文档库 最新最全的文档下载
当前位置:文档库 › Journal of Organic Chemistry, 2005 , vol. 70, # 11 p. 4338 - 4345

Journal of Organic Chemistry, 2005 , vol. 70, # 11 p. 4338 - 4345

Journal of Organic Chemistry, 2005 ,  vol. 70,  # 11  p. 4338 - 4345
Journal of Organic Chemistry, 2005 ,  vol. 70,  # 11  p. 4338 - 4345

Improved Alkylation and Product Stability in Phosphotriester Formation through Quinone Methide Reactions with Dialkyl

Phosphates

Brian A.Bakke,Matthias C.McIntosh,and Kenneth D.Turnbull*

Department of Chemistry and Biochemistry,University of Arkansas,Fayetteville,Arkansas 72701

kturnbul@https://www.wendangku.net/doc/df18390864.html,

Received January 10,

2005

Investigating reactions of functionalized p-quinone methides continues to advance our design of a reagent being developed for controlled,in situ modification of DNA via phosphodiester alkylation.Previously reported investigations of p-quinone methides derived from catechols allowed for trapping of isolable trialkyl phosphates for characterization and mechanistic information.However,lactone formation with these derivatives required long reaction times,resulting in an unfavorable mixture of trialkyl phosphate and hydrolysis products.To enhance the rate and efficacy of trialkyl phosphate formation and trapping,a phenol derived p-quinone methide has been designed to enforce a conformation favoring lactonization of the dialkyl phosphate alkylated intermediate.The relative rates of phosphodiester alkylation and subsequent trapping of the phosphotriester adduct have been examined by UV and 1H NMR analysis for p-quinone methide precursor 1and the corresponding control,1′.The incorporation of a methyl group at the meta -position of 1(relative to 1′)significantly improves the rate of lactionization to provide a much higher yield of the desired product,lactonized phosphotriester 5.The control reaction with 1′afforded only a minor amount of the corresponding lactonized trialkyl phosphate 5′.

Introduction

The role of quinone methide intermediates in bio-reductive processes is well-established.1-5Investigations with DNA and nucleic acids have predominantly been carried out with o -quinone methides 6-12and less with p-quinone methides 13-15focusing on base alkylation.In developing a research program around the application

of quinone methides to drug design,drug delivery,and biomolecular labeling,we have investigated the reactivity and formation of a variety of p-quinone methides to optimize alkylation of mildly nucleophilic phospho-diesters as models for nucleic acid polymers.

We have shown that phosphodiester alkylation with a p-quinone methide is a second-order,reversible process

(1)Wakselman,M.New J.Chem.1983,7,439-447.

(2)Peter,M.G.Angew.Chem.,Int.Ed.Engl.1989,101,572-587.(3)Thompson,D.C.;Thompson,J.A.;Sugumaran,M.;Moldeus,P.Chem.Biol.Interact.1993,86,129-162.

(4)Monks,T.J.;Jones,D.C.Curr.Drug Metab.2002,3,425-438.(5)Van der Woude,H.;Awad,H.M.;Boersma,M.G.;Boeren,S.;Van Zanden,J.;Van Bladeren,P.J.;Vervoort,J.;Rietjens,I.M.C.M.Free Radical Res.2002,36,103-104.

(6)Li,T.;Zeng,Q.;Rokita,S.E.Bioconjugate Chem.1994,5,497-500.

(7)Zeng,Q.;Rokita,https://www.wendangku.net/doc/df18390864.html,.Chem.1996,61,9080-9081.(8)Pande,P.;Shearer,J.;Yang,J.;Greenberg,W.A.;Rokita,S.E.J.Am.Chem.Soc.1999,121,6773-6779.

(9)Zhou,Q.;Pande,P.;Johnson,A.E.;Rokita,S.E.Bioorg.Med.Chem.2001,9,2347-2354.

(10)Veldhuyzen,W.F.;Pande,P.;Rokita,S.E.J.Am.Chem.Soc.2003,125,14005-14013.

(11)Zhou,Q.;Rokita,S.E.Proc.Natl.Acad.Sci.U.S.A.2003,100,15452-15457.

(12)Kumar,D.;Veldhuyzen,W.F.;Zhou,Q.;Rokita,S.E.Bio-conjugate Chem.2004,15,915-922.

(13)Lewis,M.A.;Yoerg,D.G.;Bolton,J.L.;Thompson,J.A.Chem.Res.Toxicol.1996,9,1368-1374.

(14)Bodell,W.J.;Ye,Q.;Pathak,D.N.;Pongracz,K.Carcinogenesis 1998,19,437-443.

(15)Gaikwad,N.W.;Bodell,W.J.Chem.Biol.Interact.2001,138,217-229.

https://www.wendangku.net/doc/df18390864.html,.Chem.2005,70,4338-434510.1021/jo050050s CCC:$30.25?2005American Chemical Society

Published on Web 04/20/2005

leading to the rapid,kinetic-favored formation of a phosphotriester followed by a very slow hydrolysis of that product to a benzyl alcohol.The quinone methide alkyl-ation of the phosphodiester is in competition with the significantly slower,thermodynamic-favored,direct hydro-lysis of the quinone methide to produce a benzyl alcohol.16 To maximize phosphotriester product formation,the incorporation of a trapping moiety to stabilize the product and prevent reversibility became necessary.We previ-

ously reported an approach to accomplish this with a catechol-derived quinone methide designed to alkylate a phosphodiester via a characterizable p-quinone methide followed by in situ lactonization.17Although the approach proved effective,affording the desired trialkyl phosphate product in good yield,the intramolecular trapping via lactonization proved to be a slow,temperature-dependent process requiring rigorously anhydrous conditions,and product isolation was challenging.

