文档库 最新最全的文档下载
当前位置:文档库 › 印染退浆废水中聚乙烯醇的回收与利用

印染退浆废水中聚乙烯醇的回收与利用

印染退浆废水中聚乙烯醇的回收与利用
印染退浆废水中聚乙烯醇的回收与利用

印染退浆废水中聚乙烯醇的回收与利用

徐竟成,郑涛

(同济大学环境科学与工程学院,上海200092)

[摘要]采用化学凝结法回收处理纺织印染退浆废水中的聚乙烯醇(P VA),以硼砂为凝结剂,硫酸钠作为盐析剂,进行生产性规模回收废水中的P VA,PVA 回收率和COD 去除率均达80%左右,PVA 含固执两分数约为15%~20%。回收后的P VA 可经过改性制成改性胶水,具有良好的环境、经济和社会效益。[关键词]聚乙烯醇;凝结;回收;利用

[中图分类号]X703 [文献标识码]A [文章编号]1006-1878(2004)07-0286-03

纺织工业废水主要来自染整工段,包括退浆、煮炼、漂白、丝光、染色、印花和整理等。退浆废水一般占废水总量的15%左右,有机污染物约占总量的一半。退浆废水是碱性的有机废水,含有各种浆料分解物、纤维屑、酸和酶等污染物,废水呈淡黄色。退浆废水的污染程度和性质视浆料的种类而异:过去多用天然淀粉浆料,淀粉浆料的BOD 5/COD 为0.3~0.5;目前使用较多的化学浆料聚乙烯醇的BOD 5/COD 约为0.1左右,使废水的可生化性大大降低,增加了废水处理的难度。表1对比了采用活性污泥法去除聚乙烯醇和淀粉浆料的情况。

表1 活性污泥法对聚乙烯醇和淀粉浆料去除情况比较曝气时间/h

聚乙烯醇去除率,%

淀粉去除率,%

41080615908

20

98

为了降低印染废水的处理难度,回收聚乙烯醇,国内外都做了大量的研究。日本采用细菌培养法,COD 污泥负荷为0.1kg/(kg #d),经一个月左右时间的低负荷驯化,可逐渐将PVA 分解。美国某纺织印染厂采用超滤膜装置将含PVA 质量分数为1%的退浆废水浓缩成含PVA 质量分数10%的浓缩液,超滤装置的处理量为4.5m 3/h,浓缩液产量为0.45m 3

/h,运行最高压力为7@105

Pa,浓缩液回用到棉布退浆,取得了良好的经济效益。但超滤法在我国用于纺织染料的回收利用尚处于实验室研究与中试阶段,超滤膜回收设备的投资和运行成本都较高,不能满足我国现阶段的实际情况,因此研究开发经济实用的聚乙烯醇的回收方法,不仅可以降低废水的处

理难度,同时还可以取得较好的社会与经济效益。

1 聚乙烯醇的回收机理

1.1 印染退浆工艺

印染退浆有多种工艺,主要原理是使坯布上的浆料润湿,在高温水洗的情况下,去除坯布上的浆料。为了回收PVA 浆料,应使浆料尽量集中去除,提高退浆废水中的PVA 浓度,使PVA 便于回收,提高PVA 的回收率,降低废水中的PVA 浓度,从而有利于印染废水的生化处理。在实际工程中,可以通过提高水温,减少洗涤水量,采用逆流退浆等工艺方法来提高退浆废水中的PVA 浓度。主要工艺流程如图1所示。

图1 印染退浆工艺流程

1.2 PVA 回收原理

PVA 属于非离子型有机聚合物,一般凝聚剂产生的电荷对其吸附作用较弱,对PVA 的去除几乎没有效果。但是PVA 水溶液在有较多盐类的情况下,由于盐析作用可使PVA 析出,同时硼砂可与PVA 分子进行双二醇型的结合。试验证实,在硼砂的交

[收稿日期]2003-12-15;[修订日期]2004-01-18

[作者简介]徐竟成(1961)),男,上海人,同济大学环境科学与工程学院副教授,主要研究水污染控制技术。

#

286#2004年第24卷

化 工 环 保

EN VI RON M EN T AL PROT ECT ION OF CHEM ICAL IN DU ST RY

联和盐类盐析的共同作用下,退浆废水中的PVA能以凝胶形式析出,从而达到回收的目的。在盐类中, Na2SO4极性作用强,来源广,价格低廉,是较好的盐析剂。

1.3工艺试验影响因素

通过试验研究发现,凝结剂的投加量以及聚乙烯醇的回收率受到以下几个因素的影响:

(1)温度:回收温度以40~50e为宜。温度过低,导致反应不完全;温度过高,则凝结的PVA呈粘胶状,回收效率下降。

(2)pH:过高或过低的pH都会使回收率降低,甚至不能发生凝结反应,较佳的pH范围为7.5~ 9.0。

(3)反应时间:凝结反应在10~15min内已基本完成。

(4)反应搅拌速度:搅拌转速需高于250r/min,较高的搅拌速度可以使反应更为完全,从而有利于回收效率的提高。

(5)凝结剂投加量:硼砂0.5~1g/L,硫酸钠5 ~10g/L,可视退浆液的浓度作适当调整。硼砂投加量的变化对回收率有较大影响,而盐析剂硫酸钠的影响相对较小。

(6)退浆液中PVA含量:退浆液中的PVA质量浓度要大于5g/L,浓度越高,回收率也相应提高,回收成本降低。

通过在较优的工艺条件下进行试验,原水PVA 质量浓度为13.95g/L,通过凝结剂回收后出水的PVA质量浓度仅为0.84g/L,回收率达88.5%;原废水中COD为37120mg/L,处理后COD为6640 mg/L,废水中COD的去处率高达92.2%,大大降低了废水中的COD,提高了废水的可生化性,有利于废水的后续处理。

