文档库 最新最全的文档下载
当前位置:文档库 › 运动控制实验讲义

运动控制实验讲义

运动控制实验讲义
运动控制实验讲义

实验一 Matlab 和Simulink 中传递函数的建立

一. 实验目的

1. 掌握在Matlab 中建立系统传递函数的方法。

2. 掌握在Simulink 中建立系统的传递函数及结构图的方法。

二.实验设备及仪器

计算机、Matlab 软件

三.实验内容

Matlab 是由美国Mathworks 推出的一个科技应用软件,已经发展成为一个适用于多学科多工作平台的大型软件。它涉及领域广泛,在本课程的实验中主要使用该软件的控制系统工具箱,以加深对控制理论及其应用的理解。Simulink 是该公司专门为Matlab 设计提供的结构图编程与系统仿真的专用软件工具,该仿真环境下的用户程序其外观就是系统的结构图,使得系统仿真变得简便直观。

1.Matlab 中建立系统传递函数

Matlab 启动后的用户界面如图1-1所示,工作空间窗口可以显示Matlab 中的各个变量。命令窗口可以输入各种命令,这也是输入系统传递函数的窗口。

图1-1 Matlab 启动界面

(1). Matlab 中求解微分方程

求解微分方程所用的命令为dsolve(“方程1”, “方程2”,…),该函数最多可同时求解12个方程。方程中的各阶导数项以大写的D 表示,后面跟阶数,在接变量名,例如:D2y 代表22dx y

d 。

例1:在Matlab 中求解下列微分方程,变量初始值为0)0(=c ,0)0(=c t

d

22222=++c dt

dc dt c d 解:在命令窗口中键入命令如图1-2所示。可见方程的解)cos(*22t y +-=,通过ezplot 命令可以绘制该微分方程解的曲线如图1-3所示。

图1-2 Matlab 中输入微分方程

图1-3 ezplot 命令绘制图形

(2). Matlab 中输入传递函数常用的命令有:tf ,printsys ,zpk 。

命令tf ,prinfsys 可以输入多项式形式的传递函数,首先根据传递函数写出分子多项式的系数向量num ,分母多项式的系数向量den 。然后输入命令tf(num ,den )或printsys(num,den,’s ’)即可得到传递函数。

例2:在Matlab 中输入如下系统传递函数

64239

2)(234+++++=s s s s s s G

解:在Matlab 中输入如下命令,注意多项式系数输入时最高项系数在前,然后空格,次高项系数,直到常数项,如果某一项系数为零,在输入系数向量时补零。在Matlab 中输入如下命令。可以看到 tf 和 prinfsys 的执行结果是相同的。

图1-4 输入多项式传递函数

例3:在Matlab 中输入如下传递函数 )10)(3)(2()5)(1(5)(+++++=s s s s s s s G 解:使用zpk 命令可以输入零极点式传递函数。命令输入方法及结果如1-5图。参数第一项为零点向量,第二项为极点向量,第三项为增益。

图1-5 输入零极点式传递函数

(3). Matlab 中结构图的建立

前面讨论了如何输入系统传递函数,下一步是如何将各个模块连接起来形成系统的结构图,Matlab 中有如下用于搭建系统结构图的命令:

● conv :用于求两个多项式的卷积。当需要两个多项式相乘时,使用该函数。例如:(s+1)*(s+2)。在Matlab 中输入num1=[1 1],num2=[1 2],num=conv(num1,num2),得到num=[1 3 2]。Num 为乘积后的多项式系数向量。

● series: 用于将两个传递函数串联。具体形式为series(num1,den1,num2,den2),num1,den1为第一个模块的分子,分母多项式系数向量。num2,den2为第二个模块的分子,分母多项式系数向量。或者series(sys1,sys2),sys 为使用tf 命令生成的传递函数。

● parallel: 用于将两个传递函数并联。使用方法可采用分子分母多项式向量输入或传递函数输入,parallel(num1,den1,num2,den2)或parallel(sys1,sys2)。

● cloop: 用于求单位反馈系统的传递函数。使用方法为cloop(num,den,sign),或cloop(sys,sign),Sign=1是正反馈Sign=-1是负反馈。

● feedback :用于求一般反馈系统传递函数。使用方法为feedback(num1,den1,num2,den2,sign)或者feedback(sys1,sys2,sign)。Sys2为反馈环节传递函数。

例4:系统结构图如图1-6所示。使用Matlab 求如下系统的传递函数。其中, 101)(1+=

s s G ,325)(22+++=s s s s G ,s s H 211)(+=

图1-6 例4系统结构图

解: 步骤1,输入各环节传递函数如图1-7所示。

图1-7 输入个环节传递函数

G 1(s ) H (s )

G 2(s ) R (s ) C (s )