Conformationally enforced acceleration of lactoniz-ation reaction rates through steric effects is well-precedented.18-23Lactonization studies of a variety of hydrocoumarinic acids demonstrated that the relative rates increased substantially with increasing substituent bulk.The Borchardt laboratory has extensively examined24-35and reviewed36-38the use of coumarin-based,esterase-sensitive cyclic prodrugs incorporating the“trimethyl lock”concept elegantly utilized within a linker for the facile release of drugs in vivo.

Based on such steric effects for enhancing lactonization rates in related systems,we have redesigned the p-quinone methide derivative in an attempt to increase the rate of the lactonization reaction and afford a more stable phosphotriester product.However,as observed in our previous work,17lactoniozation rates that are too rapid can preclude the ability to form the quinone methide.Scheme1demonstrates the envisioned reaction of designed p-quinone methide2.Although the methyl propionate arm of1was designed for facile lactonization, it required sufficient stability to allow formation of p-quinone methide2without concomitant lactonization. It was necessary that p-quinone methide2maintain sufficient reactivity with the presence of the methyl substituent(R1)adjacent to the alkylidene reaction center in order to rapidly alkylate a dialkyl phosphate to afford 3.Alkylation to3was to be followed by lactonization through population of a reactive conformation enforced by steric interaction with the adjacent methyl group, leading to the desired stabilized trialkyl phosphate5.It was hoped that the lactonization of3might prove facile enough to allow the kinetic-favored product to be drained off through lactonization to afford5and preclude revers-ibility back to quinone methide2,where hydrolysis to the thermodynamic-favored4can undergo lactonization to afford6.It was further hoped that trialkyl phosphate 5might prove more stable than the corresponding trialkyl phosphates afforded in our previous work.17

To determine the effect of the methyl group on quinone methide formation from1,alkylation of quinone methide 2,and stereopopulation control in3,two functionalized quinone methide derivatives were desired for investiga-tion.The syntheses of1and the corresponding control without the methyl group,1′,were accomplished for this purpose(Figure1).

We report the results of our investigations,which demonstrate the effectiveness of incorporating a methyl substituent ortho to the propionic ester lactonizing functionality for enhanced lactonization and thereby stabilization of the kinetic-favored,phosphotriester prod-uct16derived from quinone methide alkylation of a phosphodiester.Notably,the incorporation of this pro-pionic ester and o-methyl substituent still allowed for quantitative formation of the desired p-quinone methide from the phenol and offered no impedance to the quinone methide alkylation reaction with the phosphodiester. Further,the methyl substituent afforded considerable improvements in the rate and temperature dependence of lactone formation.The overall design also contributed to a highly stable trialkyl phosphate product.

Results and Discussion

Synthesis of Quinone Methide Precursors.Our investigations required the synthesis of phenols1and

(16)Zhou,Q.;Turnbull,https://www.wendangku.net/doc/df18390864.html,.Chem.2001,66,7072-7077.

(17)Zhou,Q.;Turnbull,https://www.wendangku.net/doc/df18390864.html,.Chem.2000,65,2022-2029.

(18)Milstien,S.;Cohen,L.A.Proc.Natl.Acad.Sci.U.S.A.1970, 67,1143-1147.

(19)Milstien,S.;Cohen,L.A.J.Am.Chem.Soc.1972,94,9158-9165.

(20)Borchardt,R.T.;Cohen,L.A.J.Am.Chem.Soc.1972,94, 9166-9174.

(21)Borchardt,R.T.;Cohen,L.A.J.Am.Chem.Soc.1972,94, 9175-9182.

(22)Winans,R.E.;Wilcox,C.F.,Jr.J.Am.Chem.Soc.1976,98, 4281-4285.

(23)King,M.M.;Cohen,L.A.J.Am.Chem.Soc.1983,105,2752-2760.

(24)Amsberry,K.L.;Borchardt,https://www.wendangku.net/doc/df18390864.html,.Chem.1990,55,5867-5877.

(25)Amsberry,K.L.;Borchardt,R.T.Pharm.Res.1991,8,323-330.

(26)Amsberry,K.L.;Gerstenberger,A.E.;Borchardt,R.T.Pharm. Res.1991,8,455-461.

(27)Wang,B.;Nicolaou,M.G.;Liu,S.;Borchardt,R.T.Bioorg. Chem.1996,24,39-49.

(28)Liu,S.;Wang,B.;Nicolaou,M.G.;Borchardt,R.T.J.Chem. Crystallogr.1996,26,209-214.

(29)Nicolaou,M.G.;Yuan,C.-S.;Borchardt,https://www.wendangku.net/doc/df18390864.html,.Chem. 1996,61,8636-8641.

(30)Pauletti,G.M.;Gangwar,S.;Okumu,F.W.;Siahaan,T.J.; Stella,V.J.;Borchardt,R.T.Pharm.Res.1996,13,1615-1623.

(31)Wang, B.;Gangwar,S.;Pauletti,G.M.;Siahaan,T.J.; Borchardt,https://www.wendangku.net/doc/df18390864.html,.Chem.1997,62,1363-1367.

(32)Wang,W.;Sane,D.C.;Bai,S.A.;Chang,C.-P.;Borchardt,R. T.;Wang,B.Book of Abstracts,216th ACS National Meeting,Boston, August23-27,1998;American Chemical Society:Washington,DC, 1998.

(33)Wang,B.;Wang,W.;Camenisch,G.P.;Elmo,J.;Zhang,H.; Borchardt,R.T.Chem.Pharm.Bull.1999,47,90-95.

(34)Gudmundsson,O.S.;Pauletti,G.M.;Wang,W.;Shan,D.; Zhang,H.;Wang,B.;Borchardt,R.T.Pharm.Res.1999,16,7-15.

(35)Ouyang,H.;Tang,F.;Siahaan,T.J.;Borchardt,R.T.Pharm. Res.2002,19,794-801.

(36)Shan,D.;Nicolaou,M.G.;Borchardt,R.T.;Wang,B.J.Pharm. Sci.1997,86,765-767.

