文档库 最新最全的文档下载
当前位置:文档库 › 循环流化床锅炉炉膛热力计算

循环流化床锅炉炉膛热力计算

循环流化床锅炉炉膛热力计算
循环流化床锅炉炉膛热力计算

循环流化床锅炉炉膛热力计算

程乐鸣, 岑可法, 倪明江, 骆仲泱

(浙江大学热能工程研究所,能源清洁利用与环境工程教育部重点实验室,

浙江杭州 310027)

摘要:结合作者在循环流化床锅炉传热和设计理论研究及实践的基础上,提出一种循环流化床锅炉炉膛的热力计算方法,包括循环流化床锅炉炉膛的几何尺寸确定、炉膛热量平衡和炉膛传热计算。考虑循环流化床锅炉炉型不同,其热力计算方法有所不同,该方法针对采用高温分离装置的循环流化床锅炉,提出的计算方法可用于一般高温分离的循环流化床锅炉的设计计算,其余炉型可在此基础上根据具体炉型特点修改使用。

关键词:循环流化床锅炉;锅炉设计;热力计算

1 引言

循环流化床锅炉燃烧效率高,污染排放低,燃料适应性广,被广泛应用于蒸汽生产中。随着循环流化床锅炉的发展,其容量和规模都在增大。目前美国在建的300 MWe循环流化床锅炉即将投入运行,600 MWe容量的循环流化床锅炉也已在设计中。利用国内技术生产的35 t/h、75 t/h循环流化床锅炉有大量运行,目前国内投入运行的最大循环流化床锅炉是高温高压420 t/h容量的锅炉,高温高压450 t/h循环流化床锅炉也已在建,但运用的是国外技术。

在循环流化床锅炉的开发与发展过程中,各设计单位和锅炉制造厂家开发出各种炉型,针对各自不同的炉型采用各自的热力计算方法,即使是相同的炉型设计方法也可能不同,各有特点。这与煤粉锅炉和鼓泡流化床锅炉在设计过程中有统一的热力计算方法[1]可供参考不同。有关循环流化床锅炉热力计算方法在文献中也少见发表。本文结合作者在循环流化床锅炉传热和设计理论研究及实践的基础上,建立了一种简单的循环流化床锅炉炉膛热力计算方法[2-9]。

与一般沸腾燃烧鼓泡流化床锅炉不同,循环流化床锅炉类型较多,炉型不同,其热力计算方法有所不同。本方法针对采用高温分离装置的循环流化床锅炉,提出的计算方法可用于一般高温分离的循环流化床锅炉的设计计算,其余炉型可在此基础上根据具体炉型特点修改使用。典型的高温分离器型循环流化床锅炉采用高温立式旋风分离器,安置在锅炉炉膛上部烟气出口处。离开炉膛的大部分颗粒,由高温分离器所捕集并通过固体物料再循环系统从靠近炉膛底部的物料回送口送回炉膛。经高温分离器分离后的高温烟气则进入尾部烟道,与布置在尾部烟道中的受热面进行换热后排出。计算中未考虑添加石灰石的影响,若添加石灰石,则入炉热量、灰浓度和烟气量等有变化,需修正。

2 循环流化床锅炉炉膛几何尺寸的确定

2.1 炉膛横截面积

循环流化床锅炉炉膛一般由膜式水冷璧构成,其传热面积以通过水冷璧管中心面的面积计算。若炉膛由轻型炉墙或敷管炉墙构成,则需考虑角系数的影响。

炉膛尺寸的确定主要包括炉膛密相区和稀相区的长、宽、高以及是否有截面收缩等确定。

炉膛横截面积的确定取决于床层运行风速或截面热负荷的选取。密相区的运行风速类似于鼓泡流化床。一般循环流化床锅炉稀相区运行风速在3~7 m/s之间,考虑磨损的危险性和为降低风机能耗,可选取运行风速在4~6 m/s左右。运行风速数值与燃料种类也很有关系。截面热负荷的选择与运行风速的选择是相关的,实际上只要燃料和过剩氧量确定,运行风速与截面热负荷中只要一个参数确定后,另一个参数也随之确定。截面热负荷一般可选择在3~4 MW/m2左右[2]。

2.2 炉膛深度

炉膛横截面积确定后,根据炉膛长宽比确定炉膛的长宽。炉膛的深度一般不超过8 m,以保证二次风的穿透,长宽比以1:1至2:1都是合适的。具体在确定炉膛的长、宽比时,一般还应考虑尾部受热面的布置,使之相适应[2]。

2.3 炉膛密相区高度

若循环流化床锅炉有二次风,则其密相区与稀相区的分界面取二次风入口高度平面。对于没有二次风或三次风的情况,或负荷变化较大时,若H0为静床料高,则其密相区高度H den可通过计算膨胀比R den得到[10]

(1)

R den可用下式计算:

当时,

(2)

当时,

(3)