2生产性回收与利用

2.1回收运行方式

生产性回收可采用连续式和间歇式两种方式,其优缺点比较见表2。

表2连续式和间歇式的比较

方式优点缺点

连续式连续运转,劳动强

度较低

回收效率低,固液

分离效果较差

间歇式回收率高,设备简

操作麻烦,劳动强

从经济效益比较分析可知:间歇式运行稳定,易

于控制,运转较为经济,但劳动强度相对较高,可适

当地增加自动控制予以改进。回收工艺流程如图2

所示。

图2PVA回收工艺流程

反应器容积0.5m3,2组;反应转速300r/min;

总反应时间30min/次;固液分离采用履带穿孔式

分离机。

2.2运行状况

PVA回收设备经过调试正常运行后,回收产品

为块状PVA,产品含固质量分数为15%~20%,表

3为实际运行情况。

表3生产性回收设备运行情况

COD PVA

进水/

(mg#L-1)

出水/

(mg#L-1)

去除率,

%

进水/

(g#L-1)

出水/

(g#L-1)

回收率,

%

15400430072.110.10 1.9880.4

16000360077.510.81 1.9182.3

136********.69.62 1.7981.4

14400440069.411.33 2.0182.3

设备建成投产后,有效地回收了PVA,明显地

减轻了对水体的污染。

2.3回收PVA的再利用

由退浆废水中回收得到的PVA为含水固体,呈

碱性,按一定的比例加入蒸馏水,加热至95e左右,

使其溶解成一定浓度的溶液,在溶解过程中用酸调

节pH,并和交联剂进行第一次缩聚,然后将溶液冷

却至室温,在室温下与交联剂再进行第二次缩聚,以

形成网状结构的大分子,经静置,澄清去除杂质,再

加入脱色剂、防腐剂进行脱色、防腐处理,即可制得

改性PVA胶水。通过加入不同量的水,可以得到不

同浓度的PVA溶液,经缩聚后可制成浓度不同的改

胶水。

#

287

#

增刊徐竟成等.印染退浆废水中聚乙烯醇的回收与利用

3 环境、经济和社会效益分析

某厂每年加工坯布约60000km,其中95%以上为涤棉布,PVA 上浆率为5%,布重以10kg/100m 计,则经退浆进入煮漂废水的PVA 为285000kg,其中有20%的PVA 可回收,回收率为75%,则可回收的PVA 量为42750kg,合COD 68400kg,则每年排放废水中的COD 可减少68400kg,大大降低了废水处理设施的负荷,有效地提高了废水的可生化性,有利于纺织印染废水的处理,保护水环境。

由于废水中PVA 含量的大量减少,相应废水的

处理费用以及排污费用也就有了大幅度的下降。回收后的PVA 可以制作改性胶水,获取一定的经济效益和社会效益。

4 结语

采用化学凝结法回收纺织印染退浆废水中的PVA 实现了生产性规模的实际应用,PVA 回收率和COD 去除率均达80%左右,回收PVA 含固质量分数为15%~20%。本工艺设备简单,操作方便,无二次污染,回收的PVA 可制成改性胶水,具有较好的环境效益和一定的经济社会效益。

#

288#2004年第24卷

化 工 环 保

EN VI RON M EN T AL PROT ECT ION OF CHEM ICAL IN DU ST RY

印染废水回用处理工艺

印染废水回用处理工艺 纺织印染行业废水具有排放量大、水质变化大、有机物浓度高、色度高等特点,其处理相对复杂.近年来,由于水资源的紧缺,众多环保学者在印染废水回用领域进行了大量研究. 为了保证印染废水出水的稳定达标和中水回用,双膜法成为印染废水处理领域深度处理最为常用的处理技术,研究表明,全国75%以上的印染企业利用双膜法作为深度处理技术.双膜法技术包括超滤和反渗透(RO)两种膜处理技术.RO出水包括淡水和浓水,其中,淡水可直接排放或完全回用于印染工序,浓水由于盐度高、含一定浓度的难降解有机物和硬度,不仅不能直接排放,而且处理相当困难. 目前,针对印染反渗透浓水(ROC)的主要处理措施有直接排放处理、回流二次处理和膜蒸馏技术.直接排放处理一般是指直接排入海洋,是最为常用的浓水处理技术,但此技术受到地理位置限制,在广大内陆等离海岸较远的地区不宜推广. 回流二次处理是指将浓水回流至水处理系统的前处理段,再次进入水处理系统进行二次处理,这样使浓水中的难降解有机物和高盐度物质得不到外排,长期回流会导致生化系统盐分逐渐积累,微生物活性降低并最终导致生物处理系统的崩溃.膜蒸馏技术是一种膜技术与蒸馏技术相结合的膜分离技术,可以实现浓水和盐分的完全回收,但该技术耗能太高,大部分企业很难承受. 另外,汪晓军等采用Fenton氧化结合石灰苏打处理印染ROC,实现了印染ROC 的完全回用,但由于Fenton氧化技术处理过程中有可能带入印染需严格限制的