(37)Gangwar,S.;Pauletti,G.M.;Siahaan,T.J.;Stella,V.J.; Borchardt,R.T.Methods Mol.Med.1999,23,37-51.

(38)Wang,B.;Shan,D.;Wang,W.;Zhang,H.;Gudmundsson,O.; Borchardt,R.T.Methods Mol.Med.1999,23,71-

85.F IGURE1.Quinone methide precursors1and1′.

Improved Phosphotriester Formation

https://www.wendangku.net/doc/df18390864.html,.Chem,Vol.70,No.11,20054339

1′as precursors for the corresponding quinone methides 2and 2′.Phenols 1and 1′also incorporated a carbamate protected amine in the para -postion for improved phos-phodiester alkylation.39The 10-step synthesis was ac-complished as shown in Scheme 2.Acetophenone 9was obtained in two steps via the O-acylation 40of com-mercially available 2,5-dimethyl phenol 7followed by Fries rearrangement.41Bromo-ketone 10was obtained via R -keto halogenation 42of 9followed by reductive deoxygenation 43to yield 11.Amine hydrochloride 13was easily made in two steps from azide addition 44to 11followed by hydrogentation 45of 12.Functionalization of amine hydrochloride 13with di-tert -butyl dicarbonate 46provided the cinnimate precursor 14.Treatment of 14with bis(pyridine)iodonium tetrafluoroborate 47followed by Heck reaction using methyl acrylate 48gave 16in two

additional steps.Quinone methide precursor 1was then obtained from magnesium reduction 49of R , -unsaturated ester 16.This synthetic pathway was similarly applied to prepare 1′.

Regiospecific Oxidation of 1and 1′to Quinone Methides 2and 2′.The regiospecific generation of p -quinone methides using lead(II)oxide and silver(I)oxide from phenol precursors has been demonstrated.50-52It has been shown in our laboratory that phenolic derivatives functionalized equally at the ortho -and para -positions will oxidize specifically to the p -quinone meth-ide.39This oxidative specificity has allowed derivation of the quinone methide starting from phenolic precursors rather than the catechol precursors used in our previous work,17which proved to be a key factor in greatly enhancing the product stability in this work (vida infra).The conversion of 1and 1′to p -quinone methides 2and 2′was monitored by 1H NMR in CDCl 3at 20°C.The reaction with lead(II)oxide was quantitative and regio-specific for p -quinone methides 2and 2′as determined by relative integration of the p -quinone methide alkyl-idene resonance at 6.42ppm (1H)relative to an internal standard of mesitylene (Ar-H,6.79ppm,3H)(see Ex-perimental Section).There was no sign of lactonization observed in either the preparation of 1or the conversion

(39)Hudgens,T.L.Ph.D.Thesis,University of Arkansas,Fayette-ville,Arkansas,2002.

(40)Strazzolini,P.;Verardo,G.;Giumanini,https://www.wendangku.net/doc/df18390864.html,.Chem.1988,53,3321-3325.

(41)Hapiot,P.;Neta,P.;Pinson,J.;Rolando,C.;Schneider,S.New J.Chem.1993,17,211-224.

(42)Smith,B.L.;Mueller,W.H.;Strutz,H.In Eur.Pat.Appl.(Hoechst Celanese Corp.,USA);Ep,1991;p 7.

(43)Lau,C.K.;Dufresne,C.;Belanger,P.C.;Pietre,S.;Scheigetz,https://www.wendangku.net/doc/df18390864.html,.Chem.1986,51,3038-3043.

(44)Smith,P.A.S.;Brown,B.B.J.Am.Chem.Soc.1951,73,2435-2437.

(45)Ackrell,J.;Muchowski,J.M.;Galeazzi,E.;Guzman,https://www.wendangku.net/doc/df18390864.html,.Chem.1986,51,3374-3376.

(46)Delhomel,J.F.;Yous,S.;Depreux,P.;Lesieur,D.J.Heterocycl.Chem.2001,38,633-639.

(47)Barluenga,J.;Gonzalez,J.M.;Garcia-Martin,M.A.;Campos,P.J.;Asensio,https://www.wendangku.net/doc/df18390864.html,.Chem.1993,58,2058-2060.(48)Heck,https://www.wendangku.net/doc/df18390864.html,.React.(N.Y.)1982,27,345-390.

(49)Youn,I.K.;Yon,G.H.;Pak,C.S.Tetrahedron Lett.1986,27,2409-2410.

(50)Dyall,L.K.;Winstein,S.J.Am.Chem.Soc.1971,94,2196-2199.

(51)Rabin,O.;Vigalok,A.;Milstein,D.J.Am.Chem.Soc.1998,120,7119-7120.

(52)Filar,L.J.;Winstein,S.Tetrahedron Lett.1960,25,9-16.

S CHEME

1

Bakke et al.

https://www.wendangku.net/doc/df18390864.html,.Chem.,Vol .70,No .11,2005

of 1to quinone methide 2,verifying that the methyl propionate with the accompanying o -methyl would not undergo lactonization in competition with quinone meth-ide formation under the oxidative conditions used.

Alkylation of Dibutyl Phosphate by Quinone Methides 2and 2′(UV Analysis).The effect of the methyl substituent on the rate of quinone methide alkylation of a phosphodiester was initially investigated.It was unclear whether the methyl substituent would effect a slower rate for quinone methide alkylation due to a 1,3-allylic steric inhibition or increase the rate by increasing the reactivity of the quinone methide through the same interaction.Previous efforts in our laboratory have utilized both UV and 1H NMR spectroscopy for the determination of p -quinone methide alkylation rates of simple phosphodiesters.16,53Our more recent work has focused on maximizing the rate of quinone methide phosphodiester alkylation.It was determined that incor-poration of an NHBOC functional group in close proxim-ity to the p -benzylic position of the desired p -quinone methide allowed for maximum alkylation rates of simple phosphodiesters.39The enhanced reactivity of the p -quinone methide toward phosphodiester alkylation precluded the ability to monitor the rate of phosphodi-ester alkylation by 1H NMR.To quantify the alkylation rates of quinone methides 2and 2′the reactions were monitored in triplicate by UV spectroscopy,following the loss of quinone methide (λmax )304nm)as a measure of the rate of phosphotriester formation during the initial 60%loss of quinone methide.These reactions were conducted in CH 3CN at 20°C by micropipet addition of 800,600,400,and 200μM solutions (1mL)of serial diluted dibutyl phosphate (2equiv)to 400,300,200and 100μM (1mL)solutions of quinone methide/sodium