步骤2,求)(1s G 和)(2s G 串联后的传递函数如图1-8所示。

图1-8 串联G 1和G 2

步骤3,求反馈后的传递函数如图1-9所示。

图1-9 反馈后传递函数

例5:求1-10图中的传递函数。

图1-10 例5系统结构图

解:在Matlab中输入如下命令,步骤1,求取内环部分传递函数如图1-11。

图1-11 例5内环部分传递函数

步骤2,求系统传递函数如图1-12所示。

图1-12 例5系统传递函数

2. Simulink 中建立系统结构图

在Matlab工具栏中点击simulink选项,即可启动Simulink。如图1-13所示。

图1-13 启动simulink

Simulink启动后的界面如图1-14所示,可以看到simulink包括许多用于不同领域仿真的功

能模块组。本课程实验中常用的功能有Continuous,Sources,Sinks,control system toolbox。

Continous包括用于连续系统仿真的功能模块,用来建立系统的结构图。

Sinks包括用于显示输出结果的功能模块。

Sources包括各种信号源,可以为系统提供输入信号。

Control system toolbox中的input point和output point在系统性能分析时经常用到。

图1-14 simulink启动界面

在Simulink中点击Create new model项,出现建立系统模型窗口。在continous组中用鼠标左键选择Transfer Fcn项,按住鼠标左键不放将其拖到系统模型建立窗口,在模型建立窗口中可以建立一个环节的方框图,如图1-15所示。

图1-15 在simulink中输入环节方框图

双击该方框图,可以输入该方框图的分子分母多项式系数向量,设置该环节的参数,如图1-16所示。

图1-16 输入传递函数系数向量

方框图的两边有用于连线的端子,可以将方框图连接起来组成复杂的系统。

例6:在simulink中构造图1-17所示的系统结构图。

图1-17 例6系统结构图

解:在continous 功能模块组中选择Tansfer fcn 输入5.0210+s ,1101+s 。选择Integrator 输入s

1,选择Derivative 输入s 。在Math Operations 选择Sum 进行信号的反馈求和运算,选择gain 输入增益0.2。在Sources 中选择Step 阶越信号,作为系统的输入信号。Sinks 中选择scope 示波器显示系统输出。

将所有模块用线连接起来组成系统结构图,如图1-18所示。

图1-18 在simulink 中输入系统结构图

虽然,该结构图与图1-17有些差别,但是表示的系统是相同的。将模块拖到窗口中时,有时需要改变模块的方向,可以选中该模块,点击鼠标左键,选择Rotate block 可以旋转该模块。如图1-19所示。

图1-19 simulink 中旋转方框图命令

四. 实验总结与练习

1.在Matlab 中输入传递函数的方法都有那些,分别使用何种命令?

2.练习在Matlab 中用多种方法输入下面的传递函数,并写出相应命令。 64239)(231++++=s s s s s G )10)(3)(2()1(10)(2++++=s s s s s s G 3.练习在Simulink 中输入下面系统的结构框图。

图1-20 控制系统框图

实验二 Matlab 和Simulink 中控制系统时域分析

一. 实验目的

1. 掌握在Matlab 中控制系统的时域分析方法。

2. 掌握在Simulink 中控制系统的时域分析方法。

二.实验设备及仪器

计算机、Matlab 软件

三.实验内容

1.Matlab 中控制系统时域分析

Matlab 中可以通过Step ,impulse 命令分析控制系统的阶越响应,脉冲响应。使用方法为Step(num,den),impulse(num ,den)。

应用lsim 可以求任意输入函数下系统的响应,使用方法为lsim(num ,den ,u ,t)。 例1:应用Matlab 分析如下一阶系统的阶越响应,脉冲响应,输入为正弦信号时系统的响应。 11)(+=

Φs s 解:1)输入命令如图2-1所示。

图2-1 时域分析命令输入

可以看到一阶系统的阶越响应波形如图2-2,脉冲响应波形如图2-3。

图2-2 一阶系统阶越响应波形

图2-3 一阶系统脉冲响应波形2)输入为正弦信号时的波形,输入命令如图2-4所示:

图2-4 输入为正弦信号时的时域分析命令输入

可以看到输出波形如图2-5所示。

例2:二阶系统传递函数

2222)(n

n n s s s ωξωω++=Φ 设2=n ω,求1.0=ξ,0.5,707.0,0.9,2.0时系统的阶越响应。

解:Matlab 命令窗口中,输入命令如图2-6所示。

步骤1,输入传递函数系数向量

图2-5 输入为正弦信号时一阶系统响应波形

图2-6 输入传递函数系数向量

步骤2,计算阶越响应如图2-7所示。

图2-7 计算阶跃响应

不同ξ时,二阶系统阶越响应如图2-8所示,阶越响应的调节时间和超调量差别较大,当707.0=ξ时响应调节时间最短,超调量最小。

例3:比较如下一型系统如图2-9和二型系统如图2-10在跟踪速度信号时的差别。

图2-9 一型系统图图2-10 二型系统图解:对一型系统进行速度信号响应分析,在Matlab中输入命令如图2-11所示。

图2-11 一型系统速度响应分析命令输入

)2

(

2

+

s

s)2

(

)1

(2

2+

+

s

s

s

图2-8 二阶系统阶越响应波形

求得一型系统跟踪速度信号的波形如图2-12所示。

图2-12 一型系统跟踪速度信号波形

对二型系统进行速度信号响应分析,在Matlab中输入命令如图2-13所示。

图2-13 二型系统速度响应分析命令输入

得到二型系统跟踪速度信号的波形如图2-14所示。

2.Simulink中控制系统时域分析

Simulink中同样可以进行系统的响应分析。一种方法是在Simulink中输入系统的结构图,施加需要的输入信号,将输出信号连接到示波器观察系统响应。另一种方法是使用LTI viewer 观察系统的阶越响应和脉冲响应。

例4:一型系统与二型系统如例3所示,试用Simulink观察系统跟踪速度信号的差别。

输入系统结构图需要如下模块,comtinous模块组中的Transfer fcn模块,Math Operation 中的Sum模块,source中的Ramp模块和Sinks中的scope模块。将各个模块拖入新建结构图窗口中后,用线连接各个模块,如图2-15所示。

图2-15 Simulink中控制系统时域分析图

图2-14 二型系统跟踪速度信号波形

点击工具栏中的Start 项,开始仿真。双击两个示波器,可以看到两个系统的斜波响应如图2-16所示。

(a )一型系统跟踪速度信号波形 (b )二型系统跟踪速度信号波形

图2-16 控制系统跟踪速度信号波形

例5:在Simulink 中分析如下系统阶越响应的差别。 10210)(21++=s s s G ,10210

2)(22+++=s s s s G ,)102)(1(10

)(23+++=s s s s G

解: 输入系统结构图如下图2-17所示,其中MUX 模块将三个输出量合成为一个向量,以便在同一示波器中进行比较。在signal routing 工具组中可以找到该模块。其他模块输入方法如前所述。

图2-17 系统结构图

点击工具栏中的start simulation 按钮,启动仿真后,双击示波器可以观察到三个系统的输出如图2-18所示。

图2-18 系统时域分析波形

可以看到增加系统零点使得调节时间缩短,超调量增加。增加系统极点使得调节时间加长,超调量减小。

四.实验总结与思考

1.一阶系统与二阶系统的阶跃响应有什么特点?并说明各系统参数对阶跃响应的影响。

2.一型系统与二型系统的速度信号跟踪有什么特点?

3.系统的零点数与极点数对系统的性能有何影响?

数控插补多轴运动控制实验指导书(学生)

数控插补多轴运动控制系统解剖实验 实验学时:8 实验类型:独立授课实验 实验要求:必修 一、实验目的 1、通过本实验使学生掌握数控插补多轴控制装置的基本工作原理; 2、根据常用低压电器原理分析各运动控制电气元件的应用原理,分析数控插补运动实现的控制原理; 3、根据机电一体化产品的设计要求和设计流程进行运动控制系统的功能分析、机械结构分析、控制系统分析以及相关传感器选型等方面的设计内容。 本实验以数控插补多轴运动控制系统为具体对象,使学生掌握机电一体化产品设计和开发的技术流程和主要内容,通过运动控制系统的实现过程掌握常用电气元件识别和原理、数控插补原理、位置伺服控制系统等的设计和实现方式。 二、实验内容 1、通过数控插补多轴控制装置及其相关系统的测试和观察,分析数控插补的工作原理; 2、分析系统的功能、机械结构分析、运动关系以及相关传感器等,分析其相关的机械结构、电机及其驱动模块和传感反馈环节等; 3、根据常用低压电器原理,分析系统各运动控制电气元件的应用原理,分析数控插补运动过程实现的控制原理,并绘制相关的控制原理图和系统连接图。 三、实验设备 1、多轴运动控制系统一套(含电控箱) 2、PC机一台 3、GT-400-SG-PCI 卡一块(插在PC机内部)