Fe2+,因此,需要后续设置絮凝沉淀池以完全去除出水中的Fe2+.鉴于现有各浓水处理工艺的不足,亟需开发一种新的处理工艺解决地理位置受限、处理成本过高及处理工艺复杂等难题. 过硫酸盐(PS)氧化作为一种新型的高级氧化技术近年来在环境领域逐渐受到研究人员的关注.在常温条件下,PS是一种较为温和的氧化剂,反应速率较慢.当PS受到外界条件如热、微波、过渡金属离子作用时容易被活化,产生氧化性更强的硫酸根自由基(SO· -4),其标准氧化还原电位E0=2.60 V,高于PS的E0=2.01 V.相应的反应原理如下: pH对PS降解有机物有一定的影响,杨照荣等的研究表明,PS的氧化能力在碱性条件下比酸性和中性条件下较强,因为在碱性条件下硫酸根自由基会生成氧化能力更强的羟基自由基(· OH,E0=2.80 V),反应如下: 除pH外,初始PS投加量、反应温度都是影响PS氧化反应的重要影响因素.PS 氧化镇痛药(立痛定)的研究表明,有机物的氧化速率在一定初始PS范围内随初始PS用量的增加而加快.温度的提升大大提高了PS分解垃圾渗滤液中腐殖酸的速率,温度从90 ℃上升到150 ℃时,有机物去除率从63.5%上升到76.0%,温度继续上升到170 ℃,有机物去除率上升到78.8%. 石灰苏打软水技术是废水处理领域最为传统的脱硬度技术.印染用水中硬度过高会造成染料在染色织物表面分配的不均匀性,同时降低染色织物的色牢度,是印染回用水严格规定的水质指标.采用石灰软化和微滤工艺处理某热电厂的循

氨氮去除方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。 物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

纺织染整行业中含PVA退浆废水处理技术

纺织染整行业中含PV A退浆废水处理技术 发表时间:2018-05-22T11:20:14.457Z 来源:《基层建设》2018年第1期作者:金林飞陆巍 [导读] 摘要:聚乙烯醇(PV A)因其诸多优越特性,被广泛应用于纺织行业经纱上浆工序。 常州志恒环境科技有限公司江苏常州 213000 摘要:聚乙烯醇(PVA)因其诸多优越特性,被广泛应用于纺织行业经纱上浆工序。但是PVA属于难降解高分子,常规的处理方式无法去除PVA,排入水体将极大影响生态环境。所以如何解决纺织厂含PVA退浆废水,一直是行业内难以突破的难点。本文阐述了国内对 PVA退浆废水处理较为成熟的一些处理技术,旨在探索针对不同浓度的退浆废水,选用不同的组合工艺,力求实用,并能在较低的处理成本下运行。 关键词:退浆废水;陶瓷膜;水处理;资源回收 前言 聚乙烯醇(PVA)是常见的水溶性高分子之一,其分子主链为碳链,每个乙烯醇C2H4O上含有一个OH羟基,羟基极性强,容易形成氢键[1]。PVA作为上浆浆料,具有耐磨粘附和化学稳定性,并且能配合其他浆料协同使用的优点,在经纱上浆过程中得到了广泛的应用。一般而言,PVA退浆废水在废水总量中占比小,但是COD所做的贡献达到40-50%。,含PVA的废水排入水体后会在环境中大量积累,抑制甚至破坏好氧微生物的活动,能增强河流、湖泊和海洋沉积物中重金属的活性,加快重金属的迁移速度,导致更严重的环境问题[2]。 退浆废水性质分析 聚乙烯醇(PVA)作为浆料使得上浆后的浆纱强度及韧性大,且与经纱的粘附力强,不易剥落有利于提高经纱的织造效率。以常州某企业为例,该企业在综合考虑上浆效果和便于前处理退浆的需求,选择使用聚合度1788,醇解度88.8%的PVA同时配合淀粉等其他浆料混合使用。其退浆废水化学需氧量(CODCr)为24000mg/L,生物需氧量(BOD5)为1440mg/kg,BOD/COD的值为0.06,废水可生化性极差。 PVA退浆废水处理可分为物化法和生化法两大类。 一、物化法 1.1膜截留浓缩法 膜截留浓缩法一般选用无机陶瓷膜,相对于有机聚合膜,其能耐酸碱耐高温耐污染高通量等特点。 王星骅[3]等人,以高铝陶瓷膜管为载体,选用0.6g/L的高岭土溶液对膜管进行涂膜,制备成动态陶瓷膜,在0.3MPa的跨膜压差下,膜浓液侧保持错流速度为3m/s,温度维持在50℃时,能保持正常且较高膜通量,同时对PVA及CODCr的去除效果较好。 1.2混凝沉淀法 张洪荣[4]等人采用混凝沉淀法含PVA废水进行预处理的的实验表明,在投加PAC混凝剂及高分子助凝剂,注意调节废水pH和搅拌速度等因素,搅拌时间为0.5小时后,废水可生化性显著提高至0.24,相对原水提高了1.6倍,减轻了对后续微生物处理的冲击负荷。以常州某企业退浆废水为原水调节pH至9-10,投加1g/L PAC和0.08g/L PAM,搅拌2min后静置,COD去除率达40%。 1.3化学凝结法 郭丽[5]等人通过正交实验利用化学凝结法回收PTA的研究表明,10g/L硫酸钠加1.0g/L硼砂加1.0g/L碳酸钠助剂,对于质量浓度为12g/L的PVA退浆废水,保持反应温度为50℃,调节废水pH为8.0-9.0时,PVA回收率高达90.30%,同时COD去除率达到82.2%。 二、生化法 2.1上流式生物滤池 杨波[6]等人采用上流式曝气生物活性炭滤池(UABACF)处理PVA退浆废水,在固定水力负荷为0.076m3/(m2.h)条件下,在气水比为4∶1条件下,PVA的去除效果最佳。生物滤池对PVA处理过程可分为两部分,首先依靠滤料表明的微生物对PVA的吸附,然后微生物再对吸附的PVA进行生物降解,其本质还是依靠滤池中的专性细菌利用PVA进行新陈代谢予以去除净化退浆废水。 2.2 MBR工艺 裴义山等[7]采用MBR反应器处理难降解聚乙烯醇有机废水,在pH中性水温为常温时,控制水力停留时间在10h到20h之间,污泥浓度保持在5000mg/L左右、进水CODCr<600mg/L的条件下,反应器出水CODCr基本稳定在15.5mg/L左右,CODCr的平均去除率为90.7%,实验表明采用好氧MBR能有效处理低浓度难降解含PVA有机废水。 2.3 ABR处理工艺 徐金兰[8]等选用厌氧折流板反应器对PVA退浆废水进行预处理实验研究,结果表明:ABR反应器内的生物菌种在经过30d的驯化培养后,微生物对PVA废水具备了一定的适应性,随废水流向反应器各隔室内COD及PVA浓度呈现梯度下降的趋势,去除率达到80%左右。反应器中第一隔室高浓度的产酸菌,对PVA的降解起到了关键性作用。 结束语 针对纺织染整行业PVA退浆废水,宜单独收集分质处理,在组分单一浓度极高时建议采用化学凝结法对退浆废水中的PVA进行资源回收利用。对于中高浓度的退浆废水,建议采用先浓缩后盐析回收的方式处置。对于低浓度的退浆废水,建议采用混凝沉淀后进行生化处理,可极大降低处理成本。根据实际情况,选择合适的工艺组合,优势互补,优化工艺参数,提高处理效果,降低处理成本。同时对于处于实验阶段的高新技术,如超临界水氧化法、零价铁芬顿技术,应尽快应用于实践,加强实用性的研究,并且努力降低处理成本,利于应用推广。 参考文献: [1]朱谱新,姚永毅.PVA浆料的生物降解性及应用前景[J].棉纺织技术,2005,33(2):62-64. [2]厉成宣,范雪荣,王强,等.退浆废水中PVA对环境的影响及其降解性能[J].印染助剂,2007,24(6):7-10. [3]王星骅,柳林,陈季华.动态陶瓷膜对PVA退浆废水处理效果的研究[J].科技情报开发与经济,2008,18(31):132-134. [4]张洪荣,原培胜.混凝沉淀—活性污泥法处理PVA退浆废水的研究[J].工业水处理,2006,26(4):54-56. [5]郭丽,黄承武,奚旦立,史雅娟.退浆废水中聚乙烯醇的回收[J].石油化工腐蚀与防护.2007,24(6):59-61. [6]杨波,许雅萌,李方,田晴,马春燕,刘勇.上流式曝气生物滤池(UABACF)处理PVA退浆废水的实验研究[J].环境工程.2014,