perchlorate (0.1M)in a temperature-controlled UV cuvette (200,150,100and 50μM final concentrations of quinone methide).A large excess of sodium perchlorate is required to buffer the change in ionic strength due to formation of the dibutyl phosphate salt in the equilibrium of quinone methide and trialkyl phosphate.The loss of absorbance of the quinone methide was found to be linear with respect to time for the first 60%loss.The linear nature of quinone methide loss indicates no product equilibrium over the monitored course of the reaction (120s)under the conditions of these UV experiments.A control reaction under acid-catalyzed conditions was used to determine if quinone methide hydrolysis was contributing to the observed rate of loss of quinone methide.Based on earlier work,the control reaction used methane sulfonic acid (2equiv)and water (2equiv)to activate the quinone methide toward acid-catalyzed hydrolysis 53but resulted in no quinone methide loss after 2min,suggesting hydrolysis is not a competitive reaction during the monitored analysis.However,upon addition of 2equiv of dibutyl phosphate (containing 2equiv of water)complete loss of the quinone methide absorption signal is observed within 120s at all concentration levels.Based on this UV analysis,the rate of quinone methide disappearance is 1.95×10-2μM -1s -1for 2and 2.03×10-2μM -1s -1for 2′(Figure 2).The negligible difference in the rates of reaction for quinone methides 2and 2′suggests there is not a significant allylic inhibitory effect on quinone methide alkylation for 2.

Lactonization of Phosphotriesters 3and 3′(1

H NMR Analysis).Generation of quinone methides 2and 2′was carried out as described in Experimental Section.The conversion of quinone methide 2′to trialkyl phosphate 3′was clearly observed by 1H NMR analysis upon addition of dibutyl phosphate (2equiv).The disap-(53)Zhou,Q.;Turnbull,https://www.wendangku.net/doc/df18390864.html,.Chem.1999,64,2847-2851.S CHEME 2

a

a

Reaction conditions,%isolated yields:(a)Ac 2O,TEA,CH 2Cl 2,98%;(b)AlCl 3,MeNO 2,75%;(c)CuBr 2,EtOAc,CHCl 3,79%;(d)NaBH 3CN,TFA,70%;(e)NaN 3,EtOH,78%;(f)Pd -C,H 2,HCl,EtOH,72%;(g)di-tert -butyl dicarbonate,TEA,MeOH,83%;(h)Ipy 2BF 4,CH 2Cl 2,DMSO,74%;(i)methyl acrylate,Pd(OAc)2,NMP,TEA,NaOAc,66%;(j)Mg,MeOH,81%.

Improved Phosphotriester Formation https://www.wendangku.net/doc/df18390864.html,.Chem ,Vol .70,No .11,20054341

pearance of the characteristic p -quinone methide alky-lidene resonance of 2′at 6.21ppm (t,J )7.18Hz,1H)coincided with the appearance of a triplet of doublets at 5.20ppm (td,J H -P ) 3.72Hz,1H).This resonance coupling and chemical shift is characteristic of the phosphorus-coupled benzylic proton resonance of the trialkyl phosphate and clearly revealed that phosphodi-ester alkylation had occurred.17,39

The rates of lactonization for alkylation products 3and 3′were obtained from 1H NMR monitored analysis of the reaction in CDCl 3.This was most accurately accom-plished by monitoring the loss of the methyl ester at 3.68ppm (s,3H)in 3and 3′.No other side reaction was seen to occur with the methyl ester other than lacton-ization,as evident by the 1:1ratio of loss in methyl ester resonance with corresponding formation of lactone prod-uct.The rate of lactonization was measured by comparing the methyl ester resonance disappearance relative to an internal standard of mesitylene at 35°C.

The 1H NMR analysis for the non-meta -methylated derivative 3′revealed no sign of lactonization in 1h at 35°C as evidenced by the fact that there was no loss of the methyl ester resonance for trialkyl phosphate 3′.After 2h of heating,10%of the characteristic methyl ester resonance had been https://www.wendangku.net/doc/df18390864.html,plete loss of methyl ester for trialkyl phosphate 3′was observed after 12h at 35°C.As a result of the extended reaction times required for lactonization of 3′,an unidentified reaction,thought to be a polymerization of the quinone methide,resulted in the signal loss of identifiable product to an as yet unidentified material.However,as this side reaction was not detectable in the initial 2h reaction period,it was considered irrelevant for the purpose of relative comparison of 3′as a control for 3(vida infra).The conversion of quinone methide 2to trialkyl phos-phate 3was clearly observed by 1H NMR analysis upon addition of dibutyl phosphate (2equiv).The disappear-ance of the characteristic p -quinone methide alkylidene resonance of 2at 6.42ppm (t,J )7.18Hz,1H)coincided with the appearance of a triplet of doublets at 5.52ppm (td,J H -P )3.24Hz,1H).The in situ lactonization of trialkyl phosphate 3was carefully monitored by 1H NMR analysis during the 2h required for the lactonization reaction to reach completion.

In contrast to nonmethylated trialkyl phosphate 3′,after 1h at 35°C,50%of methylated trialkyl phosphate 3had been converted to lactonized trialkyl phosphate 5,as measured by the loss of methyl ester resonance,relative to the mesitylene internal standard,and as characterized by the appearance of the triplet of doublets at 5.57ppm (td,J P -H )3.24,1H),consistent with the resonance signal of the phosphorus-coupled benzylic hydrogen.There was also a small amount of benzyl alcohol 6produced within the initial hour at 35°C,as evident by the slight appearance of a resonance signal at 5.04ppm,consistent with the benzylic hydrogen.After 2h complete conversion of trialkyl phosphate 3to lactonized trialkyl phosphate 5and benzyl alcohol 6was observed.

