文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛奥数基础讲座 二次函数的最值(含解答)

初中数学竞赛奥数基础讲座 二次函数的最值(含解答)

初中数学竞赛奥数基础讲座 二次函数的最值(含解答)
初中数学竞赛奥数基础讲座 二次函数的最值(含解答)

第四节 二次函数最值

内容讲解

二次函数的最值问题,包括三方面的内容:

自变量的取值范围为任意实数时二次函数最值的求法.

二次函数y=a x 2

+bx+c=a (x+2b a )2+2

44ac b a -. 当a>0时,抛物线开口向上,此时当x<-2b a 时,y 随x 增大而减小;当x>-2b a

时,y 随x?增大而增大;当x=-2b a 时,y 取最小值2

44ac b a

-. 当a<0时,抛物线开口向下,此时当x<-2b a 时,y 随x 增大而增大;当x>-2b a

时,y 随x 增大而减小;当x=-2b a 时,y 取最大值2

44ac b a

-. 2.自变量的取值范围是某一确定范围时二次函数最值的求法,?要结合图象和增减性来综合考虑.

(1)当抛物线的顶点在该范围内,顶点的纵坐标就是函数的最值;

(2)当抛物线的顶点不在该范围内,二次函数的最值在范围内两端点处取得.

3.实际问题中所建立的数学模型是二次函数时,所涉及的二次函数最值的求法,先建模后求解.

例题剖析

例1 (2003年武汉选拔赛试题)若x-1=

1223

y z +-=,则x 2+y 2+z 2可取得的最小值为( ).

(A)3 (B)59

14

(C)

9

2

(D)6

分析:设x-1=

12

23

y z

+-

==t,则x2+y2+z2可用只含t的代数式表示,通过配方求最

小值.

解:x=t+1,y=2t-1,z=3t+2,原式=14t2+10t+6=14(t+

5

14

)2+

59

14

,所以最小值是

59

14

评注:本题体现了如何消元使多元函数转变为一元函数这一思想,我们要用心体会.此外,设比值为k法是解决等比问题最常用的方法.

例2 (1995年全国初中数学联赛试题)设x为正实数,则函数y=x2-x+1

x

的最小值

是________.

分析:先将原函数配方,再求最值

解:y=x2-x+1

x

=(x-1)2+(x+

1

x

)-1

=(x-1)2+

)2+1

要求y的最小值,最好有(x-1)2=0

)2=0,这时得到x=1.

于是,当x=1时,y=x2-x+1

x

取最小值1.

评注:函数y=x2-x+1

x

含有

1

x

,不能直接用求二次函数的最值方法,求最值的最原始、

?最有效的方法仍然是配方法.

例3(2006年全国初中数学竞赛(浙江赛区)复赛试题)函数y=2x2+4│x│-1的最小值是________.

分析:对x分类进行讨论,去绝对值符号,转化为在约束条件下,?求二次函数最值问题.

解:y=2(│x│+1)2-3=

2

2

2(1)3,0, 2(1)3,0.

x x

x x

?+-≥?

?

--≤??

其图象如图,由图象可知,当x=0时,y最小为-1.

答案:-1.

评注:对于含有绝对值的函数,首先要化去绝对值,变成基本函数,再求极值.

例4设0≤x≤3,求函数y=f(x)=│x2│的最值.

分析:首先画出y=f(x)的图象,然后将y=f(x)图象位于x轴上方的部分保持不变,而将位于x轴下方的图象作关于x轴的对称图形,即得y=│f(x)│的图象.?然后用数形结合方法求函数y=│f(x)│的最值.

解:如图,先作抛物线y=x2,然后将x轴下方的图象翻转上来,即得y=│

x2│的图象,对称轴是直线x22.由此可知,0与3?位于图象与x轴两交点之间,且位于对称轴两侧,故最大值为:

f=|,

而最小值为f(0),f(3)中较小者

∵f(0)=1,f,∴最小值为1.

评注:画绝对值函数图象,首先脱去绝对值符号(方法同绝对值的化简),?转化为基本函数,再在自变量取值范围内画出符合条件的图象.

例5 设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值,x12+x22有最小值,并求这个最小值.

分析:由韦达定理知x12+x22是关于m的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m的取值范围,从判别式入手.