为颗粒密式中U g为床层运行风速;U t为颗粒终端速度;d p为颗粒平均粒径;r

p

度。

2.4 炉膛高度

循环流化床锅炉炉膛高度是循环流化床设计的一个关键参数。炉膛越高,则锅炉钢架就越高,因而锅炉的造价也会提高。因此,在满足锅炉和炉膛的下述要求下,尽可能地降低炉膛高度。一般地,炉膛高度应满足以下条件:(1)保证分离器不能捕集的细粉在炉膛内一次通过时能够燃尽;

(2)炉膛高度应容纳炉膛能布置全部或大部分蒸发受热面;

(3)炉膛高度应保证返料机构料腿一侧有足够的静压头,从而使循环流化床锅炉有足够的循环物料在循环回路中流动;

(4)炉膛高度应保证脱硫所需最短气体停留时间;

(5)炉膛高度应和循环流化床锅炉的尾部烟道或对流段所需高度相一致;

(6)炉膛高度应保证锅炉在设计压力下有足够的自然循环。

具体设计时,一般可根据常规循环流化床锅炉的炉膛高度确定一个数值,布置受热面是否足够,然后考虑分离器的切割直径,再根据上述(1)的要求考虑固体颗粒的燃尽和其他的要求条件,使之满足上述要求,若条件容许偏高些为好

[2]。

3 循环流化床锅炉循环倍率n

循环流化床锅炉循环倍率是循环物料重量与计算给煤重量的比值,其值的选取比较经验,可参考表1。

表1 锅炉循环倍率

4 密相区和稀相区的燃烧份额d

密相区和稀相区的燃烧份额受燃料粒径、煤种、流化风速、一二次风率、床层温度等诸多因素影响,尤其是煤种的影响较大,如挥发份高易爆的煤在密相区的燃烧份额会降低。在目前缺乏数据的情况下,设计时可以参考有关不同煤种的燃烧特性试验数据取值[2]。一般地,固体颗粒粒径越大,燃烧份额相对增加。如果采用宽筛分燃料,可以采用鼓泡流化床计算标准中推荐的方法并考虑一次风率的影响而求取。

5 炉底排渣量与飞灰量比

炉底排渣量和飞灰量之比受许多因素影响,其中随煤的特性、床内物料粒径、和运行速度的变化较大,其取值相当经验,一般可在0.2-1间。

6 焓温表中炉膛内飞灰焓I fh的计算

在计算焓温表炉膛内的飞灰焓时,对于分离器前部分需考虑循环固体颗粒的影响,其飞灰焓I fh以下式计算:

(4)

式中c h和J h分别为灰的比热和温度;A ar为煤收到基灰分;a fh为飞灰份额;C fh 为炉膛出口飞灰含碳量;q4为机械不完全燃烧损失。计算密相区的飞灰焓时,上式中的C fh和q4应代以密相区出口飞灰含碳量C*fh和密相区机械不完全燃烧损失q

4ft

7 密相区和稀相区热量平衡

密相区的入炉热量Q l:

(5)

式中Q r为锅炉输入热量;q3为化学不完全燃烧损失;q6l h为炉底排渣损失;x为一次风率;a ft为密相区出口处的名义空气过剩系数;I lk0为理论冷空气焓,I flh为分离灰焓。

埋管受热面吸热量Q m:

(6)

式中j为保热系数;B j为计算给煤量;I ft2为密相区烟气焓。

带入稀相区的热量Q¢xx:

(7)

其中 D a xx为稀相区漏风系数。

稀相区吸热量Q xx:

(8)

式中I x2为烟气在稀相区的出口焓。

8 循环流化床锅炉炉膛传热计算

8.1 炉膛下部密相区的传热计算

循环流化床锅炉炉膛密相区的流体动力特性属紊流流态化,和鼓泡床密相区相似,若循环流化床密相区中布置有埋管受热面,其传热计算可直接参照鼓泡流化床中计算传热系数的方法进行方法。由于一般地循环流化床锅炉床内运行风速比鼓泡流化床高,计算时有关床层空隙率数值的选取应根据情况适当增大[1]。8.2炉膛上部稀相区的传热计算

8.2.1 壁面平均传热系数h

循环流化快速床中,包括含分散固体颗粒(固体颗粒分散相)的连续上升气流和相对密的颗粒团两部分。根据循环流化床的流体动力特性,可以将稀相区横截面分为中心核心区和壁面环形区两部分。在核心区,颗粒在其中由下向上运动,固体颗粒浓度较小;在床体壁面为密相环形区中,固体颗粒汇集成各种不同的密相结构(颗粒团),颗粒团与固体颗粒分散相在其中交替地与床壁面接触,沿传热壁面下滑、离散(图1)。