纺织印染废水处理及回用技术

纺织印染废水处理及回用技术 据悉,2008年纺织工业废水排放量23亿吨,居各工业行业第3位,占全国工业废水排放量的%。纺织工业排放废水中CODcr排放量万吨,居各工业行业第4位,占全国工业废水CODcr的%。 印染废水,按纤维材料可分为毛、棉、化纤和混纺、苎麻、丝绢、针织、线带、巾被等废水。棉废水1030万吨,涤纶废水2700万吨,其它黏胶废水70万吨,毛、丝、麻及其它化纤产品废水只有30-50万吨,涤纶和棉共占90%。 按工艺可分为前处理、染色和印花、后处理等废水。印染废水主要是前处理、染色和印花这两部分水量最多、水质最差。 前处理:退浆和煮练(以棉为主)、碱减量(以涤纶为主)等。废水量约占30%-40%,COD 负荷约占55%-60%,甚至更高。目前很多人对前处理重程度不高。 染色和印花:废水量约占60%-70%,COD负荷约40%-45%;由于上染率问题,不一定百分百染上,有一定染料和助剂在漂洗时进入废水中,而且温度较高。 后整理:废水量很少,大部分情况下浓度不会很高。 按染料可分为直接染料、活性染料、暂溶性还原染料、还原染料、硫料、不溶性偶氮染料、酸性染料、阳离子染料等。棉主要用的活性染料居多,涤纶主要用分散染料居多,染料不同,处理方法也有很大区别。比如棉用的活性染料,活性染料主要是溶解性染料,普通物化方法去除不了多少;但是分散染料是不溶于水的,颗粒性的,如果加药剂的话,混凝沉淀效果不错。 可见,不同纤维、不同染料废水性质不同,因而治理方法也不同。 印染废水水质

印染废水的水质随加工的纤维种类和采用工艺以及使用的染化料的不同而异,污染物组分差异很大。 pH值:6-13“一般偏碱性居多” COD:400-4000mg/L“从400到4000,区别很大,甚至更高” BOD:100-1000mg/L“100到1000左右,不一定测得很准” 色度:---1000倍“一般在1000倍以下,也有比1000高的” SS:---2000mg/L“一般小于2000” 印染废水回用 印染废水回用有MBR、RO、高级氧化、吸附,MBR一般来说是个比较好的处理工艺,但是前段预处理一定要做好,否则水质水量波动大的话,膜污染问题比较难解决。 1、MBR(膜生物反应器) (1)活性污泥浓度可达8000-12000MLSS (2)保留和易于培养的菌种 (3)是后续RO处理的良好的预处理工艺 (4)前段预处理一定要做好,水质水量波动尽量小 2、RO/NF(特殊材质NF) (1)可以截留溶解性盐类 (2)浓缩排放水中的COD高,浓水还需进一步处理才能达标排放