解:由△=(-4m)2-4×2×(2m2+3m-2)≥0得m≤2

3

x1+x2=2m,x1x2=

2

232

3

m m

+-

,x12+x22=2(m-

3

4

)2+

7

8

=2(

3

4

-m)2+

7

8

?∵m≤2

3

,∴

3

4

-m≥

3

4

-

2

3

>0,

从而当m=2

3

时,x+x取得最小值,且最小值为2×(

3

4

-

2

3

)2+

7

8

=

8

9

评注:定义在某一范围的条件限制的二次函数最值问题,有下两种情形:

(1)当抛物线的顶点在该范围内,顶点的纵坐标就是函数的最值;

(2)当抛物线的顶点不在该范围内,二次函数的最值在范围内两端点处取得.

例6 求函数y=(4-x)

分析:此函数是较复杂的复合函数,可通过引入参数来求取函数最值.

解:设,则u>0,且y=4+u.

于是(u+x)2=4(x2+9),即

3x2-2u·x+36-u2=0.

∵x∈R,∴上式的判别式

△=(2u)2-4×3×(36-u2)≥0,

即u2≥27,故u≥

评注:通过换元,把原函数转变成关于x的一元二次方程,考虑到一元二次方程有解,由△≥0即可求得u的范围,从而求得y的最值.这是一种常用的方法,应掌握.

例7 (2002年太原市竞赛题)已知二次函数y=x 2-x-2及实数a>-2,求

(1)函数在-2

(2)函数在a ≤x ≤a+2的最小值.

分析:本题由于字母a 的不确定性,因此需要分类讨论,并通过数形结合的方法来解. 解:函数y=x 2-x-2的图象如图.

(1)当-2

|x y ==-94.

(2)当-2

时,y min =y│x=a+2=(a+2)2-(a+2)-2=a 2+3a ;当a<12≤a+2,即-32≤a<12时,y min = 12

|x y ==-94.

评注:将a 相对于抛物线对称轴的位置进行分类讨论是解题关键,?而数形结合的方法可以直观地帮助求解.

例8 (2004年全国初中数学联赛试题江西赛区加试题)函数y=x 2-2(2k-1)x+3k 2-2k+6的最小值为m ,则当m 达到最大时x=_______.

分析:可通过配方法将原函数配成a (x+n )2+m 的形式,再根据m 的形式确定m 的最大值.

解:y=(x-2k+1)2-k 2+2k+5,当x=2k-1时,y 最小值是m=-k 2+2k+5=-(k-1)2+6,所以当k=1时,m 达到最大值.此时x=2k-1=1.

评注:配方法是求取二次函数最值问题中最常用的基本方法,对于二次函数的最小值的最大值问题,可通过反复配方来确定.

例9 (2004年“TRULY@信利杯”全国初中数学竞赛试题)实数x 、y 、z 满足x+y+z=5,xy+yz+zx=3,则z 的最大值是_______.

分析:由条件可构造以x 、y 为根的一元二次方程,再根据其有实数根求出的范围. 解:∵x+y=5-z ,xy=3-z (x+y )=3-z (5-z )=z 2-5z+3.

∴x 、y 是关于t 的一元二次方程t 2-(5-z )t+z 2-5z+3=0的两实根.

∵△=(5-z )2-4(z 2-5z+3)≥0,即

3z 2-10z-13≤0,(3z-13)(z+1)≤0.

∴z ≤

133,当x=y=13时,z=133

. 故z 的最大值为133. 评注:?利用一元二次方程根的判别式的值“非负”或“为负”来求解函数最值的方法称为判别式法.

例10 (2003年“TRULY@信利杯”全国初中数学竞赛试题)已知二次函数y=a x 2+bx+c (其中a 是正整数)的图象经过点A (-1,4)与点B (2,1),并且与x?轴有两个不同的交点,则b+c 的最大值为________.

分析:应用二次函数y=a x 2+bx+c 过已知两点可确定a 、b 、c 之间关系,并利用根的判别式求出b+c 最值.

解:由于二次函数的图象过点A (-1,4),点B (2,1),所以

4,1,421,32.

a b c b a a b c c a -+==--????++==-??解得 因为二次函数图象与x 轴有两个不同的交点,

所以△=b 2-4ac>0,

(-a-1)2-4a (3-2a )>0,即(9a-1)(a-1)>0,由于a 是正整数,故a>1,

所以a ≥2,又因为b+c=-3a+2≤-4,且当a=2,b=-3,c=-1时,满足题意,故b+c?的最大值为-4.