注: T w—壁面温度;T a—环形区温度;T c—核心区温度;s—密相区环形厚度;U pa —壁面环形区内的颗粒速度;U pc—核心区内的颗粒速度

图1 连续上升的固体颗粒分散相和沿壁面下滑的颗粒团

假定δcs是被颗粒团覆盖的壁面面积的平均百分率,用h conv表示对流传热系数,h r表示辐射传热系数,则壁面的平均传热系数可表示为h conv与h r之和(对于壁面来说忽略气相传热):

(9)

式中h cs和h d分别为颗粒团与固体颗粒分散相的对流传热系数,h csr和h dr则分别表示颗粒团与固体颗粒分散相的辐射传热系数。

8.2.2 颗粒团覆盖壁面的时均覆盖率cs

在任何时刻,循环流化床锅炉壁面的一部分被颗粒团所覆盖,其余部分则暴露在固体颗粒分散相中(图1)。颗粒团覆盖壁面的时均覆盖率δcs可由下式计算:

(10)

参数K的取值范围Basu[11]建议取为0.5。程乐鸣等[7]提出对于循环流化床密、稀相区K值取不同数值。对于稀相区,推荐K=0.1;对于密相区,推荐K=0.25。此

值仍需考察。壁面空隙率e w=e3.811,e为稀相区空隙率,,r xx是稀相区固体颗粒浓度。e cs为颗粒团中的空隙率,可取值为临界流态化下的空隙率值;Y 为固体颗粒相中固体颗粒的百分比,可取Y=1-e。

8.2.3 循环流化床对流传热系数h conv

对流传热包括颗粒团与颗粒分散相的对流传热两部分,根据(9),对流传热系数h conv以下式表示,

(11)

(1)颗粒团与壁面间对流传热系数h cs

颗粒团沿着壁面下滑,在与壁面接触一段时间后,颗粒团或者破裂消失或者运动到别处。颗粒团与壁面接触时,其初始温度为床温,这样,颗粒团与壁面间产生非稳态传热。快速床中颗粒团与壁面间的传热热阻主要有两部分,一是与壁面的接触热阻,二是颗粒团本身的平均热阻(图2)。

图2 壁面与颗粒团间的传热

假定传热只在水平方向由壁面传入颗粒团,而忽略竖直方向的任何传热量,则壁面与颗粒团间的传热系数可用下式表示

(12)

式中h w为壁面接触传热系数;h e为常温壁面向均匀半无限介质的不稳态导热过程中的有效传热系数。

对于锅炉内的情况,连续传热面较长,颗粒团的贴壁时间就会长些。这时与接触热阻相比,颗粒团中的非稳态导热阻较为重要,这就减弱了固体颗粒径对传热系数的影响,对于颗粒团贴壁时间较短的情况,传热限于颗粒群的贴壁层。

1) 常温壁面向均匀半无限介质不稳态导热过程中的有效传热系数h e

若颗粒团与传热壁面的接触时间为t cs,则其平均传热系数为

(13)

式中K cs为气-固颗粒团的有效导热系数。即Mickley和Fairbanks[12]根据颗粒团理论推导所得。

上式中,颗粒团与壁面的导热情况取决于其在壁面的停留时间t cs。贴壁的颗粒团在重力作用下加速下滑,同时受到壁面的阻力与向上气流的曳引力作用。

图1中,在壁面传热面的上部Z0位置,形成一空隙率为e cs,温度为T a0(假定与床温相同)的颗粒团,该颗粒团与壁面接触,沿壁面以U pa的速度下滑至Z1位置,在壁面上的特征停留长度为L cs,这样,颗粒团的每一部分在壁面上的停留时间t cs就可以如下式计算:

(14)

式中L cs根据Wu等[13]的试验求出,,其中r susp取边壁区固体颗粒浓度,r usp=(1-e w) r p。U pa是固体颗粒贴壁下滑速度,可取值为1.2 ~2.0 m/s。

气-固颗粒团的有效导热系数K cs,推荐采用Xavier和Davidson[14]提出的下式来计算。

(15)

式中K p和K g分别为固体颗粒和气体的导热系数;r g为气体密度;C g是气体比热;U mf为临界流化速度。

在公式适用范围内,该式与采用其它方法计算的颗粒团的有效导热系数基本一致,而采用该式的优点是该式还考虑了空气密度的影响。

颗粒团密度r cs=(1-e cs)r p+e cs r g,

颗粒团比热C cs=(1-e cs)C p+e cs C g。

2) 颗粒团与壁面间气膜传热系数h w

关于颗粒团与壁面传热系数h w,可根据颗粒团与壁面接触间的相应气体薄层厚度的热阻计算,颗粒团与壁面传热系数可用气体间隙厚度来计算:

(16)

根据试验,在模型中选取参数n=2.5。

(2)固体颗粒分散相的传热系数h d

循环流化床锅炉的壁面并不总是与颗粒团接触的。在与两颗粒团接触之间,壁面与床中的上升气流接触,在上升气流中含有分散相的固体颗粒。对流传热系数项中的固体颗粒分散相的传热系数h d的计算,选用Wen和Miller[15]基于稀相气-固混合物而导出的传热系数计算公式近似计算:

(17)

式中C p为固体颗粒比热;r dis为固体颗粒分散相的密度,其值可经由Yr p+(1-Y)r g 计算,U t为固体颗粒的终端速度。

8.2.4 循环流化床辐射传热系数h r

辐射传热是循环流化床锅炉中传热的一种重要方式,尤其是在高温(>700℃)和低床密度(<30 kg/m3)的情况下。循环流化床锅炉中的辐射传热包括两部分,一部分主要来自与壁面接触的颗粒团的辐射,另一部分是固体颗粒分散相壁面的辐射。床层向壁面的总辐射系数根据式(9):

(18)

式中h cr为来自与壁面接触的颗粒团的辐射;h dr为固体颗粒分散相向壁面的辐射。

(1)固体颗粒分散相对壁面的辐射传热系数h dr

对于大型循环流化床锅炉,床吸收率e d可根据下式计算[16]:

(19)

式中e p为颗粒表面的吸收率。对各相同性漫反射B=0.5,对漫反射颗粒B=0.667。

固体颗粒分散相的辐射传热系数h dr可以根据下式计算:

(20)

式中e s为传热表面的吸收率;s为斯蒂芬-波尔兹曼常数;T b是稀相区床温;T s 为表面温度。

(2)颗粒团对壁面的辐射传热系数h csr

颗粒团的辐射系数h csr,可将式(20)中的e d换成e cs同样进行计算。颗粒团的吸收率e cs可由下式计算:

(21)

9 结论

本文结合作者在循环流化床锅炉传热和设计理论研究及实践的基础上,针对采用高温分离装置的循环流化床锅炉,提出一种简单的循环流化床锅炉炉膛热力计算方法,可用于一般高温分离的循环流化床锅炉的设计计算,其余炉型可在此基础上根据具体炉型特点修改使用。

参考文献

[1]工业锅炉技术手册·层状燃烧和沸腾燃烧工业锅炉热力计算方法编写组(Editorial group of technical handbook of industrial boilers·Thermal calculation method for grate-firing and bubbling fluidized bed industrial boilers). 《工业锅炉技术手册(1)·层状燃烧和沸腾燃烧工业锅炉热力计算方法(报批稿)》 (Technical Handbook of Industrial Boilers (1)·Thermal Calculation Method for Grate-firing and Bubbling Fluidized Bed Industrial Boilers) [S]. 1981.

[2] 岑可法,倪明江,骆仲泱,等 (Cen Kefa, Ni Mingjiang, Luo Zhongyang, et al),《循环流化床锅炉理论设计与运行》 (Circulating fluidized bed boilers - Theoretical design and operations) [M]. 北京:中国电力出版社(Beijing:China Electric Power Press),1998.

[3] 岑可法,倪明江,骆仲泱,等译 (translated by Cen Kefa, Ni Mingjiang, Luo Zhongyang, et al.),《循环流化床锅炉的设计与运行》 (Circulating fluidized bed boilers – design and operations) [M]. Prabir Basu, Scott

A. Fraser, 北京:科学出版社 (Beijing:Science Press),1994.

[4] 程乐鸣,骆仲泱,倪明江,等 (Cheng Leming, Luo Zhongyang, Ni Mingjiang, et al). 循环流化床中传热综述(试验部分) (A summary of the circulating fluidized bed heat transfer (testing part)) [J]. 动力工程(Power Engineering), 1998, 18(2):20-34。

[5]程乐鸣,骆仲泱,倪明江,等(Cheng Leming, Luo Zhongyang, Ni Mingjiang,et al). 循环流化床中传热综述(数学模型) (A summary of the circulating fluidized bed heat transfer (mathematical model part)) [J]. 动力工程(Power Engineering), 1998, 18(1):48-53。

[6]Cheng Leming, Cen Kefa, Ni Mingjiang, et al. Heat transfer in circulating fluidized bed and its modeling [A]. Proc. of 13th Inter. Conf. on FBC, ed. by K. J. Heinschel[C], ASME Press, ISBN No.0-7918-1305-3, 1995:487.

[7] 程乐鸣,骆仲泱,李绚天,等 (Cheng Leming, Luo Zhongyang, Li Xuantian, et al). 循环流化床膜式壁传热试验与模型 (Membrane wall heat transfer in a circulating fluidized bed and its modeling) [J]. 工程热物理学报(Journal of Engineering Thermophysics), 1998, 19(4): 514-518.

[8] 程乐鸣 (Cheng Leming). 大型循环流化床锅炉传热 (Heat transfer in a commercial circulating fluidized bed boiler) [J]. 动力工程(Power Engineering), 2000, 20(2):587-591.

[9] 程乐鸣 (Cheng Leming). 循环流化床与压力循环流化床传热研究 (Heat transfer in a circulating fluidized bed and a pressurized circulating fluidized bed) [D]. 杭州:浙江大学 (Hangzhou: Zhejiang University), 1996.