印染废水的特点及处理工艺

印染废水的特点及处理工艺 印染废水是加工棉、麻、化学纤维及其混纺产品为主的印染厂排出的废水。印染废水水量较大,每印染加工1吨纺织品耗水100——200吨,其中80——90%成为废水。纺织印染废水具有水量大、有机污染物含量高、碱性大、水质变化大等特点,属难处理的工业废水之一。废水中含有染料、浆料、助剂、油剂、酸碱、纤维杂质、砂类物质、无机盐等。 印染废水分类 1、退浆废水:水量较小,污染物浓度高,主要含有浆料及其分解物、纤维屑、酸、淀粉碱和酶类污染物,浊度大;废水呈碱性,pH值为12左右。用淀粉浆料时BOD、COD均高,可生化性较好;用合成浆料时COD很高,BOD小于5mg/L,水可生化性较差。 2、煮炼废水:水量大,污染物浓度高,主要含有纤维素、果酸、蜡质、油脂、碱、表面活性剂、含氮化合物等。废水碱性很强,水温高,呈褐色,COD与BOD很高,达每升数千毫克。化学纤维煮炼废水的污染较轻。 3、漂白废水:水量大,污染较轻,主要含有残余的漂白剂、少量醋酸、草酸、硫代硫酸钠等。 4、丝光废水:含碱量高,NaOH含量在3%-5%,多数印染厂通过蒸发浓缩回收NaOH,所以丝光废水一般很少排出,经过工艺多次重复使用最终排出的废水仍呈强碱性,BOD、COD、SS均较高。 5、染色废水:水质多变,有时含有使用各种染料时的有毒物质(硫化碱、吐酒石、苯胺、硫酸铜、酚等),碱性,pH有时达10以上(采用硫化、还原染料时),含有有机染料、表面活性剂等。色度很高,SS少,COD较BOD高,可生化性较差。 6、印花废水:含浆料,BOD、COD高。 7、整理工序废水:主要含有纤维屑、树脂、甲醛、油剂和浆料,水量少。 8、碱减量废水:是涤纶仿真丝碱减量工序产生的,主要含涤纶水解物对苯二甲酸、乙二醇等,其中对苯二甲酸含量高达75%。碱减量废水不仅pH值高(一般>12),而且有机物浓度高,碱减量工序排放的废水中CODcr可高达9万mg/L,高分子有机物及部分染料很难被生物降解,此种废水属高浓度难降解有机废水。 印染废水特点 印染废水是加工棉、麻、化学纤维及其混纺产品为主的印染厂排出的废水。印染废水水量较大,每印染加工1吨纺织品耗水100——200吨,其中80——90%成为废水。纺织印染废水具有水量大、有机污染物含量高、碱性大、水质变化大等特点,属难处理的工业废水之一,废水中含有染料、浆料、助剂、油剂、酸碱、纤维杂质、砂类物质、无机盐等。 印染废水处理方法 1、吸附法 在物理处理法中应用最多的是吸附法,这种方法是将活性炭、粘土等多孔物质的粉末或颗粒与废

高氨氮废水处理方法

一高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作般上ph 在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水用,ph 一种是无机氨形一种是氨水形成的氨氮,中氨氮的构成主要有两种,成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 形态比例NH3升高,氨在水中PH氨氮在水中存在着离解平衡,随着.升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里( Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持

“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。.2 生物脱氮法 传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。 O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于L,O 段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解

氨氮废水处理系统设计方案百度文库

应平化肥有限责任公司 30T/h氨氮废水处理系统 宜兴市裕泰华环保有限公司 二00八年五月 一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质

序号项目数据(mg/L 1 氨氮846.3 2 化学需氧 量 737 3 环状有机 物(Ar-OH 9.095mg/L 4 总磷0.467 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知

11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建的单位 序号项目标准(mg/L 1 氨氮70 2 化学需氧 量 150 3 氰化物 1.0 4 SS 100 5 石油类 5 6 挥发酚0.1

7 硫化物0.50 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在0.3以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约0.35左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收 废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机 →三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器 自动加酸加还原剂

退浆废水有哪些来源

退浆废水有哪些来源 生物酶退浆是一种将生物酶前处理和传统前处理有机结合的技术,有效提高了混合浆料上浆的织物在前处理中的退浆率,退浆率达到95% 但是上浆后给印染加工带来了许多困难,它不仅影响织物的渗透性,阻碍化学药剂和染料与纤维的接触,多耗用化学染料药品,还会影响产品质量。所以在棉布连漂前必须经过退浆。退浆不仅可以去除棉布上的浆料,而且还能去除棉纤维上的部分天然杂质。退浆主要的方法主要有酶、碱、氧化剂退浆等。织物上的浆料主要有天然浆料、合成浆料及纤维素浆料等。 一些人问:水污染成因与污水处理方法? 针对重点行业的工业废水,必须开展关键技术研究与集成应用示范

由于我国的工业基础薄弱,传统的高消耗、低产出、重污染的粗放型生产模式仍在被广泛应用。毒性大、浓度高、不易被生物降解的造纸废水、染料废水、制药废水、焦化废水等难降解工业废水的治理有相当大的难度,要实现达标排放十分困难。特别是蓬勃发展的乡镇企业,大多数生产模式更加粗放,造成的污染日渐严重,1997年全国乡镇企业废水排放量为39亿t。由于乡镇企业废水一般污染重,污染源分散,贯彻环保法规的难度更大,往往不经治理而任意排放。采油、炼油行业的废水也缺少达标排放的有效工艺技术手段,成为困扰我国原田及其加工企业的环保难题。虽然经过多年努力和几个五年计划的科技攻关,我国许多行业的废水治理在工艺技术上取得了许多突破性的进展,废水达标排放率也逐年提高,但是,尚有若干重点行业废水处理缺乏关键技术,特别是在系统化和实用化方面迫切需要技术进步和工程示范。因此,以重点行业的工业废水治理为重点,针对其中的主要共性问题,结合高浓度有机工业废水、有毒有害工业废水和含油废水开展攻关研究与示范,对解决我国工业废水的污染问题具有重要意义。 我们在平时最好多学习一些水污染安全小知识,饮用水尽量安装家用净水器过虑在饮用,这样更有利于用水安全。