The relative rate of lactonization (as measured by the loss of methyl ester)was determined for the conver-sion of phosphotriester 3and benzyl alcohol 4at 35°C in CDCl 3to form 5and 6.The relative rate of lactoniza-tion for the first 60%loss of methyl ester is 6.72×10-4mM s -1.

The final ratio of lactonized trialkyl phosphate 5to benzyl alcohol 6was determined by 1H NMR analysis against a mesitylene internal standard to be 3.0:1.0in favor of the desired trialkyl phosphate based on an average of triplicated runs.This ratio was observed after lactonization was complete in 2h at 35°C.The reaction was allowed to continue for an additional 10h at 35°C to duplicate the conditions used in the control reaction with 3′,and the ratio remained unchanged within that time,as did the quantity of 5and 6relative to the internal standard.This clearly concurs with earlier work 16showing that hydrolysis occurs directly on the quinone methide leading to benzyl alcohol 4,which lactonizes to 6.While 3may revert back to quinone methide 2to undergo hydrolysis prior to lactonization,once lactonization to 5occurs,the trialkyl phosphate product is stable under the reaction conditions.Further,5was found to be stable in CDCl 3(with 2equiv of water)for up to 20days at 20°C,and no change was observed in the ratio of lactonized trialkyl phosphate 5to benzyl alcohol 6.

Whereas our previous catechol-derived system verified the concept of trapping the trialkyl phosphate from quinone methide alkylation of a phosphodiester through lactonization,17this work offers significant improvement in both the rate of lactonization and the stability of

the

F IGURE 2.Plot of the relative rates of the loss of quinone

methide 2and 2′.This demonstrates that the effect of the m -methyl substituent affords a negligible decrease in the rate of quinone methide alkylation.(2)Quinone methide 2′,slope:2.03×10-2μM -1s -1(R 2)0.987).(9)Quinone methide 2,slope: 1.95×10-2μM -1s -1(R 2)0.999).The percent error was determined to be less than 12%for each of the triplicated measurement

points.

F IGURE 3.Loss of methyl ester concomitant with formation

of lactonized trialkyl phosphate 5and benzyl alcohol 6.Each data point was based on relative resonance integration against an internal standard (mesitylene)of at least three independent analyses,as described in the experimental,affording a 5%error,with a slope )6.72×10-4mM s -1(R 2)0.997).

Bakke et al.

https://www.wendangku.net/doc/df18390864.html,.Chem.,Vol .70,No .11,2005

resulting product.Final demonstration of product stabil-ity was shown by isolation of desired lactonized trialkyl phosphate5using standard silica gel preparative TLC to afford a61%yield of the product.

Conclusion

We have synthesized and compared the rates of quinone methide alkylation of a phosphodiester followed by lactonization of the resulting trialkyl phosphate for two functionalized quinone methides.Our UV and 1H NMR studies demonstrate that incorporation of a methyl group ortho to the propionic ester lactionization functionality still allows for the quantitative,oxidative formation of the p-quinone methide and has a negligible effect on the rate of phosphodiester alkylation with quinone methide2but significantly improves the ensuing lactonization rate of resulting trialkyl phosphate3to afford the stable,lactonized trialkyl phosphate5.Stabil-ity of trialkyl phosphate5has also been improved relative to our previous work with catechol-derived quinone methide alkylators.17Consequently,the overall yield of isolable trialklyphosphate relative to hydrolyzed product increases in favor of the desired trialkyl phos-phate.However,to more effectively compete with revers-ibility of the phosphodiester alkylation with a p-quinone methide,a yet more facile lactonization process would be desired if p-quinone methide formation were not hindered.These results offer further improvements toward the development of a fully functional DNA phos-phodiester alkylating reagent.

Experimental Section

1H NMR analysis was carried out in CDCl3on a270NMR spectrometer.UV data were recorded at304nm in CH3CN using a UV-vis spectrometer.

Acetic Acid2,5-Dimethyl-phenyl Ester8.Triethylamine (24.4mL,164mmol)and acetic anhydride(6.18mL, 65.5mmol)were added to a stirring solution of7(6.67g, 54.6mmol)in CH2Cl2(50mL)at room temperature and stirred for12h.The reaction was diluted with EtOAc,washed with H2O and brine,dried(MgSO4),and concentrated in vacuo to yield a clear oil.The oil was purified by flash chromatography on silica gel(1:1EtOAc/hexanes)to afford a clear oil(8.78g, 98%yield):1H NMRδ7.14(d,J)7.7Hz,1H),6.99(d,J) 7.7Hz,1H),6.85(s,1H),2.34(s,3H),2.32(s,3H),2.16 (s,3H);13C NMRδ169.4,149.3,137.0,130.9,126.9,125.6, 122.5,21.0,20.9,15.8;IR(NaCl)2925,1767,1217cm-1.Anal. Calcd for C10H12O2:C,73.20;H,7.31.Found:C,72.98;H, 7.12.

1-(4-Hydroxy-2,5-dimethyl-phenyl)-ethanone9.Alumi-num chloride(10.3g,76.8mmol)was added to a stirring solution of8(5.04g,30.7mmol)in nitromethane(100mL)at 0°C and subsequently stirred at50°C in an oil bath for12h. The reaction was quenched by pouring over ice(50mL).The yellow solution was then extracted with EtOAc,washed with 6N HCl,saturated NaHCO3,and brine,dried(MgSO4),and concentrated in vacuo to yield a yellow solid.The solid was purified by flash chromatography on silica gel(1:3EtOAc/ hexanes)to afford an off-white solid.The off-white solid was then recrystallized from EtOAc/hexanes to yield a white solid (3.78g,75%yield):mp130-132°C;1H NMRδ7.59(s,1H), 6.67(s,1H),2.56(s,3H),2.49(s,3H),2.25(s,3H);13C NMR δ200.7,157.6,140.1,134.3,129.4,121.2,118.6,29.1,22.2,15.5; IR(NaCl)3431,1640,1280cm-1.Anal.Calcd for C10H12O2: C,73.20;H,7.31.Found:C,73.40;H,7.42.