四、实验原理 该数控插补多轴运动控制系统是依据开放式数控系统原理构建的,其以通用计算机(PC)的硬件和软件为基础,采用模块化、层次化的体系结构,能通过各种形式向外提供统一应用程序接口的系统。开放式数控系统可分为 3类:(1)CNC 在 PC中;(2)PC作为前端,CNC作为后端;(3)单 PC,双 CPU平台。 本实验采用第一类,把顾高公司的 GT-400-SG-PCI 多轴运动控制卡插入PC 机的插槽中,实现电机的运动控制,完成多轴运动控制系统的控制。其优点如下:(1)成本低,采用标准 PC机;(2)开放性好,用户可自定义软件;(3)界面比传统的 CNC 友好。 图1为该系统的硬件构成图,运动平台机械本体采用模块化拼装,主要由普通PC机、电控箱、运动控制卡、伺服(步进)电机及相关软件组成。其主体由两个直线运动单元(GX系列)组成。每个GX系列直线运动单元主要包括:工作台面、滚珠丝杆、导轨、轴承座、基座等部分,其结构见图2。伺服型电控箱内装有交流伺服驱动器,开关电源,断路器,接触器,运动控制器端子板,按钮开关等。步进型电控箱则装有步进电机驱动器,开关电源,运动控制器端子板,船形开关等。 图1 数控插补多轴控制系统硬件构成

自动控制原理实验讲义

自动控制原理实验指导书

实验一 控制系统典型环节的模拟 一、 实验目的 1、掌握用运放组成控制系统典型环节的电子电路 2、测量典型环节的阶跃响应曲线 3、通过实验了解典型环节中参数的变化对输出动态性能的影响 二、 实验仪器 1、自控原理电子模拟实验箱一台 2、电脑一台(虚拟示波器) 3、万用表一只 三、 实验原理 以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。图中Z1和Z2为复数阻抗,它们都是由R 、C 构成。 基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得: 1 20)(Z Z U U s G i =-= (1) 由上式可求得由下列模拟电路组成的典型环节的 传递函数及其单位阶跃响应。 1、比例环节 比例环节的模拟电路如图1-2所示: 图1-1、运放的反馈连接 1 2 12)(R R Z Z s G == (2) 图1-2 比例环节 取参考值K R 1001=,K R 2002=;或其它的阻值。 2、惯性环节 惯性环节的模拟电路如图1-3所示: 1 11/1/)(21212212+= +?=+==TS K CS R R R R CS R CS R Z Z s G (3)

图1-3 惯性环节 取参考值K R 1001=,K R 1002=,uF C 1=。 3、积分环节 积分环节的模拟电路如图1-4所示: TS RCS R CS Z Z s G 1 11)(12==== (4) 图1-4 积分环节 取参考值K R 200=,uF C 1=。 4、比例积分环节 积分环节的模拟电路如图1-5所示: )11()11(11/1)(2212112121212S T K CS R R R CS R R R CS R CS R R CS R Z Z s G +=+?=+=+=+== (5) 图1-5 比例积分环节 取参考值K R 2001=,K R 4002=,uF C 1=。 5、比例微分环节 比例微分环节的模拟电路如图1-6所示:

运动控制系统实验指导书(修改

运动控制系统实验指导书 2013年3月

目录 第一部分MCL-11型电机及控制教学实验台介绍 (2) 第二部分实验项目 实验一晶闸管直流调速系统电流-转速调节器调试 (8) 实验二双闭环晶闸管不可逆单闭环直流调速系统测试 (10) 实验三异步电动机的变压变频调速演示实验 (15)

第一部分MCL-11型电机及控制教学实验台介绍 一、实验机组 =1500r/pm。 直流电动机:P N=185w,U N=220V,I N=1.1A,n N 二、实验挂箱 (1)MCL-18挂箱:G(给定),(GT+MF)触发电路及功放,单双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)。 (2)MCL-33挂箱:脉冲通断控制及显示,一组、二组可控硅,平波电抗器。 (3)MEL-11挂箱:六组可调电容。 三、选配挂箱 (1)MEL-03挂箱:可调电阻器。 (2)电机导轨及测速发电机,直流发电机M01:P N=100W,U N=200V。 (3)电机导轨及测功机、测速发电机,MEL-13组件。 控制系统挂箱介绍和使用说明 (一)、MCL-18挂箱 MCL—18由G(给定),(GT+MF)触发电路及功放,双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)组成。 1.G(给定) 原理图如图1-1。它的作用是得到下列几个阶跃的给定信号: (1)0V突跳到正电压,正电压突跳到0V; (2)0V突跳到负电压,负电压突跳到OV; (3)正电压突跳到负电压。负电压突跳到正电压。

运动控制实验讲义(自动化)

运动控制系统实验 实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的 1.熟悉晶闸管直流调速系统的组成结构; 2.掌握晶闸管直流调速系统参数与环节特性的测定方法。 二.实验内容 1.测定晶闸管整流装置的外特性; 2.测定晶闸管触发及整流装置的放大系数; 3.用直流伏安法测量直流电动机的电枢电阻和电抗器电阻; 4.直流电动机电势常数Ce和转矩常数C M的测定; 5.测定晶闸管直流调速系统机电时间常数T M(选做); 6.测定直流电动机-发电机-测速发电机组的飞轮惯量GD2; 7.绘制自由停车曲线n=f ( t )(选做); 8.测速发电机特性U TG=f (n)的测试; 9.用交流伏安法测量直流电动机电枢回路的电感; 10.计算主电路电磁时间常数测定。 三.实验系统组成和工作原理 晶闸管直流调速系统由三相交流电路、晶闸管整流调速装置、平波电抗器,电动机——发电机组等组成。 本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。 四.实验设备及仪器 见表3-1 五.注意事项