印染废水资料

印染废水来源的背景介绍 据统计,2003年在全国各工业行业中,废水排放量居前5位的行业为造纸业、化工制造业、电力业、黑色金属冶炼业和纺织印染业,其废水排放量分别占全国工业废水统计排放 量的16.8%、16.5%、13.1%、9%、7.5%。2003年纺织行业废水排放总量为14.13亿吨,其中印染废水约为11.3亿吨(占纺织印染业废水的80% ),约占全国工业废水排放量的6%。 在工业各行业中,纺织印染业的COD排放量位居第四位。从下表可明显看出,在我国 工业行业的四大重点COD排放行业中,从1998-2003年,造纸、食品行业的COD排放比重逐年下降,而纺织印染和化工行业的COD排放比重逐年上升,其中纺织印染业的比重从 4.7%上升到2003年的 5.6%,五年间上升了19%。 三河三湖”中,太湖、淮河流域污染受纺织印染业的影响较大。 据有关资料显示,2003年,太湖流域工业废水COD排放量为9.6万吨,占流域COD 总排放量的21.5% (其余为生活污水排放)。太湖流域重点污染行业依次为纺织印染、化工、造纸、黑色金属冶炼和电力业。上述5行业对太湖流域工业废水COD贡献率为71.2%,其中纺织印染业占31.1%,居第一位。其他行业分别为16.3%、11.7%、8%和4.1%。 印染废水由染整工序中排出的助剂、染料、浆料等组成,毒性不大。造成印染废水色度 的是排放出的染料,印染加工过程中约有10%-20%的染料随废水排出,废水中的染料能吸 收光线,降低水体透明度,对水生生物和微生物造成影响,不利于水体自净,同时造成视觉上的污染,严重的会影响人体健康。而且随着花色品种的增加,染整工艺不断更新,其中某 些工艺导致了污染的加重。如近年来风行的碱减量工艺,由于纤维中大量的对苯二甲酸被溶出,导致COD含量大幅增加,其废水中COD可达20000-80000mg/l ;同样原理,海岛丝工艺的废水中COD高达20000-100000mg/l 。这些新工艺的采用为印染废水的处理增加了难度。 印染废水特点以及危害 我国日排放印染废水量为(300?400)X104t,是各行业中的排污大户之一。印染废水主 要由退浆废水、煮炼废水、漂白废水、丝光废水、染色废水和印花废水组成,印染加工的四个工序都要排出废水,预处理阶段(包括退浆、煮炼、漂白、丝光等工序)要排出退浆废水、 煮炼废水、漂白废水和丝光废水,染色工序排出染色废水,印花工序排出印花废水和皂液废水,整理工序则排出整理废水。通常所说的印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。 印染废水的水质随采用的纤维种类和加工工艺的不同而异,污染物组分差异很大。印染废水一般具有污染物浓度高、种类多、含有毒有害成分及色度高等特点。一般印染废水pH 值为6-10 , CODCr 为400-1000mg/L , BOD5 为100-400mg/L , SS 为100-200mg/L,色度为100-400倍。但当印染工艺、采用的纤维种类和加工工艺变化后,废水水质将有较大 变化。近年来由于化学纤维织物的发展,仿真丝的兴起和印染后整理技术的进步,使PVA 浆料、人造丝碱解物(主要是邻苯二甲酸类物质)、新型助剂等难生化降解有机物大量进入印染废水,其CODCr浓度也由原来的数百mg/L上升到2000-3000mg/L 以上,BOD5增大到800mg/L以上,pH值达11.5-12,从而使原有的生物处理系统CODCr去除率从70%下降 到50%左右,甚至更低。 印染各工序的排水情况一般是: (1)退浆废水:水量较小,但污染物浓度高,其中含有各种浆料、浆料分解物、纤维屑、 淀粉碱和各种助剂。废水呈碱性,pH值为12左右。上浆以淀粉为主的(如棉布)退浆废水,其COD、BOD值

某厂氨氮废水处理工程设计方案

氨氮废水处理工程 设计方案 废水水量及水质确定 一、废水的水量 根据业主提供的废水处理量为:Q=240T/d, 二、废水的水质 根据业主提供的资料,废水水质如下: NH4-N:6000mg/L T:30℃PH=7-8 SO42-:10000mg/L 废水处理要求 本项目设计废水处理能力为240T/d。 本工程废水处理后废水中氨氮含量达到国家一级排放标准, 即:NH3-N≤15mg/L 废水处理工艺方案 一、工艺确定原则 1、严格执行有关环境保护的各项规定,废水处理后氨氮含量达到该地区的地方排放标准氨氮小于15mg/L; 2、依据废水水质特点,在充分论证的基础上,选用先进合理的废水处理工艺,保证废水达标排放; 3、治理方案力求工艺简洁,方法原(机)理清晰明了; 4、处理系统具有灵活性和操作弹性,以适应废水水质、水量的变化; 5、本方案力求达到工艺先进、运行稳定、管理简单、能耗低、维修方便等特点; 6、处理后不造成二次污染。 二、工艺设计范围 1.废水处理工艺流程、工艺高程和各处理单元设计; 2.废水处理平面布置、设备选型、布置和控制设计; 3.废水处理区1.00m以内的所有工艺管道和线路设计; 三、污水处理工艺设计选择依据 1)、本工程的废水中主要污染物和控制指标为氨氮。氨氮废水处理,目前国内采用的处理工艺有以下几种:https://www.wendangku.net/doc/da18233396.html, 1、生化处理工艺 该工艺利用生物菌将有机氮转化为氨氮,再通过硝化与反硝化将硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。