评注:借助二次函数图象与x 轴的交点是所对应二次方程的根,?通过根的判别式可确定相关字母(或式)的取值范围,进而可确定其最值是解决这类问题常用方法.

例11 (2004年“TRULY@信利杯”全国初中数学竞赛试题)已知a<0,b ≤0,c>0,?

,求b-4ac 的最小值.

分析:由b 2-4ac 容易想到一元二次方程ax 2

+bx+c=0根的判别式,且b 2-4ac>0,故可构造抛物线y=ax 2+bx+c 来解.

解:令y=ax 2+bx+c ,由a<0,b ≤0,c>0,判别式△=b 2-4ac>0,?

所以这个二次函数的图象是一条开口向下的抛物线,

且与x 轴有两个不同的交点A (x 1,0),B (x 2,0),

因为x 1x 2=c a

<0,不妨设x 1

│x 1│,

所以244ac b a -≥ 故b 2-4ac ≤4,

当a=-1,b=0,c=1时,等号成立.

所以b 2-4ac 的最小值为4。

评注:有的给出的问题不是二次函数,但经过适当变形后,?可以转化为二次函数的问题,我们要领会这种转化思想.

例12 (2003年天津市竞赛题)已知函数y=(a+2)x2-2(a2-1)x+1,其中自变量x 为正整数,a也是正整数,求x何值时,函数值最小.

分析:将函数解析式通过变形得配方式,其对称轴为x=

21

2

a

a

-

+

=(a-2)+

3

2

a+

,因

0<

3

2

a+

≤1,a-2<

21

2

a

a

-

+

≤a-1,故函数的最小值只可能在x取a-2,a-1,

21

2

a

a

-

+

时达到,

所以,?解决本例的关键在于分类讨论.

解:y=(a+2)(x-

21

2

a

a

-

+

)2+1-

22

(1)

2

a

a

-

+

,其对称轴为x=

21

2

a

a

-

+

=(a-2)+

3

2

a+

因为a为正整数,故0<

3

2

a+

≤1,a-2<

21

2

a

a

-

+

≤a-1.

因此,函数的最小值只可能在x取a-2,a-1,

21

2

a

a

-

+

时达到.

(1)当

21

2

a

a

-

+

=a-1时,a=1,此时,x=1使函数取得最小值.

(2)当a-2<

21

2

a

a

-

+

1时,由于x是正整数,而

21

2

a

a

-

+

为小数,故x=

21

2

a

a

-

+

不能达到最小值.

当x=a-2时,y=(a+2)(a-2)2-2(a2-1)(a-2)+1,

当x=a-1时,y=(a+2)(a-1)2-2(a2-1)(a-1)+1.

又y1-y2=4-a.

(i)当4-a>0,即1

(ii)当4-a=0时,即a=4时,有y1=y2,此时x取2或3;

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

《全国初中数学竞赛》二次函数历届考题

《全国初中数学竞赛》二次函数历届考题 11(2008)、已知一次函数12y x =,二次函数221y x =+,是否存在二次函数c bx ax y ++=23,其图象经过点(-5,2) ,且对于任意实数x 的同一个值,这三个函数所对应的函数值12,y y ,3y ,都有123y y y ≤≤成立?若存在,求出函数3y 的解析式;若不存在,请说明理由。 解:存在满足条件的二次函数。 因为222122(1)21(1)0y y x x x x x -=-+=-+-=--≤,所以,当自变量x 取任意实数时,12y y ≤均成立。 由已知,二次函数c bx ax y ++=23的图象经过点(-5,2),得 2552a b c -+= ① 当1x =时,有122y y ==,3y a b c =++ 由于对于自变量x 取任实数时,132y y y ≤≤均成立,所以有2≤a b c ++≤2, 故 2a b c ++= ② 由①,②,得4b a =,25c a =-,所以234(25).y ax ax a =++- ……5分 当13y y ≤时,有224(25)x ax ax a ≤++-,即2(42)(25)0ax a x a +-+-≥ 所以,二次函数2(42)(25)y ax a x a =+-+-对于一切实数x ,函数值大于或等于零,故 20 (42)4(25)0a a a a ??---≤? 即2 0,(31)0, a a ??-≤? 所以1 3a = 当23y y ≤时,有224(25)1ax ax a x ++-≤+,即2(1)4(51)0a x ax a --+-≥, 所以,二次函数2(1)4(51)y a x ax a =--+-对于一切实数x ,函数值大于或等于零,故 210,(4)4(1)(51)0,a a a a -??----≤?即2 1,(31)0,a a ??-≤?所以13a = 综上,141 ,4,25333 a b a c a ====-=