[10]清华大学电力学系锅炉教研室 (Boiler Section, Electricity Department, Tsinghua University),《沸腾燃烧锅炉》 (Fluidized combustion boiler) [M]. 北京:科学出版社 (Beijing:Science Press), 1972.

[11]Basu P. Heat transfer in high temperature fast fluidized beds [J]. Chem. Eng. Sci., 1990, 45(10):3123-3136.

[12]Mickley H S, Faiebanks D F. Mechanisms of heat transfer to fluidized beds [J]. AIChE J.,1955,1(3):374-384.

[13]Wu R L, Grace J R, Lim C J. A model for heat transfer in circulating fluidized beds [J]. Chem. Eng. Sci., 1990, 45(12):3389-3398。

[14]Xavier A M, Davidson J F. Heat transfer in fluidized beds:convective heat transfer in fluidized beds [M]. Fluidization 2nd Edition, Ed. by J.

F. Davidson, R. Clift, D. Harrison, Academic Press London, ISBN 0-12-20552-7, 1985:443-450.

[15]Wen C Y,Miller E N.Heat transfer in solid-gas transport lines [J]. Ind.Eng,Chem.,1961,53:51-53.

[16]Brewster M Q. Effective absorptivity and emissivity of particulate slender with application to a fluidized beds [A]. in Circulating Fluidized Bed Technology IV[C], A. Avidan, ed., AIChE, New York, 1986:137-144.

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MPa ,=0t 538C ο 再热蒸汽参数: 冷段压力==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C ο 热段压力=out rh p 3.288MPa ,热段温度=out rh t 538C ο 低压缸排汽参数: =c p 0.0299MPa ,=c t 32.1C ο , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81MPa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj/KW .h (保证)7955Kj/KW .h 额定工况时汽耗率 3.043Kg/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/min 噪音水平: 90db 通流级数: 36级

统计热力学深刻复知识题及答案解析

第三章 统计热力学 复习题及答案 1.混合晶体是由晶格点阵中随机放置N C 个C 分子和D 分子组成的。 (1) 证明分子能够占据格点的花样为 !!)!(D C D C N N N N W += ,若N N N D C 2 1 ==,利用斯特林公式证明 N W 2= (2) 若==D C N N 2,利用上式计算得42=W =16,但实际上只能排出6种花样,究竟何者正确? 为什么? 解:(1)证明:取)(D C N N +的全排列,则总共排列的花样数为)!(D C N N +种,现C N 个相同的C 和D N 个相同的D 。故花样数为!!)!(D C D C N N N N W += 当N N N D C 2 1 ==时 2])!21 [(!)!21()!21()! 21 21(N N N N N N W = += 取自然对数: N N N N N N N N N N N N N N N N N N N N N N N N N N W 2ln 2ln 2 1 ln ln 21ln ln )21ln(ln )2 1 ln(ln ]21)21ln(21[2ln )!21ln(2!ln ln ==-=--=-=+--=---=-= N W 2=∴ (2)实际排出6种花样是正确的,因为Stirling 是一个近似公式适用于N 很大时才误差较小。而在N 为4时,用 42=W 来计算就会产生较大误差。 2.(1)设有三个穿绿色、两个穿灰色和一个穿蓝色制服得军人一起列队,试问有多少种对型?现设穿绿色制服得可有三种肩章并任取其中一种佩带,穿灰色制服的可有两种肩章,而穿蓝色的可有两种肩章,试 列出求算队型数目的公式。

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

热力学与统计物理试题及答案

热力学与统计物理试题及 答案 Revised by BLUE on the afternoon of December 12,2020.

一.选择(25分 ) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统

二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为()。 2.热力学基本微分方程du=()。 3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态平衡态具有哪些特点 2. 3.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统

热电厂热力系统计算

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

(6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。 表2-1 热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

航空发动机热力计算程序说明

航空发动机热力计算 根据廉筱纯和吴虎编著的《航空发动机原理》一书,我针对书籍中的第五章的热力计算的方法以及步骤编辑了一个计算程序。该程序适用于具有涵道比的涡轮风扇发动机在加力与不加力的两种情况下发动机性能的计算,主要有航空发动机的单位推力以及耗油率的计算,当然读者可以很随意的修改就能得到发动机的其他性能参数; 对书中的修改之处的说明: 1、155页计算油气比f 时公式为:f =C pg T t4?C p T t3 b H u ?C pg T t4 若仅仅用假定的数 值所得到的f 为负值,因为此处单位不统一,H u 必须乘以1000;后面涉及油气比计算时类似; 2、计算如T t4a T t4, T t4.5T t4a , T t5T t4c , T t4c T t4.5 如此形式的值时,一律用中间变量tm 代替; 3、157页 τ2m =T t4c T t4.5= 1?β?δ1?δ2 1+f +δ1δ2C p T t3/(C pg T t4.5) 1?β?δ1?δ2 1+f +δ1+δ2 应改成 τ2m =T t4c T t4.5 = 1?β?δ1?δ2 1+f +δ1+δ2C p T t3/(C pg T t4.5) 1?β?δ1?δ2 1+f +δ1+δ2 4、程序中由于不能定义希腊字母为变量,程序中都以近似的读音来定义变量,作如下说明:

①δ1 :d1,含有δ的类似,用d代替δ; : nb,含有η的类似, 用n代替η; ②η b ③πcl:Picl,含有π的类似;用Pi代替π ④β:bt ,读音有点相近; 另外,程序中定义了加力的标志sign:若计算加力情况则把sign的值置为1,不加力则定义1以外的数值即可。 程序如下: #include #include void main() { //假设飞行条件// double Ma0=1.6,H=11; //发动机工作的一些参数// double B=0.4,Picl=3.8,Pich=4.474;/* B为涵道比,Picl为风扇的增压比,Pich为高压压气机增压比*/ double Pi=17,Tt4=1800,Ttab=2000;/*Pi为总增压比,Tt4为燃烧室出口温度,Ttab为加力燃烧室出口温度*/ double R=287.06,Rg=287.4; double Lcl,Lch,f,tm; /*风扇处每千克空气消耗的功*/ double Wc,W4,W4a,W4c; /*各截面流量*/ //预计的部件效率或损失系数// double di=0.97; /* 进气道总压恢复系数*/ double ncl=0.868; /* 风扇绝热效率*/ double nch=0.878; /*高压压气机绝热效率*/ double nb=0.98; /*主燃烧效率*/ double db=0.97; /* 主燃烧室总压恢复系数*/ double nth=0.89; /* 高压涡轮效率*/ double ntl=0.91; /* 低压涡轮效率*/

600MW凝汽式机组原则性热力计算

国产600MV凝汽式机组全厂原则性热力系统计算 (一)计算任务 1.最大计算功率下的汽轮机进汽量D,回热系统各汽水流量D j; 2?计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、 管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率); 3?按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。 (二)计算类型:定功率计算 (三)系统简介 国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。汽轮机高、中、低压转子均为有中心孔的整锻转子。汽轮机配HG-2008/18-YM2型 亚临界压力强制循环汽包炉。采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。 该系统共有八级抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、 八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。八级回热加热器(除 氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。三级高压 加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7 C、0C、0C, 从而提高了系统的热经济性。四台低压加热器上端差均为 2.8 C,八级加热器下端差(除氧 器除外)均为5.5 Co 汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧 器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3 C,进入锅 炉。 三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h'c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。 给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热, 其排汽亦进入凝汽器。热力系统的汽水损失计有:全厂汽水损失、锅炉排污量(因排污率较 小,未设排污利用系统)。 轴封漏气量D sg =2%D 0全部送入轴封加热器来加热主凝结水,化学补充水量直接送入凝 汽器。 (四)全厂原则性热力系统图如图4-2所示。

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科 B 2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 3.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 5.对于玻尔兹曼分布定律n i =(N/q)·g i·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,n i总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6.对于分布在某一能级εi上的粒子数n i,下列说法中正确是:( ) A. n i与能级的简并度无关 B. εi值越小,n i 值就越大 C. n i称为一种分布 D.任何分布的n i都可以用波尔兹曼分布公式求出 B 7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子数之比为:( ) A. 0.5exp(ε j/2kT) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2ε j/kT) C 8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是:( ) A.Θv越高,表示温度越高 B.Θv越高,表示分子振动能越小 C. Θv越高,表示分子处于激发态的百分数越小 D. Θv越高,表示分子处于基态的百分数越小 C 11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( )

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MP a ,=0 t 538C 再热蒸汽参数: 冷段压力 ==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C 热段压力=out rh p 3.288MP a ,热段温度=out rh t 538C 低压缸排汽参数: =c p 0.0299M Pa ,=c t 32.1C , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81M Pa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj /KW .h (保证)7955Kj/K W.h 额定工况时汽耗率 3.043K g/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/m in 噪音水平: 90db 通流级数: 36级