为防止电枢过大电流的冲击,每次增加U g 须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。 表3-1实验设备及仪器 六.实验方法 1.测定整流装置的外特性u =f( I ),并确定其内阻r 。 ⑴ 实验原理 见图3-1 图 3-1 整流装置外特性测试原理图 ⑵ 数据测定及处理 每次实验前,都应将负载电阻R 的阻值置于最大。由于考虑到整流装置内阻的 非线性关系,因此在实验中应测定不同的α角时的外特性曲线u =f( I ),α值可取三种不同的角度,对于每个不同的α值,通过改变R 的大小,可测取其4个左右的相应参数,并描述u =f( I )曲线(应为直线簇),该直线的斜率即为r 。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

《自动控制原理 》实验讲义

《自动控制原理》 实验讲义 目录 实验一典型环节的时域响应 (2) 实验二典型系统的时域响应和稳定性分析 (12) 实验三线性系统的频域响应分析 (17) 实验四线性系统的校正 (23) 实验五线性系统的根轨迹分析 (26) 安徽大学电气工程与自动化学院 2010年9月 张媛媛编写

实验一典型环节的时域响应 时域分析法是在时间域内研究控制系统在各种典型信号的作用下系统响应(或输出)随时间变化规律的方法。因为它是直接在时间域中对系统进行分析的方法,所以具有直观、准确的优点,并且可以提供系统响应的全部信息。下面就实验中将要遇到的一些概念做以简单介绍: 1、稳态分量和暂态分量:对于任何一个控制系统来说,它的微分方程的解,总是包括两部分:暂态分量和稳态分量。稳态分量反映了系统的稳态指标或误差,而暂态分量则提供了系统在过渡过程中的各项动态性能信息。 2、稳态性能和暂态性能:稳态性能是指稳态误差,通常是在阶跃函数、斜坡函数或加速度函数作用下进行测定或计算的。若时间趋于无穷时,系统的输出量不等于输入量或输入量的确定函数,则系统存在稳态误差。稳态误差是对系统控制精度或抗扰动能力的一种度量。暂态性能又称动态性能,指稳定系统在单位阶跃函数作用下,动态过程随时间t的变化规律的指标。其动态性能指标通常为: ? 延迟时间td:指响应曲线第一次达到其终值一半所需的时间。 ? 上升时间tr:指响应从终值10%上升到终值90%所需的时间。对于有振荡的系统,亦可定义为响应从第一次上升到终值所需的时间。上升时间是系统响应速度的一种度量,上升时间越短,响应速度越快。 ? 峰值时间tp:指响应超过其终值到达第一个峰值所需的时间。 ? 调节时间ts:指响应到达并保持在终值±5%或±2%内所需的时间。 ? 超调量δ%:指响应的最大偏离量 h (tp) 与终值h (∞) 之差的百分比。 上述五个动态性能指标基本上可以体现系统动态过程的特征。在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。通常,用tr或tp评价系统的响应速度;用δ%评价系统的阻尼程度;而ts是反映系统响应振荡衰减的速度和阻尼程度的综合性能指标。应当指出,除简单的一、二阶系统外,要精确确定这些动态性能指标的解析表达式是很困难的。本章通过对典型环节、典型系统的时域特性的实验研究来加深对以上概念的认识和理解。 1.1 典型环节的时域响应 1.1 实验目的 1.熟悉并掌握TD-ACC+设备的使用方法及各典型环节模拟电路的构成方法。 2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异、分析原因。 3.了解参数变化对典型环节动态特性的影响。 1.2 实验设备 PC机一台,TD-ACC实验系统一套。 1.3 实验原理及内容