2-Bromo-1-(4-hydroxy-2,5-dimethyl-phenyl)-etha-none10.A solution of9(1.86g,11.4mmol)in CHCl3(60mL)was added to a refluxing solution of copper(II)bromide (5.07g,22.7mmol)in EtOAc(50mL).The mixture was refluxed for10h.The solution was filtered through charcoal/ Celite and concentrated in vacuo to a green solid.The solid was purified by flash chromatography on silica gel(1:2EtOAc/ hexanes)to afford a light yellow solid.The solid was recrystal-lized from EtOAc/hexanes to yield clear plate crystals(2.19g, 79%):mp141-144°C;1H NMRδ7.55(s,1H),6.66(s,1H), 5.28(s,1H),4.39(s,2H),2.49(s,3H),2.25(s,3H);13C NMR δ192.3,157.5,141.6,133.7,126.6,121.1,118.9,33.5,21.9,15.4; IR(NaCl)3408,1648,1269cm-1.Anal.Calcd for C10H11BrO2: C,49.43;H,4.53;Br,32.88.Found:C,49.62;H,4.64;Br, 33.04.

4-(2-Bromo-ethyl)-2,5-dimethyl-phenol11.Sodium cy-ano-borohydride(2.06g,39.0mmol)was added over10min to a stirring solution of10(2.37g,9.74mmol)in trifluoroacetic acid(30mL)at0°C and stirred for3h.The solution was concentrated in vacuo to yield a yellow oil.The oil was diluted in EtOAc,washed with saturated NaHCO3and brine,dried (MgSO4)and concentrated in vacuo to a slight yellow oil.The oil was purified by flash chromatography on silica gel (1:3EtOAc/hexanes)to afford a clear oil(1.56g,70%):1H NMR δ6.91(s,1H),6.59(s,1H),5.03(s,1H),3.48(t,J)7.92Hz, 2H),3.05(t,J)7.92Hz,2H),2.24(s,3H),2.20(s,3H); 13C NMRδ152.6,135.0,132.2,129.5,121.5,117.1,36.3,32.4, 19.0,15.4;IR(NaCl)3418,1283cm-1.Anal.Calcd for C10H13-BrO:C,52.45;H,5.68;Br,34.89.Found:C,52.52;H,5.55; Br,34.67.

4-(2-Azido-ethyl)-2,5-dimethyl-phenol12.Sodium azide (0.858g,13.2mmol)was added to a stirring solution of11 (2.52g,11.0mmol)in ethanol(60mL)and refluxed for10h. The mixture was passed through Celite and concentrated in vacuo to yield a clear oil.The oil was diluted in EtOAc,washed with H2O and brine,dried(MgSO4),and concentrated in vacuo to a clear oil.The oil was purified by flash chromatography on silica gel(1:3EtOAc/hexanes)to afford a clear oil(1.64g, 78%):1H NMRδ6.93(s,1H),6.60(s,1H),5.42(s,1H),3.40 (t,J)7.67Hz,2H),2.79(t,J)7.67,2H),2.26(s,3H),2.23 (s,3H);13C NMRδ152.6,135.0,132.2,128.2,121.7,117.1, 51.9,31.9,19.0,15.5;IR(NaCl)3408,2100,1282cm-1.Anal. Calcd for C10H13N3O:C,62.85;H,6.80.Found:C,62.79;H, 7.00.

2-(4-Hydroxy-2,5-dimethyl-phenyl)-ethylammonium Chloride13.Palladium/carbon(10%,0.325g,20%w/w)and concentrated hydrochloric acid(1mL)were added to a solution of12(1.63g,8.51mmol)in ethanol(20mL)in a high-pressure flask.The solution was hydrogenated under H2pressure (60psi)with shaking for8h.The solution was passed through Celite and concentrated in vacuo to an off-white solid.The solid was recrystallized from EtOH/Et2O to yield white crystals (1.23g,72%):mp218-222°C;1H NMRδ6.86(s,1H),6.59 (s,1H),3.03(t,J)5.69,2H),2.83(t,J)5.69,2H),2.23 (s,3H),2.12(s,3H);13C NMRδ154.2,134.3,131.5,125.1, 122.1,116.5,40.0,30.1,17.6,14.4.

[2-(4-Hydroxy-2,5-dimethyl-phenyl)-ethyl]-carbamic Acid tert-Butyl Ester14.Di-tert-butyl dicarbamate (0.734g,3.37mmol)was added to a stirring solution of13 (0.566g,2.80mmol)in TEA/MeOH(1:3,10mL)at room temperature and stirred for7h.The solution was diluted with EtOAc,washed with saturated ammonium chloride and brine, dried(MgSO4),and concentrated in vacuo to a light brown solid.The solid was recrystallized from EtOAc/hexanes to yield clear crystals(0.620g,83%):mp160-162°C;1H NMRδ6.85 (s,1H),6.58(s,1H),4.56(bs,1H),3.28(bq,J)6.68,2H), 2.68(t,J)6.68,2H),2.22(s,3H),2.18(s,3H),1.43(s,9H); 13C NMRδ156.0,152.3,135.2,132.3,129.1,121.0,116.9,79.4, 41.1,32.8,28.5,19.0,15.3;IR(NaCl)3328,1684,1516,1282, 1166cm-1.Anal.Calcd for C15H23NO3:C,67.95;H,8.68. Found:C,68.12;H,8.54.