(完整word版)第9章统计热力学练习题练习题及答案

第九章统计热力学练习题 一、是非题 1、由理想气体组成的系统是独立子系统。( ) 2、由非理想气体组成的系统是非独立子系统。( ) 3、由气体组成的统计系统是离域子系统。( ) 4、由晶体组成的统计系统是定域子系统。( ) 5、假设晶体上被吸附的气体分子间无相互作用,则可把该气体系统视为定域的独立子系统。( ) 6、独立子系统必须遵守∑∑==i i i i i N N N εε的关系,式中ε为系统的总能量, εi 为粒子在i 能级上的能量,N 系统总粒子数,Ni 为分布在能级i 上的粒子数。( ) 7、平动配分函数与体积无关。( ) 8、振动配分函数与体积无关。( ) 9、设分子的平动、振动、转动、电子等配分函数分别以等表示,则分子配分函数q 的因子分解性质可表示为:e r v t q q q q q ln ln ln ln ln +++=。( ) 10、对离域子系统,热力学函数熵S 与分子配分函数q 的关系为ln N U q S Nk Nk T N =++。( ) 二、选择题 1、按照统计热力学系统分类原则,下述系统中属于非定域独立子系统的是:( ) (1)由压力趋于零的氧气组成的系统。 (2)由高压下的氧气组成的系统。 (3)由氯化钠晶体组成的系统。 2. 对定域子系统,某种分布所拥有的微观状态数W D 为:( )。 (1)D !i N i i i g W N =∏ (2) D !! i g i i i N W N N =∏ (3)D !i g i i i N W N =∏ (4) D !! i n i i i g W N n =∏ 3、玻耳兹曼分布:( ) (1)就是最概然分布,也是平衡分布; (2)不是最概然分布,也不是平衡分布;

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,

热力学与统计物理试题及答案

一.选择(25分) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统 二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为( )。 2.热力学基本微分方程du=( )。

3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态?平衡态具有哪些特点? 2.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。 特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统 闭系:与外界没有物质交换,但有能量交换的系统, 孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明

600MW凝汽式机组全厂原则性热力系统计算

[键入文字] 华址电力*营 《热力发电厂》课程设计 题目:国产600MW凝汽式机组全厂原则性热力系统设计 计算 指导教师:李惊涛 专业:热能与动力工程 班级: 热能09 学号: 1091 姓名: 能源动力与机械工程学院

目录 一、............................................................. 课程设计的目的 3 二、................................................................... 计算任务 3 三、............................................................... 计算原始资料 3 3.1汽轮机形式及参数 (3) 3.2回热加热系统参数 (3) 3.3锅炉型式及参数 (4) 3.4其他数据 (4) 3.5简化条件 (4) 四、................................................................. 热系统计算 5 4.1汽水平衡计算 (5) 4.2 汽轮机进汽参数计算 (5) 4.3辅助计算 (5) 4.4各级加热器进、出水参数计算 (6) 4.5高压加热器组及除氧器抽汽系数计算 (7) 4.6除氧器抽汽系数计算 (8) 4.7低压加热器组抽汽系数计算 (8) 4.8汽轮机排汽量计算与校核 (10) 4.9汽轮机内功计算 (11) 4.10汽轮机发电机组热经济性指标计算 (12) 4.11全厂热经济性指标计算 (13) 五、反平衡校核 14 六、参考资料 15 附图(汽态膨胀过程线) (16)

汽油机热力计算

(课程设计)用纸 摘要 通常由于汽油机具有转速高、重量轻、噪音小、易启动、造价低等特点。因此它在小客车、中小型货车和军用越野车及小型农用动力(喷粉、喷雾、插秧机)等方面广泛应用。 通过本课题的设计,是学生掌握内燃机设计的一般方法和步骤;掌握汽油机三大计算(热力计算,动力计算和零件强度计算)的方法和步骤;初步训练学生应用三大计算的结果,分析内燃机动力性、经济性、零件强度及零件机构工艺性的能力。 关键词NJ70Q汽油机;热力计算;动力计算

毕业论文(设计)用纸 目录 摘要I 第 1 章绪论 (2) 1.1本课程设计研究的意义和目的 (2) 1.2本课题研究的任务 (2) 第 2 章汽油机热力计算 (3) 2.1汽油机实际循环热力计算 (3) 2.1.1 热力计算的目的 (3) 2.1.2 热力计算的方法 (3) 2.1.2.1 确定汽油机的结构形式 (3) 2.1.2.2 原始参数的选择 (4) 2.1.2.3 燃料的燃烧化学计算 (8) 2.1.2.4 燃气过程参数的确定与计算 (8) 2.1.2.5 压缩终点参数的确定 (9) 2.1.2.6 燃烧过程终点参数的确定 (9) 2.1.2.7 膨胀过程终点参数的确定 (10) 2.1.2.8 指示性能指标的计算 (10) 2.1.2.9 有效指标的计算 (11) 2.1.2.10 确定汽缸直径D和冲程S (11) 2.1.2.11 绘制示功图 (12) 2.1.2.12 绘制实际示功图 (14) 第 3 章NJ70Q汽油机动力学计算............................................... 错误!未定义书签。 3.1曲轴连杆机构中的作用力......................................................... 错误!未定义书签。 3.1.1 机构惯性力............................................................................................. 错误!未定义书签。 3.2绘制各负荷的曲线图................................................................. 错误!未定义书签。 3.2.1绘制合成力P=f(α)的曲线图.............................................................. 错误!未定义书签。 3.2.2绘制P N=f(α),P L=f(α),T=f(α),K=f(α)图................................ 错误!未定义书签。 3.2.3绘制主轴颈和曲柄销的积累扭矩图..................................................... 错误!未定义书签。 3.2.4绘制曲柄销负荷极坐标图..................................................................... 错误!未定义书签。 3.2.5绘制曲柄销预磨损图............................................................................. 错误!未定义书签。参考文献............................................................................................ 错误!未定义书签。致谢.......................................................................................... 错误!未定义书签。