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛讲座6

第六讲整式的运算 吴忠市第一中学韩瑞峰 一、知识要点 1、整式的概念:单项式,多项式,一元多项式; 2、整式的加减:合并同类项; 3、整式的乘除: (1)记号f(x),f(a); (2)多项式长除法; (3)余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a); (4)因数定理:(x-a)|f(x)?f(a)=0。 二、例题示范 1、整式的加减 例1、已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值。 提示:只有同类项才能合并为一个单项式。 例2、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。 例3、已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。 提示:先化简,再求值。 例4、化简:x-2x+3x-4x+5x-…+2001x-2002x。 例5、已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。 提示:先去掉绝对值,再化简求值。 例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。 例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。 (1)写出第五年的预计产鱼量;

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

初中数学竞赛——二次函数图像的翻折与对称

初一数学联赛班七年级第 7 讲二次函数图像的翻折和对称 典型例题 一 . 抛物线的翻折 【例 1】将抛物线沿 y 2x 2 沿 x 轴翻折,求所得抛物线的解析式. 3x 4 【例 2】( 1)将抛物线 y3x2 4 x 5 沿直线 y 2 翻折,求所得抛物线的解析式 . ( 2)将抛物线 y 2 2 x 1 沿直线 y 3 翻折,求所得抛物线的解析式 . 3x 【例 3】将抛物线2 c 沿x轴翻折以后与抛物线y 12 重合,求 a 和 c 的值 . y ax x4 2 【例 4】将抛物线沿y 2x23x 4 沿y轴翻折,求所得抛物线的解析式.

七年级初一数学联赛班 【例 5】( 1)将抛物线 y3x2 2 x1沿y轴翻折,求所得抛物线的解析式. ( 2)将抛物线 y 2 4x 1 沿直线x 2 翻折,求所得抛物线的解析式. 2x ( 3)将抛物线 y 2 2 x1沿直线x 1 翻折,求所得抛物线的解析式. 3x 【例 6】抛物线 y ax2bx c 关于直线 x m 对称的曲线与x 轴的交点坐标是多少? 二. 含绝对值的函数与方程 【例 7】画出函数y x25x 6 的图像.

初一数学联赛班七年级【例 8】讨论方程2x23x 1 m (m为实数)的解的个数与m 的关系 . 【例 9】( 1)画出函数 y 2 23 x 1 的图像;x ( 2)为使方程 x223x11x b 有 4 个不同的实数根,求 b 的变化范围. 3 【例 10】画出函数y x2 5 x 6 的图像.

七年级初一数学联赛班 【例 11】讨论方程x2 6 x 10 m (m为实数)的解的个数与m 的关系 . 【例 12】已知函数y x2x 12的图像与x轴交于相异两点 A 、B ,另一抛物线 y ax2bx c 过点 A 、 B ,顶点为P ,且APB 是等腰直角三角形,求 a ,b, c . 【例 13】讨论函数y x2 3 x 7 的图像与函数y x23x x23x 6 的图像的交点的个数.

全国初中数学知识竞赛辅导方案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 全国初中数学知识竞赛辅导方案 王选民 为了在全国数学知识竞赛中取得优异成绩,将对学生辅导方案总结如下: 一、了解掌握优生的特点 一般我们选择参加竞赛的学生都是学优生,当我们与“优生”进行面谈时,应该清醒地认识到,他们能成为“优生”,是学生家长和老师共同教育的结果。尤其要看到这些“优生”的两重性:一方面,他们的行为习惯、学习习惯、学习成绩以及各种能力比一般学生在这个年龄容易出现的毛病外,也存在着他们作为老师的“好学生”、家长的“好孩子”所特有的一些毛病。 具体说来,“优生”一般具有以下特点: 1、思想比较纯正,行为举止较文明,自我控制的能力比较强,一般没有重大的违纪现象。 2、求知欲较旺盛,知识接受能力也较强,学习态度较端正,学习方法较科学,成绩较好。 3、长期担任学生干部,表达能力、组织能力以及其它工作能力都较强,在同学中容易形成威信。 4、课外涉及比较广泛,爱好全面,知识面较广。 5、由于智力状况比较好,课内学习较为轻松,因而容易自满,不求上进。 6、长期处于学生尖子的位置,比较骄傲自负,容易产生虚心。 7、有的“优生”之间容易产生互相嫉妒、勾心斗角的狭隘情绪和学习上的