运动控制实验报告分析

运动控制系统实验报 告 姓名刘炜原 学号 201303080414

实验一 晶闸管直流调速系统电流 -转速调节器调试 一. 实验目的 1 ?熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2?掌握直流调速系统主要单元部件的调试步骤和方法。 三. 实验设备及仪器 1?教学实验台主控制屏。 2. ME —11 组件 3. MC —18 组件 4. 双踪示波器 5. 万用表 四. 实验方法 1. 速度调节器(ASR 的调试 按图1-5接线,DZS (零速封锁 器)的扭子 开关扳向“解除”。 (1) 调整输出正、负限幅值 “ 5”、“ 6”端 接可调电容, 使ASR 调节器为PI 调节器,加入 一定的输入电压(由MC —18的给 定提供,以下同),调整正、负限 幅电位器RR 、 RP ,使输出正负值 等于:5V 。 (2) 测定输入输出特性 将反馈网络中的电容短接 (“ 5”、“6 ”端短接),使 ASR 调节器为P 调节器,向调节器输入 端逐渐加入正负电压,测出相应的 输出电压,直至输出限幅值,并画 出曲线。 (3) 观察PI 特性 拆除“ 5”、“6”端短接线,突加 二.实验内容 1?调节器的调试 C B RF 4 2 HP1 RP2 6 4 2 3 1 NMCL-31A 可调电容,位于 NMCL-18的下部 封锁 -S 2 反 号 Q 9 ASR ( ??) DZS (零速封锁 解除 ACR 电就声书器) 11 12 图1-5速度调节器和电流调节器的调试接线图

给定电压(_0.1V),用慢扫描示波器观察输出电压的 变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容 箱改变数值。 2.电流调节器(ACR的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于_5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“ 9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“ 9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变 数值。

运动控制讲义

实验一单闭环不可逆直流调速系统实验 一、实验目的 (1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。 (2)掌握晶闸管直流调速系统的一般调试过程。 (3)认识闭环反馈控制系统的基本特性。 二、实验所需挂件及附件 三、实验线路及原理 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。 在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。 在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。电机的最高转速也由电流调节器的输出限幅所决定。同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。 四、实验内容 (1)U ct不变时直流电动机开环特性的测定。 (2)转速单闭环直流调速系统。 (3)电流单闭环直流调速系统。 五、实验方法

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

自动控制原理实验书(DOC)

目录 实验装置介绍 (1) 实验一一、二阶系统阶跃响应 (2) 实验二控制系统稳定性分析 (5) 实验三系统频率特性分析 (7) 实验四线性系统串联校正 (9) 实验五 MATLAB及仿真实验 (12)

实验装置介绍 自动控制原理实验是自动控制理论课程的一部分,它的任务是:一方面,通过实验使学生进一步了解和掌握自动控制理论的基本概念、控制系统的分析方法和设计方法;另一方面,帮助学生学习和提高系统模拟电路的构成和测试技术。 TAP-2型自动控制原理实验系统的基本结构 TAP-2型控制理论模拟实验装置是一个控制理论的计算机辅助实验系统。如上图所示,TAP-2型控制理论模拟实验由计算机、A/D/A 接口板、模拟实验台和打印机组成。计算机负责实验的控制、实验数据的采集、分析、显示、储存和恢复功能,还可以根据不同的实验产生各种输出信号;模拟实验台是被控对象,台上共有运算放大器12个,与台上的其他电阻电容等元器件配合,可组成各种具有不同系统特性的实验对象,台上还有正弦、三角、方波等信号源作为备用信号发生器用;A/D/A 板安装在模拟实验台下面的实验箱底板上,它起着模拟与数字信号之间的转换作用,是计算机与实验台之间必不可少的桥梁;打印机可根据需要进行连接,对实验数据、图形作硬拷贝。 实验台由12个运算放大器和一些电阻、电容元件组成,可完成自动控制原理的典型环节阶跃响应、二阶系统阶跃响应、控制系统稳定性分析、系统频率特性测量、连续系统串联校正、数字PID 、状态反馈与状态观测器等相应实验。 显示器 计算机 打印机 模拟实验台 AD/DA 卡

实验一一、二阶系统阶跃响应 一、实验目的 1.学习构成一、二阶系统的模拟电路,了解电路参数对系统特性的影响;研究二阶系统的两个重要参数:阻尼比ζ和无阻尼自然频率ωn对动态性能的影响。 2.学习一、二阶系统阶跃响应的测量方法,并学会由阶跃响应曲线计算一、二阶系统的传递函数。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验原理 模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟一、二阶系统,即利用运算放大器不同的输入网络和反馈网络模拟一、二阶系统,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述系统的模拟电路,并测量其阶跃响应: 1.一阶系统的模拟电路如图

S71200运动控制学习资料

S71200调试经验: 前一段时间用了S71200,调试的过程中也出现过一些问题,特别是运动控制,而且网上这类资料很少,好在经过努力终于解决,想到各位朋友可能会需要,现将经验总结如下: 由于IO控制与200都差不多,1200的运动控制分以下步骤: 一:组态: 在PLC—工艺对象—组态 组态:就是设置运动控制的相关参数,比如选择那一个口(要在设备配置中选择启用)和什么指令方式(PTO/PWM),

先上面添加新对象,选择轴, 然后进入到组态页面,选择相应参数,基本参数中只需要选一个PTO控制对象,也就是上面创建的运动控制对象,

扩展参数中:启用输出栏必须填写,就是电机伺服ON接的输出点,如果是两个轴必须用两个点,不能共用,也不用在程序中对伺服ON做任何处理了,当你程序中执行MC-POWER 时伺服电机就会ON了, 如图所述内容,