[2-(4-Hydroxy-3-iodo-2,5-dimethyl-phenyl)-ethyl]-car-bamic Acid tert-Butyl Ester15.Bis(pyridine)iodonium tetrafluoroborate(0.844g,2.23mmol)was added to a stirring

Improved Phosphotriester Formation

https://www.wendangku.net/doc/df18390864.html,.Chem,Vol.70,No.11,20054343

solution of14(0.547g,2.06mmol)in DMSO/CH2Cl2(1:10, 25mL)at room temperature and stirred for9h.The solution was diluted with EtOAc,washed with H2O and brine,dried (MgSO4),and concentrated in vacuo to a yellow oil.The oil was purified by flash chromatography on silica gel(1:3EtOAc/ hexanes)to afford a pale yellow oil(0.598g,74%):1H NMR δ6.84(s,1H),5.45(s,1H),4.59(bs,1H),3.25(q,J)6.68, 2H),2.80(t,J)6.68,2H),2.42(s,3H),2.26(s,3H),1.43 (s,9H);13C NMRδ156.0,151.5,137.0,132.5,129.6,121.8, 95.9,79.3,41.3,34.8,28.5,25.3,16.9;IR(NaCl)3402,2248, 1693cm-1.Anal.Calcd for C15H22INO3:C,46.05;H,5.67. Found:C,46.26;H,5.59.

3-[3-(2-tert-Butoxy carbonylamino-ethyl)-6-hydroxy-2,5-dimethyl-phenyl]-acrylic Acid Methyl Ester16.Pal-ladium acetate(0.017g,0.076mmol),TEA(0.580mL, 3.80mmol),and NMP(10mL)were combined in a test tube and heated to dissolve the palladium.The black solution was then added to a stirring mixture of15(0.598g,1.52mmol), sodium acetate(0.125g,1.52mmol),and NMP(10mL)in a high-pressure reaction tube.The solution was stirred while heating at75°C in an oil bath for14h.The mixture was diluted with EtOAc,washed with H2O and brine,dried (MgSO4),and concentrated in vacuo to a dark brown solid.The solid was purified by flash chromatography on silica gel (1:3EtOAc/hexanes)to afford a light brown solid.The solid was recrystallized from EtOAc/hexanes to yield clear crystals (0.352g,66%):mp168-170°C;1H NMRδ7.83(d,J)16.33 Hz,1H),6.90(s,1H),6.41(d,J)16.33Hz,1H),5.21(s,1H), 4.56(bs,1H),3.81(s,3H),3.23(bq,J)6.68,2H),2.73(t,J) 6.68,2H),2.25(s,3H),2.21(s,3H),1.43(s,9H);13C NMR δ167.4,156,150.8,141.0134.1,133.2,129.2123.3,121.5, 121.2,79.2,51.9,41.2,33.6,28.5,16.2,15.8;IR(NaCl)3404, 1644cm-1.Anal.Calcd for C19H27NO5:C,65.36;H,7.73. Found:C,65.15;H,7.59.

3-[3-(2-tert-Butoxycarbonyl)amino-ethyl)-6-hydroxy-2,5-dimethyl-phenyl]-propionic Acid Methyl Ester 1. Magnesium turnings dried at80°C(0.010g,0.421mmol)were added to a stirring solution of16(0.015g,0.042mmol)in dry MeOH(1mL)at room temperature and stirred for8h.Acetic acid(0.200mL)was added to the solution and then diluted with EtOAc,washed with saturated NaHCO3and brine,dried (MgSO4),and concentrated in vacuo to a light yellow solid.The solid was recrystallized from EtOAc/hexanes to yield clear crystals(0.008g,81%):mp136-139°C;1H NMRδ7.37 (s,1H),6.80(s,1H),4.57(bs,1H),3.68(s,3H),3.23(q,J) 6.68,2H),2.95(t,J)5.69,2H),2.68(m,4H),2.20(s,3H), 2.18(s,3H),1.43(s,9H);13C NMRδ176.6,156.0,151.5,132.9, 130.6,129.0,126.0,123.4,79.3,52.4,41.2,34.0,33.6,28.5,21.4, 16.3,15.0;IR(NaCl)3376,2977,1695cm-1.Anal.Calcd for C19H29NO5:C,64.93;H,8.32;N,3.99.Found:C,64.63;H, 8.27;N,3.87.

Quinone Methide2and2′Solutions For UV Studies. In separate vials,solutions of phenol1(2.0mg,5.6μmol)and 1′(1.9mg,5.6μmol)in CH3CN(10mL)were oxidized with lead(II)oxide(14mg)by stirring at20°C for20min.The suspension of each was filtered through a13mm syringe filter with0.45μm PTFE membrane to give quinone methides2and 2′as separate solutions.

Study of Quinone Methide2and2′Reaction in Dibutyl Phosphate/Acetonitrile Solution(2equiv,20°C). The560μM stock solutions of quinone methide2and2′were serial diluted to concentrations of400,300,200,and100μM. The400μM solution was prepared by adding7.14mL of stock quinone methide to a10mL volumetric flask with a1000 micropipet.To this solution was then added2.45mL of NaClO4 solution(0.1M,1.0g NaClO4/10mL CH3CN).The solution was then diluted with CH3CN to give a final volume of10mL. To prepare the300,200,and100μM quinone methide solutions0.620,0.820,and1.23mL aliquots of NaClO4solution were added to each volumetric flask prior to dilution.The final concentration of NaClO4in each solution was0.1M.A stock solution(26.9mM,10mL)of dibutyl phosphate was prepared by diluting the phosphate(50μL,269μmol)in10mL of CH3CN.The stock solution was then diluted to concentrations of800,600,400,and200μM(2equiv relative to the quinone methide solution)in10mL volumetric flasks with CH3CN.The volumetric flasks were allowed to equilibrate in a20°C water bath prior to UV analysis.A1mL aliquot of quinone methide solution was combined with1mL of the corresponding dibutyl phosphate solution(2equiv)to give four reactions with final concentrations of quinone methide of200,150,100,and 50μM.The disappearance of the quinone methide was measured atλmax of304nm,where there was no other interfering absorbance signal.All experiments were performed in triplicate.The rates(k obs)of loss of quinone methide2and 2′were based upon their decaying absorbance signal recorded every500ms.The rates were determined in the first60%loss of absorbance signal as the slope of ln A/t.