不正当竞争。 8、从小就处在受表扬、获荣誉、被羡慕的顺境之中,因而他们对挫折的心理承受能力远不及一般普通学生。 以上几点,只是就一般“优生”的共性而,当然不一定每一个“优生”都是如此。 辅导优生的具体措施 1、创设能引导学优生主动参与的教育环境。 2、了解学生在兴趣、学习偏好、学习速度、学习准备以及动机等方面的情况。这些资料为教师制定活动和计划时的依据,也是“促进学生主动地、富有个性地学习的需要”。 3、为尖子设计学习方案。学优生学习新知识时,比其他学生花的时间少,他不需要很多的练习就已经理解新知识,因此,做的练习也少。让他们做那些已经理解的题目就很多难让学生体会到智力活动的乐趣。长此以往,反而可能在一定程度上降低学生对于智力生活的敏感性。教师应该备有不同层次介绍同一主题的资料,采用向学生布置分组作业的方法,从众多的方案和活动中选取与他们的知识、技能水平相当的项目,指定他们完成。 4、解决学优生心理问题:学优生在心理状态上,易产生骄气,居高临下,听不进半点批评,心理脆弱。在价值取向上,易产生唯我独尊,以自我为中心的个性倾向和价值取向,不把其他同学的感觉、好恶、需要放在一定的位置;在行为方式上,由于始终把自己当学优生,与一般同学不一样,束缚了自己,娱乐活动不愿参加,集体劳动怕吃苦。 针对这种状况,教学中应注意: 学优生学习成绩优异,但不能“一俊遮百丑”。在鼓励保持学习上的竞争姿态和上进好胜的同时,要创造条件和环境,磨练他们的意志,培养他们的创造能力,规范他们的行为意识。

初中数学竞赛辅导训练试题及答案

初中数学竞赛辅导练习题 1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D) c b c a > 2、如果方程()0012 >=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)5 3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且 p b a c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组? ??<-≥-080 9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数 对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 6、计算 的值是( )。(A )1(B )-1(C )2(D )- 2。 7、△ABC 的周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )。 (A )12;(B )16;(C )24;(D )30。 8、设 ,将一次函数 与 的图象画在同一平面直角坐标 系内,则有一组 的取值,使得下列4个图中的一个为正确的是( )。 9、如图,在等腰梯形ABCD 中,AB∥DC,AB =998,DC =1001,AD =1999,点P 在线 段AD 上,则满足条件∠BPC=90°的点P 的个数为( )。 (A )0;(B )1;(C )2;(D )不小于3的整数。 (A )0;(B )1;(C )2;(D )3。 二、填空题: 6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。 9、已知方程( ) 015132832 2 2 2 =+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。 10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。 1.设15+=m ,那么m m 1 + 的整数部分是 . 2.在直角三角形ABC 中,两条直角边AB,AC 的长分别为1厘米,2厘米,那么直角

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

初中数学竞赛——二次函数极值问题

第10讲 二次函数极值问题 典型例题 一. 基本训练 【例1】 求函数243(05)y x x x =-+≤≤的最大值和最小值. 【例2】 已知关于x 的函数23y x ax =++,其中11x -≤≤,试分别求出下列条件下函数的最大值和 最小值. (1)02a <<; (2)2a >. 【例3】 求函数22y x ax =-(01x ≤≤)的最大值、最小值. 【例4】 求函数2(1)2(1)y m x m x m =+-+-的最大值和最小值,其中m 为常数(1m ≠-).