限位的选择是要注意高电平和低电平,如果设错了会导致伺服不能动;动态就是加减速和最高速度不用我多说了吧, 回原点,主要是选择原点信号输入点,逼近方向及参考点开关,逼近方向很好理解,参考点开关,原则上是在减速运动的前方,这个是试出来的,我也说不太明白, 以上设置后,组态完成了,接下来要在程序中编写控控制程序了,

这个必须写,不然电机不能得电, RESET也很有用,在电机撞到限位了,要先按一下复位才能向反方向运动,与其它的不一样,要注意

回原点,走绝对位置是必须要先回一下原点的,走相对位置是不用回原点,回原点方式,用四种,3和4用组态里的方式回原点,都可以,我只用过3,4没用过, 用来显示轴当前位置

自动化仪表与过程控制实验讲义(DOC)

《自动化仪表与过程控制》实验讲义 电子电气工程学院 2016年2月

实验一 水箱液位数学模型测定 一般情况下,系统特性实验是属于开发性测试。在用户现场一般不会再次进行,如果用户有兴趣可以抽取进行。测试的对象实际包括控制系统。单容系统测试和多容系统的编程和界面都一样,只是出水口和目标液位对象不同。多容系统的特性时间更长。 5.1.1 实验题目描述 阀门的开度,以及调速器、水泵的特性都可能影响到系统的传递函数,所以没有一样的传递函数,但是在一定的液位高度范围内和一定的开度下,系统时间基本是一样的。阀门的开度会影响到传递函数,所以同学们测量的数据可能不同。 把系统作为一阶系统,传递函数G(S)=K/(TcS+1)。对于单容水箱,如果考虑进行线性简化,可以认为它是一阶惯性环节加纯延迟的系统 )1/()(+=-Ts Ke s G s τ。由于纯延迟相对系统时间比较少。可以不考虑纯延迟。 下面求出系统时间参数Tc 和增益K 。 直接在调速器上加定值电流,从而使得水泵具有固定的流量。可以通过智能调节仪表手动给定,或者AO 模块直接输出电流,调整水箱出口到一定的开度,等待稳定后,突然加大调速器上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型,测试工艺如图5-1-1所示。 图5-1-1 单容液位特性测量流程图 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》 ,金以慧编著。实验方案连线如表5-1-1所示。

5.1.2 实验步骤和数据记录 步骤如下: 1、JV12全开,JV16打开45度左右(由于开度不同,特性也有差异),其余阀门关闭。 2、将LT101连到AI0输入端,AO0输出端连到U101(手动输出)。 3、工艺对象上电,控制系统上电,调速器U101上电,启动P101。 4、启动组态软件,设定U101控制40%,等待系统稳定。液位和流量稳定在某个值。注意观察液面,不能太低,否则不算稳定。 5、设定U101控制45%,记录水位随时间的数据,到新的稳定点或接近稳定。如果阶越太大,可能导致溢出。 6、抓图,修改U101控制量,然后获得一个新的稳定曲线。 7、可以修改JV16开度,重复4和6步。 8、关闭系统,分析数据。 5.1.3 实验结果 单容水箱水位阶跃响应曲线,如图5-1-2所示。 图5-1-2 单容测试飞升特性曲线

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

过程控制实验1

过程控制实验一连续系统的PID控制器参数整定 学院:** 班级:** 姓名:** 学号:**

实验一:连续系统的PID 控制器参数整定 实验要求: 1. 设被控对象为:Cs Bs s s G ++= 2 3 1)(,其中A 为班号,B 为学号,C 所在微机号。 输入信号为单位阶跃信号,采样周期为0.1。.请按 图1所示应用MATLAB 软件环境的SIMULINK 模块搭建控制系统; 例如: 图1 2.应用PID 控制器进行控制,采用稳定边界法(临界比例度法)进行控制器参数 整定,整定步骤如下: (1)在纯比例作用下投入运行。即:PID 控制器的比例系数 p K 从小到大取值, 积分系数 =i K ,微分系数0 =d K 时,获得临界稳定(等幅振荡)曲线。如图 2所示: 图2 (2)记录等幅振荡时的临界比例度k δ值和临界振荡周期k T 值。应用表1中的经验公式计算出D I T T ,,δ的值。 k T

表1 (3)根据计算出的D I T T ,,δ值,换算出比例系数p K ,积分系数 i K ,微分系数d K 的值。 换算公式为: . ,, 1 D p d T p i p T K k T K k k ?== =δ (4)将计算值赋给PID 控制器运行,观察记录其响应曲线。 3.详细记录实验过程,运算过程以及响应曲线,提取响应曲线的性能指标:超调 量和调节时间。 A=3(班级);B=7(班内序号);C=13(电脑号) 超调量:63% 调节时间:5ms k T =1.7;k δ=0.206;i T =0.85;d T =0.2125 kp=30.3;ki=35.647;kd=6.43875; 下面是实验截图:

