 存在,或由大晶体嵌入其中的那部分物质,也可认为是大晶体之间的填充物质或胶结物。 耐火度:耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性能,表征材料 抵抗高温作用的性能。其意义与熔点不同。熔点是结晶体的液相与固相处于平衡时的

特种陶瓷概述

特种陶瓷概述 特种陶瓷概述 摘要本文主要叙述了国内特种陶瓷市场发展和生产现状,讲述了相关的制备方法和最新的相关技 术前沿工艺,最后展望了特种陶瓷未来的发 展趋势。 关键词特种陶瓷;市场现状;制备工艺;发展规模 、八、, 刖言 特种陶瓷也称为先进陶瓷、新型陶瓷、高性能陶瓷等,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的,具有独特和优异性能的陶瓷材料。已成为现代高性能

复合材料的一个研究热点。特种陶瓷于二十世纪发 展起来,在近二、三十年内,新产品不断涌现,在 现代工业技术,特别是在咼技术、新技术领域中的 地位日趋重要。许多科学家预言:特种陶瓷在二^一 世纪的科学技术发展中,必将占据十分重要的地 位。特种陶瓷不同的化学组成和组织结构决定了它 不同的特殊性质和功能,可作为工程结构材料和功 能材料应用于机械、电子、化工、冶炼、能源、医 学、激光、核反应、宇航等领域。一些经济发达国 家,特别是日本、美国和西欧国家,为了加速新技 术革命,为新型产业的发展奠定物质基础,投入大 量人力、物力和财力研究开发特种陶瓷,因此,特 种陶瓷的发展十分迅速,在技术上也有很大突破。 1.发展现状 1.1市场情况: 与20年前相比,目前我国特陶行业结构变化巨大,私营企业、外资企业的数量和比重迅猛增加,特别是外资企业增长势头迅猛,约占我国全部特陶企业的10%左右。当前在电子陶瓷行业中,股份制和三资企业市场竞争力最强。我国特陶市场的开放和市场规模的潜力,吸引许多国外企业纷纷进入,投资不断增加,规模逐步扩大,其投资模式已从最初的产品输入(经销产品)到生产输入(投资设厂),再到应用研究输入(设立实验室),对我国本土特陶企业带来巨大挑战。 1995年我国特种陶瓷产品销售额80亿元人民币(约合10亿美元),其中电子陶瓷约占70%约56亿元;结构陶瓷占30%约为24亿元。相当于日本的1/9、美国的1/5 ,与欧洲的市场规模相当。2015年,特种陶瓷产品产值达到约450 亿元。 45U 460 400

耐火材料种类、性能及检测

耐火材料种类、性能及检测 目前,工业上使用的耐火材料种类繁多,性能各异,涉及工业生产的各个领域。生产水泥使用的耐火材料应满足水泥生产工艺的要求,本文针对水泥回转窑系统使用耐火材料的种类及性能,从耐火砖和耐火浇注料二个方面进行介绍。 第一节回转窑工艺特性对耐火材料的要求 一、简介回转窑的工艺特性: 1.窑温高,对耐火材料的损坏加剧,水泥熟料熔体中的C3A (铝酸三钙)、C4AF(铁铝酸四钙)等侵蚀程度加大,窑内过热导致热应力破坏加剧。 2.窑速快,单位产量加大,机械应力和疲劳破坏加大。 3.碱、氯、硫等组分侵蚀严重,硫酸盐和氯化物等挥发、凝聚、反复循环富集,加剧结构剥落损坏。 4.窑径大,窑皮的稳定性差。 5.窑系统结构复杂,机械电气设备故障增加,频繁开停窑导致热震破坏加剧。 二、预分解窑对耐火材料的要求 1.常温力学强度和高温结构强度要高,窑内不管烧成状况的好坏,窑内温度在10000C以上,要求耐火砖荷重软化温度高。 2.热震稳定性要好,即抵抗窑温剧烈变化而不被破坏的能力好。在停窑,开窑以及窑运转状态不稳定的情况下,窑内的温度变化较大,要求窑衬在温度剧烈变化的情况下,不能有龟裂或者

剥落,要求在操作时尽量使窑温稳定。 3.抗化学侵蚀性要强,在窑内烧成时,所形成的灰分、熔渣、蒸气会对窑衬产生侵蚀。 4.耐磨及力学强度要高,窑内生料的滑动及气流中粉尘的磨擦,对窑衬造成磨损。尤其是开窑的初期,窑内还没有窑皮保护时更是如此。窑衬还要承受高温时的膨胀应力及窑筒体椭圆变形所造成的应力。要求窑衬要有一定的力学强度。 5.窑衬具有良好的挂窑皮性能,窑皮挂在衬砖上,对衬砖有保护作用,如果衬砖具有良好的挂窑皮性能并且窑皮也能够维持较长时间,可以使窑衬不受侵蚀与磨损。 6.气孔率要低,如果气孔率高会造成腐蚀性的窑气渗透入衬砖中凝结,毁坏衬砖,特别是碱性气体。 7.热膨胀安定性能要好,窑筒体的热膨胀系数虽大于窑衬的热膨胀系数。但是窑筒体温度一般都在280-450度左右,而窑衬砖的温度一般都在800度以上,在烧成带温度有1500度,窑衬的热膨胀比窑筒体要大,窑衬容易受压力造成剥落。 8.低铬或无铬,减少铬公害。 9.抗水化性能要好。 第二节预分解窑用耐火砖的种类 一、非碱性砖 非碱性砖为氧化铝含量在48%以上的硅酸铝耐火制品。矿物组成为刚玉(α-AI2O3)、莫来石(3 AI2O32SiO2)和玻璃相,其