但由于生物菌所能承受氨氮的浓度较低,一般不能超过200mg/L,当氨氮高于200-300mg/L 时,会抑制细菌生长繁殖。因此该工艺只适用于氨氮含量200mg/L左右的低浓度氨氮废水。此外,生化处理工艺工程占地面积较大,温度较低时,总脱氮效率也不高。 2、传统填料式的吹脱工艺 该工艺是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮等挥发性物质不断的由液相转移到气相中,从而达到从废水中去除氨氮的目的。 但由于氨氮在水中存在溶解平衡关系,当气液两相的氨处于平衡状态时,水中的氨氮将不能被吹脱逸出,因此该工艺不适用于高浓度氨氮废水。且传统填料式吹脱工艺还存在吹脱效率低,吹脱风量大(气液比3000:1左右)、时间长,对温度要求高、填料易结垢等缺点。 3、蒸氨汽提法 蒸氨气体法也是利用氨氮的气相浓度和液相浓度之间的气液平衡关系对氨氮进行分离,该工艺是把水蒸气通入废水中,当蒸气压超过外界压力时,废水沸腾从而加速了氨氮等挥发性物质的逸出过程。 与传统填料式吹脱相同的是,当气液两相中氨达到平衡时,蒸氨气提法也不能继续使水中氨氮持续逸出,因此单次气提也不能将氨氮完全脱除,若采用连续多次气提进行脱氮则会大大增加投资成本和运行成本。 以上两种方法均只能将氨氮处理至100mg/L左右。 4、沸石离子交换法 沸石是含水的钙、钠以及钡、钾的铝硅酸盐矿物,因其含有一价和二价阳离子,具有离子交换性,因此沸石具有离子交换的能力,可将废水中的NH4+交换出来。 该工艺的缺点是只适用于氨氮含量在50mg/L以下的废水,且交换剂用量大需再生,再生频繁,并且再生液需要再次脱氨氮。采用该工艺还要求对废水做预处理以除去悬浮物,因此此法的成本较高,同等浓度下,处理费用为其他工艺的1.5~2倍。 5、折点加氯工艺 折点加氯工艺是利用氯气通入水中所发生的水解反应生成次氯酸和次氯酸盐,通过次氯酸与水中氨氮发生化学反应,将氨氮氧化成氮气而去除。 此方法的缺点是加氯量大、费用高、操作安全性差,设备腐蚀严重,容易发生危险,工艺过程中每氧化1mg/L的氨氮要消耗14.3mg/L的碱度,从而增加了总溶解固体的含量,比较适合低浓度氨氮废水的处理。 6、超声波吹脱工艺 利用超声波来降解水中的化学污染物,尤其是难降解有机污染物,是一种深度氧化处理废水的新技术。 该工艺利用超声波辐射将压缩空气作为超声波的推动力,产生空化气泡,加强了废水中

印染退浆废水PVA处理技术

徐竟成1,魏巧玲1,郑涛2,李健31.同济大学环境科学与工程学院,上海200092;2.同济大学建筑设计研究院,上海200092;3.上海纺织节能环保中心,上海2000821 0前言 印染行业是纺织工业的重要组成部分,也是纺织工业主要的废水源。印染过程包括退浆、煮练、漂白、丝光、染色、印花和整理等,其中退浆废水产生的COD负荷量约占印染废水COD总量的50%。废水中大量的污染物来源于浆纱过程中所用的浆料,主要为聚乙烯醇(PvA)浆料。由于PVA具有良好的黏附性、浆膜强韧性和耐磨性,在纺织工业中得到广泛应用,但其非环保性也成为长期困扰印染废水处理的难题。由PVA 构成的有机污染物浓度高且难被生物降解(B/C小于0.1)。含PVA的印染废水排入水体后,PVA会在水环境中大量积累,使水体表面泡沫增多,黏度加大,影响好氧微生物的活动,从而造成严重的环境问题。 本文在调研国内外PVA处理技术及回收利用实践的基础上,探讨了不同PVA处理技术的特点及适用性。 1国内外PVA处理技术分析 1.1生物降解技术 1.1.1高效降解茵生物降解 虽然含PVA的废水可生化性差,但PVA可以在一些特殊生物酶的作用下被降解。早在1936年,人们就发现PVA可以在真菌镰刀霉作用下,最终被生物降解成二氧化碳和水。利用高效降解菌处理含PVA的废水,是通过筛选并驯化PVA降解菌,来实现PVA完全生物降解的。已有报道,PVA降解菌包括假单胞菌、短杆菌等多种,从这些降解菌中分离出来的PVA降解酶有仲醇氧化酶、聚乙烯醇脱氢酶和β-双酮水解酶等。PVA的生物降解经历微生物表面黏附,断链成可以通过细胞壁的低聚物,低聚物进入微生物体内被消化,经过代谢形成CO2、CH4、N2、H2O等无机物和矿物质等,最终实现PVA完全生物降解的过程。 Jea-An Lee等从纺织厂和染整厂下水道的活性污泥中分离出了降解PVA的菌株SB68和SB69,通过驯化,均表现出较高的PVA降解活性,在46天的试验期间使原来0.01%浓度的PVA降解了75%。林少宁等通