运动控制综合实验报告

班级:学号:姓名:指导老师:

实验一不可逆单闭环直流调速系统静特性的研究一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图4-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—31A组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流励磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

自动控制原理实验指导书(2017-2018-1)

自动控制原理实验指导书 王娜编写 电气工程与自动化学院 自动化系 2017年11月 实验一控制系统的时域分析

[实验目的] 1、熟悉并掌握Matlab 操作环境和基本方法,如数据表示、绘图等命令; 2、掌握控制信号的拉氏变换与反变换laplace 和ilaplace ,控制系统生成模型的常用函数命令sys=tf(num,den),会绘制单位阶跃、脉冲响应曲线; 3、会构造控制系统的传递函数、会利用matlab 函数求取系统闭环特征根; 4、会分析控制系统中n ζω, 对系统阶跃、脉冲响应的影响。 [实验内容及步骤] 1、矩阵运算 a) 构建矩阵:A=[1 2;3 4]; B=[5 5;7 8]; 解: >> A=[1 2;3 4] A = 1 2 3 4 >>B=[5 5;7 8] B = 5 5 7 8 b) 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A 的特征值、特征多项式和特征向量. 解:>> A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]; >> [V ,D]=eig(A) V = 0.4181 -0.4579 - 0.3096i -0.4579 + 0.3096i -0.6044 0.6211 -0.1757 + 0.2740i -0.1757 - 0.2740i 0.0504 0.5524 0.7474 0.7474 -0.2826 0.3665 -0.1592 - 0.0675i -0.1592 + 0.0675i 0.7432 D = 13.0527 0 0 0 0 -4.1671 + 1.9663i 0 0 0 0 -4.1671 - 1.9663i 0 0 0 0 2.1815 >> p=poly(A) p = -6.9000 -77.2600 -86.1300 604.5500 2. 基本绘图命令 a) 绘制余弦曲线y=cos(x),x ∈[0,2π] 解:>> x=linspace(0,2*pi); >> y=cos(x); >> plot(x,y)

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.wendangku.net/doc/df2556670.html,

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 1501 30010 )(-+= ,Gc(s)为PID 控制器,试整定PID 控制器 参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID 控制器参数整顿 根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ K T 2.1=0.24,Ti=τ2=300, Td=τ5.0=75。 表1-1 Z-N 法整定PID 参数

(2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置: 图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示: 图1-7 PID子系统 再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

运动控制实验指导书

运动控制实验指导书 华南农业大学工程学院 2009.2 实验的基本要求 本实验课的目的在于培养学生掌握基本的实验方法与操作技能。培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所

需数据,进行分析研究,得出必要结论,从而完成实验报告。在整个实验过程中,必须集中精力,及时认真做好实验。现按实验过程提出下列基本要求。

一、实验前的准备 实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验预习,如熟悉组件的编号,使用及其规定值等),并按照实验项目准备记录抄表等。 实验前应写好预习报告,经指导教师检查认为确实作好了实验前的准备,方可开始作实验。 认真作好实验前的准备工作,对于培养同学独立工作能力,提高实验质量和保护实验设备都是很重要的。 二、实验的进行 1、建立小组,合理分工 每次实验都以小组为单位进行,每组由3人组成,实验进行中的接线、调节负载、保持电压或电流、记录数据等工作每人应有明确的分工,以保证实验操作协调,记录数据准确可靠。 2、选择组件和仪表 实验前先熟悉该次实验所用的组件,记录电机铭牌和选择仪表量程,然后依次排列组件和仪表便于测取数据。 3、按图接线 根据实验线路图及所选组件、仪表、按图接线,线路力求简单明了,按接线原则是先接串联主回路,再接并联支路。为查找线路方便,每路可用相同颜色的导线或插头。 4、起动电机,观察仪表 在正式实验开始之前,先熟悉仪表刻度,并记下倍率,然后按一定规范起动电机,观察所有仪表是否正常(如指针正、反向是否超满量程等)。如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。 5、测取数据 预习时对实验方法及所测数据的大小作到心中有数。正式实验时,根据实验步骤逐次测取数据。 6、认真负责,实验有始有终 实验完毕,须将数据交指导教师审阅。经指导教师认可后,才允许拆线并把实验所用的组件、导线及仪器等物品整理好。 三、实验报告 实验报告是根据实测数据和在实验中观察和发现的问题,经过自己分析研究或分析讨论后写出的心得体会。 实验报告要简明扼要、字迹清楚、图表整洁、结论明确。

相关文档
相关文档 最新文档