中国特种陶瓷现状

中国特种陶瓷现状 能源,材料和信息是当代文明的三大支柱。新材料是新技术,新产业赖以形成和发展的基础,特种陶瓷(工程结构陶瓷,电子陶瓷,生物陶瓷)具有电、声、光、磁、热、力学、化学、医学等一种或多种物理,化学功能,在许多场合不论现在或将来都不能为其它材料所取代,已成为用途广泛,迅速发展的新兴产业,各发达国家均投入大量人力,物力研究和开发,竞争十分激烈。美国提出的“先进材料与材料制备”计划,每年用于材料研究工程费高达20~25亿美元,以提高其竞争力,越来越多的国家已意识到,就某种意义上说,谁掌握了高性能材料,谁就掌握了未来的先进技术,另一方面,特种陶瓷材料属技术密集,知识密集的学科,材料的性能不仅与化学组成有关,而且很大程度上取决于材料内部结构,而结构的形成又与材料制备起始状况,工艺过程等密切相关。因此研究开发的特点是要求高,难度大,获取技术和情报困难,引进高级技术,人才十分不易,价格十分昂贵。 当前工程结构陶瓷的研究经历了一段全球“陶瓷热”的鼎盛时期后已逐渐冷静下来,转入深入细致的基础性工作。针对结构陶瓷的弱点之一的脆性,近年来,陶瓷材料科学家围绕提高陶瓷韧性方面进行了许多卓有成就的研究;电子信息正向着集成化,微型化和智能化方向发展,相应地要求电子元器件逐步向微型化、薄膜化、多功能、高效能、高可靠性和高稳定性方向发展;生物陶瓷作为医用材料和金属材料.高分子材料相比,具有生物相容性好的优点,正受到医疗界的重视,已成功用于人造骨,关节,牙齿等。 特种陶瓷种类繁多,本文仅就某些陶瓷材料及其相关问题,提出某些见解进行商讨,以期促进我省,我国特种陶瓷的迅速发展。 1、基础研究和应用基础研究 特种陶瓷材料的开发应用首先依赖于新材料的发现和人工合成。由于现代科学技术的发展,化学与材料科学的发展与有机结合,产生了材料化学,物理与材料科学紧密结合形成了材料物理。近百年来,新化合物、固溶体、多晶型等不断涌现。特种陶瓷领域中,合成化合物及材料特性方面取得了某些重大进展(表1)。 伴随着电子陶瓷元器件向轻、薄、短、小、多功能、高性能、高可靠性、高密度表面组装的发展需要,以及日益激烈的市场竞争,要求高合格率和低成本化,必须加强基础研究和应用基础研究。当前国内虽然有一批知名企业、单位,正从事这方面相关的研究工作,并已取得了长足的进步。但另一方面大都为跟踪研究,很少或缺乏独立自主的基础研究和应用基础研究。例如,有人对纳米材料基本特性尚缺乏应有的认识,就提出许多纳米产品进行误导;又如陶瓷相图研究国外十分重视,它是一项长期艰苦的复杂工作,国内已很少见到这方面的报导;界面物理化学及陶瓷材料设计等方面的工作,由于对仪器设备,计算技术要求高,费用大,国内至今这方面的工作少见报道;机械装备设计,加工制造与

耐火材料分类及应用

第八章耐火材料 第二节耐火材料产品分类及统计指标结构 (1) 一、耐火材料产品统计指标结构 (1) 二、有关名词解释 (4) 第三节耐火材料产品产量统计 (19) 二、耐火材料产品产量 (20) 三、耐火材料产品产量的统计范围 (31) 第四节耐火材料主要技术经济指标计算方法 (42) 一、耐火材料合格率 (43) 二、耐火材料原料消耗 (57) 三、耐火材料综合能耗 (66) 四、耐火材料工序单位能耗 (71) 五、烧成耐火制品标煤单耗 (79) 六、耐火材料电耗 (86) 七、耐火材料工人实物劳动生产率 (94) 八、压砖机台班产量 (99) 九、烧成窑有效容积利用系数 (107) 十、倒焰窑平均周转时间 (115) 十一、耐火材料成品率 (122)

第二节耐火材料产品分类及统计指标结构 一、一、耐火材料产品统计指标结构 耐火材料产品统计指标如如图 粘土制品 高铝制品 烧成耐火制品硅质制品 镁质制品 其它烧成制品 不烧高铝质砖 不烧耐火制品不烧硅质砖 镁碳砖 耐火材料刚玉制品 氧化铬制品 氧化铝制品 特种耐火材料氧化镁制品 氧化铍制品 ┋ 复吹转炉(电炉)用底吹供气元件 精炼钢包底吹用透气塞 功能耐火材料连铸用滑板 连铸用整体塞棒、长口水、浸入式水口 熔融石英质水口 耐火泥浆料 不定形耐火材料捣打料 可塑料 浇注料 二、有关名词解释 1)烧成耐火制品。将粒状、粉末状耐火原料和结合剂经混练、成型、干燥、高温烧成而制得的耐火材料。 2)不烧耐火制品。采用粒状、粉末耐火原料和合适的结合剂,经成型,但不烧成而直接使用的耐火材料。 3)特种耐火材料。由高熔点氧化物、难熔非氧化物和碳素中的一种或多种复合,经特殊烧烤工艺制成的具有某种特殊性质的耐火材料。 4)不定形耐火材料(散状耐火材料或耐火混凝土)。有合理级配的粒状、粉状耐火原料与结合剂及多种外加剂组成的不经高温烧成,而在现场通过混练、成型和烧烤后直接使用的耐火材料。

相关文档