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

各种废水水质特点及处理难点

各种废水水质特点及处理难点 本文分别介绍印染废水、医院污水、电镀废水、造纸厂废水、制革废水、味精厂废水、游泳池废水、农药废水、电泳废水、洗涤废水、电厂废水、印刷废水、啤酒废水、乳制品废水、线路板废水、淀粉废水、屠宰废水、焦化废水的水质特点及处理难点。 印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水。印染加工的四个工序都要排出废水,预处理阶段(包括烧毛、退浆、煮炼、漂白、丝光等工序)要排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出染色废水,印花工序排出印花废水和皂液废水,整理工序则排出整理废水。印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。 医院污水是指医院(综合医院、专业病院及其它类型医院)向自然环境或城市管道排放的污水。其水质随不同的医院性质、规模和其所在地区而异。每张病床每天排放的污水量约为200-1000L。医院污水中所含的主要污染物为:病原体(寄生虫卵、病原菌、病毒等)、有机物、漂浮及悬浮物、放射性污染物等,未经处理的原污水中含菌总量达10^8个/mL以上。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。 造纸工业是能耗、物耗高,对环境污染严重的行业之一,其污染特性是废水排放量大,其中COD、悬浮物(SS)含量高,色度严重。 废水处理要解决的主要题问题:造纸废水的SS、COD浓度较高,COD则由非溶解性COD 和溶解性COD两部分组成,通常非溶解性COD占COD组成总量的大部分,当废水中SS被去除时,绝大部分非溶解性COD同时被去除。因此,废纸造纸废水处理要解决的主要问题是去除SS和COD。 目前制革工业生产一般包括脱脂、浸灰脱毛、软化、鞣制、染色加工、干燥、整饰等几个工段,加工过程中需要添加多种化学品[2],从而使得废水中含有油脂、胶原蛋白、动植物纤维、有机无机固形物、硫化物、铬、盐类、表面活性剂、染料等多种污染物质和有毒物质。制革工业综合废水的水质特性为:ρ(CODcr)为3000—4000mg/L,ρ(BOD5)为1000—2000mg/L,ρ(SS)为2000—4000mg/L,pH值为8-11。 废水主要来源于鞣前准备,鞣制和其他湿加工工段。污染最重的是脱脂废水、浸灰脱毛废水、铬鞣废水,这3种废水约占总废水量的50%,但却包含了绝大部分的污染物,各种污染物占其总量的质量分数为:CODcr80%,BOD575%,SS70%,硫化物93%,氯化钠50%,铬化合物95%。 制革废水的特点表现在以下几方面: ①水质水量波动大;

印染废水的处理方法及工艺流程

印染废水的处理方法及工艺流程目前,国内的印染废水处理手段以生物法为主,辅以物理法与化学法。由于近年来化纤织物的发展和印染后整理技术的进步,使新型染料、PAV浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。原有的生物处理系统COD去除率大都由原来的70%下降到50%左右,甚至更低。色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。此外,PAV等化学浆料造成的COD占印染废水总COD 的比例相当大,但由于它们很难被普通微生物所利用而使其去除率只有20%~30%。针对上述问题,国内外都开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索和应用研究。其中具有代表性的有:厌氧-好氧生物处理工艺、高效脱色菌和PVA降解菌的筛选与应用研究、光降解技术研究、高效脱色混凝剂的研制等。 1、印染废水常用处理技术 印染废水的常用处理方法可分为物理法、化学法与生物法三类。物理法主要有格栅与筛网、调节、沉淀、气浮、过滤、膜技术等,化学法有中和、混凝、电解、氧化、吸附、消毒等,生物法有厌氧生物法、好氧生物法、兼氧生物法。 2、印染废水处理单元的选择系列 (1)调节:对水质水量变化大的废水,调节池应考虑停留时间长些。一般情况下后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。

(2)混凝反应:废水中含疏水性染料较多时,混凝反应工艺放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。混凝药剂可根据染料性质选用碱式氯化铝(PAC)、硫酸亚铁(FeSO4)等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min之间。考虑脱色效应时,应把反应时间再适当延长。 (3)中和:原水pH值高时通常用H2S04或HCl中和,为节省药剂用量,可在调节以后。如采用烟道气中和,应考虑脱硫及除灰。 (4)沉淀(气浮):分离物化投药反应由于污泥量大,应优先考虑沉淀〔斜管沉淀易堵不宜采用),通常的辐流沉淀池适用于大水量、竖流沉淀池适用于小水量,当有地皮可利用时,平流沉淀池采用吸泥方式时也可采用。投药量大时泥量也大,辐流池可能会引起异重流,新颖的周边进出水沉淀池可克服这一缺点。如废水中表面活性剂含量高,应选择气浮法,气浮法中压力溶气气浮技术成熟,可考虑选用。 (5)过滤:当出水要求澄清或回用时,应采用砂滤或煤砂两层过滤。(6)电解法:钛镀钌惰性电极电解法处理酸性染料印染废水脱色效果好,去除COD时,对硫化染料、还原染料、酸性染料、活性染料等均有很高的去除率。金属阳极电解法因泥量较多采用较少。 (7)厌氧水解:印染废水有机物含量COD高,且B/C低,应考虑水解酸化,并增加填料挂膜,池底应设水力搅拌机,保证悬浮活性污泥与水中有机物广泛接触。池体较大时,应设串联系统,以免短路。印染废水较少采用纯厌氧技术,只有当退浆废水等高浓度废水单独分出时可考虑纯厌氧处理。

相关文档