热力发电厂课程设计说明书国产600MW凝汽式机组全厂原则性热力系统设计计算word文档

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数 机组型式:亚临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机;

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。 解:已知理想气体的物态方程为 (1)由此易得 (2) (3) (4) 证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得: 如果,试求物态方程。 解:以为自变量,物质的物态方程为 其全微分为 (1)全式除以,有 根据体胀系数和等温压缩系数的定义,可将上式改写为 (2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有 (3)

若,式(3)可表为 (4)选择图示的积分路线,从积分到,再积分到(),相应地体 积由最终变到,有 即 (常量), 或 (5)式(5)就是由所给求得的物态方程。确定常量C需要进一步的实验数据。 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。问: (a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少? 解:(a)根据题式(2),有 (1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。如果系统的体积不变,与的关系为 (2)在和可以看作常量的情形下,将式(2)积分可得 (3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。但是应当强调,只要

初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。本题讨论的铜块加热的实际过程一般不会是准静态过程。在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。 将所给数据代入,可得 因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为 (4)将所给数据代入,有 因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。 简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为 解: 以为状态参量,物质的物态方程为 根据习题式(2),有 (1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有 (2)或 (3)

热力发电厂课程设计---660MW凝汽式机组全厂原则性热力系统计算

660MW凝汽式机组全厂原则性热力系统计算 (设计计算) 一、计算任务书 (一)计算题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算)(二)计算任务 1.根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s图上绘出蒸汽的气态膨胀线; 2.计算额定功率下的气轮机进汽量Do,热力系统各汽水流量D j、G j; 3.计算机组的和全厂的热经济性指标; 4.绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细 标在图中(要求计算机绘图)。 (三)计算类型 定功率计算 (四)热力系统简介 某火力发电场二期工程准备上两套660MW燃煤汽轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。 全厂的原则性热力系统如图5-1所示。该系统共有八级不调节抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了内置式蒸汽冷却器,上端差分别为℃、0℃、℃。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为℃。 气轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。然后由气动给水泵升压,经三级高压加热器加热,最终给水温度达到℃,进入锅炉。 三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏水用疏水泵送回本级的主凝结水出口。 凝汽器为双压式凝汽器,气轮机排气压力。给水泵气轮机(以下简称小汽机)的汽源为中压缸排汽(第四级抽汽),无回热加热其排

北航航空发动机原理3大作业

航空发动机原理Ⅲ大作业 —发动机设计点热力计算 学院能源与动力工程学院 一. 设计要求 1.完成一台发动机的设计点热力计算 1)完成发动机循环参数的选取 2)完成发动机各部件设计参数(包括冷却空气量及其分配关系)的选取

3)说明以上参数选取的具体理由和依据 4)完成发动机各部件进出口截面参数(流量总)完成发动机各部件进出口截面参数(流量、总温、总压)的计算 5)完成发动机总性能(推力、耗油率)的计算,并满足给定的要求(误差并满足给定的要求(误差±2%) 2.题目:分排涡扇发动机,高度11km,马赫数0.8,标准大气条件下,发动机推力2500daN, 耗油率耗油率0.6kg/(daN.h) 二.设计参数 1. 设计点参数 2.发动机参数(资料参考)

3.设计点飞行条件 4.部件效率和损失系数

三.循环参数的初步选取范围 1.涵道比 随着涵道比B的增加,当单位推力一定时,存在最佳涵道比,使sfc达到最小值,而T t4随涵道比单调增加,因此B过大或者过小会使sfc达不到要求,且B过大会使涡轮前温度超温,当单位推力较小时,sfc随B的变化曲线在附近较为平坦,因此减小B,并不严重增加sfc,但可使涡轮前总温T t4显著降低。根据资料查得的发动机参数,初始可取涵道比B=6~12。 2.涡轮前温度 根据现有涡轮材料和冷却技术水平,涡轮前温度最高能达到2200K,且在亚声速飞行时,涡轮前温度过高会使耗油率增加。根据现有发动机参数,选取涡轮前温度。 3.风扇增压比 风扇增压比一般随涵道比增加而降低,对于涵道比为B=6~10的涡扇发动机,一般取π。 4.总增压比π 在给定涡轮前温度前提下,存在使单位推力达到最大值的最佳增压比π,且π随涡轮前温度提高而增大;存在使耗油率达到最小值的压气机最经济增压比π。根据现有发动机水平,初步选区增压比为π。 四. 设计计算 1.发动机各截面参数计算

相关文档