【例5】 求函数()2f x x x x x =--在312 x -≤≤的最小值. 【例6】 设a 为非零实数,求函数22()2(1)2f x ax a x =-++(01x ≤≤)的最大值与最小值. 二. 巩固提高 【例7】 已知26y x mx =+-,当13m ≤≤时,0y <恒成立.求m 的取值范围. 【例8】 二次函数228y x ax =-+在12x ≤≤时,函数的最小值为5,求a 的值.

【例9】 在ABC △中,2BC =,BC 边上的高1AD =,P 是BC 上任一点,PE AB ∥交AC 于点E , PF AC ∥交AB 于点F . (1)设BP x =,将PEF S △用x 表示. (2)P 在BC 的什么位置时,ABC S △最大. 【例10】 设二次函数2()y f x ax bx c ==++的图象的对称轴是230x -=,在x 轴的截距的倒数的和为2, 且经过点(33)-, . (1)试求a b c 、、的值; (2)当x 在什么值时,1y >或3y -<? (3)当x 为何值时,y 有最大值?并求最大值. (4)作出此函数的图象. 【例11】 已知抛物线1C :234y x x =--+和抛物线2C :234y x x =--相交于A B 、两点.点P 在抛物 线1C 上,且位于点A 和点B 之间;点Q 在抛物线2C 上,也位于点A 和点B 之间. (1)求线段AB 的长; (2)当PQ y ∥轴,求PQ 长度的最大值.

初中数学竞赛辅导资料(1)

初中数学竟赛辅导资料(1) 数的整除(一) 甲内容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 乙例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2己知五位数x 1234能被12整除, 求X 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+X 能被3整除时,x=2,5,8

4能被4整除时,X=0,4,8 当末两位X ∴X=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 丙练习 1分解质因数:(写成质因数为底的幂的連乘积) ①593②1859③1287④3276⑤10101⑥10296 987能被3整除,那么a=_______________ 2若四位数a 12X能被11整除,那么X=__________- 3若五位数34 35m能被25整除 4当m=_________时,5 9610能被7整除 5当n=__________时,n 6能被11整除的最小五位数是________,最大五位数是_________ 7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________ 88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152, ⑧70972中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。 10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么? 1234能被15整除,试求A的值。 11己知五位数A 12求能被9整除且各位数字都不相同的最小五位数。 13在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

全国初中数学竞赛二次函数问题

《全国初中数学竞赛》二次函数历届考题 2 11 (2008)、已知一次函数 y 1 2x ,二次函数 y 2 x 1,是否存在二次函数 y ax 2 bx c ,其图象经过点(—5,2),且对于任意实数x 的同一个值,这三 个函数所对应的函数值y 1,y 2,y 3,都有% y y 成立?若存在,求出函数y 的 任意实数时,y 1 y 均成立。 当 x 1 时,有 y 1 y 2 2, y 3 a b c 由于对于自变量x 取任实数时, y 1 y 3 y 均成立,所以有 2< a b c <2, 故 a b c 2 ② 由①, ②,得 b 4a , c 2 5a , 所以 2 y 3 ax 4 ax (2 5a). ?5分 当 y 1 / ” 2 y 3 时,有 2x ax 4ax (2 5a) ,即 ax 2 (4 a 2)x (2 5a) 0 所以, 二次函数y ax 2 (4a 2)x (2 5a )对于 -切实数 x ,函数值大于或 ① 25a 5b c 2 解析式;若不存在,请说明理由。 解:存在满足条件的二次函 数。 x 2 因为y i y 2 2x (x 2 1) 2x 1 (x 1)2 0,所以,当自变量x 取 由已知,二次函数y 3 ax 2 bx c 的图象经过点(一5,2),得 等于零,故 af 0 (4 a 2)2 4a (2 5a) 0 af (3a 0, 1)2 0,所以a 3 当y 3 y 2时,有 2 ax 4ax (2 5a) 1,即(1 a) x 2 4 ax (5a 1) 0, 所以,二次函数y (1 a)x 4ax (5a 1)对于一切实数x , 函数值大于或 等于零,故 1 af 0, 2 (4a) 4(1 a)(5a 1) 0,即:3:11)2 0,所以a 1 综上,a 1,b 4a 3 4 ,c 2 5a 1 3 3

超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富: 它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨: 从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨: 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨: 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨: 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨: 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注: 一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

相关文档
相关文档 最新文档