A control reaction containing an equimolar mixture of methane sulfonic acid(2equiv)and water(2equiv),similarly prepared as the dibutyl phosphate solutions,was added to the quinine methide at all concentration levels.The quinone methide absorbance signal(λmax of304nm)revealed no decay after2min,suggesting that acid-catalyzed hydrolysis is not competitive with phosphate alkylation under the reaction conditions.

Quinone Methide2and2′for NMR Studies.A22mM solution of phenol1(5.0mg phenol/0.65mL CDCl3)or1′(4.8mg phenol/0.65mL CDCl3)and1equiv mesitylene(2μL, 14.3μmol)were combined with lead(II)oxide(34mg)with stirring at20°C for20min.The suspensions were filtered as described above to afford a yellow solution of quinone methide. The reaction with lead(II)oxide was quantitative for p-quinone methides2and2′as determined by relative integration of the p-quinone methide alkylidene resonance at6.42ppm(1H) relative to an internal standard of mesitylene(Ar-H,6.79ppm, 3H).Quinone methide2:1H NMR(CDCl3,270MHz)δ7.22 (s,1H),6.42(t,J)7.18,1H),4.21(t,J)6.18,2H),3.65 (s,3H),2.84(t,J)8.15,2H),2.41(t,J)8.15,2H),2.18 (s,3H),1.99(s,3H),1.45(s,9H).Quinone methide2′:1H NMR (CDCl3,270MHz)δ7.29(s,1H),6.88(s,1H),6.21(t,J)7.18, 1H),4.16(t,J)6.43,2H),3.65(s,3H),2.71(t,J)8.15,2H), 2.57(t,J)8.15,2H),2.02(s,3H),1.45(s,9H).

To the quinone methide solution was added2equiv of dibutyl phosphate(5.3μL,28.6μmol).The conversion of quinone methide2or2′to trialkyl phosphate3or3′was monitored by1H NMR analysis upon addition of dibutyl phosphate.Trialkyl phosphate3:1H NMRδ7.07(s,1H),5.52 (td,J P-H)3.24,1H),4.04-3.88(m,4H),3.86(t,2H),3.68 (s,3H),2.94(t,J)6.91,2H),2.67(t,J)6.67,2H),2.25 (s,3H),2.21(s,3H),1.62(m,4H),1.45(s,9H),1.31(m,4H), 0.89(m,6H).Trialkyl phosphate3′:δ6.99(s,1H),6.92 (s,1H),5.20(td,J P-H)3.72,1H),4.04-3.88(m,4H),3.89 (t,2H),3.68(s,3H),2.84(t,J)6.45,2H),2.69(t,J)6.67, 2H),2.23(s,3H),1.62(m,4H),1.45(s,9H),1.31(m,4H),0.89 (m,6H).

Trialkyl phosphate3′was cleanly observed in the initial 1H NMR spectra.The conversion of trialkyl phosphate3′to lactonized trialkyl phosphate5′was monitored by comparison of the relative integration of methyl ester at3.68ppm(s,3H) to an internal standard of mesitilyene(Ar-H,6.79ppm,3H) at35°C in CDCl3in five min.intervals for120min.During the first hour of lactonization monitoring the emergence of presumed benzyl alcohol4′is observed at4.9ppm with no measurable loss of methyl ester at3.68(s,3H).After2h10% of the methyl ester resonance signal had been lost and the ratio of trialkyl phosphate3′to presumed benzyl alcohol4′(based on its close1H NMR correspondence to4and6)is approximately3:1.After2h of monitoring,a slight decrease in signal intensity was observed for presumed trialkyl phos-phate3′and benzyl alcohol4′resonances relative to the integration of the internal standard.The reaction conditions (CDCl3,35°C)were maintained for an additional10h. 1H NMR analysis of the reaction mixture revealed the complete

Bakke et al.

https://www.wendangku.net/doc/df18390864.html,.Chem.,Vol.70,No.11,2005

loss of the methyl ester resonace signal and less than30%of the combined characteristic signal intensity remained for presumed lactonized trialkyl phosphate5′and benzyl alcohol 6′(based on their close1H NMR correspondence to5and6). The scale of the reaction and limited observable material prevented isolation and definitive characterization of lacton-ized trialkyl phosphate5′and benzyl alcohol6′.Additional, unidentified resonance signals were observed in the final 1H NMR spectrum.

The conversion of trialkyl phosphate3to lactonized trialkyl phosphate5was monitored by comparison of the relative integration of the resonance signal consistent with the methyl ester at3.68ppm(s,3H)to a resonance signal for the internal standard of mesitilyene(Ar-H,6.79ppm,3H)at35°C in CDCl3in five min.intervals for120min.During the first hour of lactonization monitoring,the triplet of doublets at5.52ppm (J H-P) 3.24Hz,1H)from3began to overlap with the emerging triplet of doublets at5.57ppm(td,J P-H)3.24,1H), characteristic of lactonized trialkyl phosphate5.Concurrent with the formation of the triplet of doublets at5.57ppm for5 was the disappearance of the resonance signal for the aromatic proton at7.07(s,1H)of3and subsequent emergence of a resonance signal of an aromatic proton at7.18(s,1H) consistent with the formation of5.Additionally,during the first hour of lactonization monitoring,the slight appearance of a resonance signal at5.04ppm and a singlet at7.28ppm was observed consistent with the formation of benzyl alcohol 6.After2h,based on analysis of the already described resonance signals,complete conversion of quinone methide2 to lactonized trialkyl phosphate5and lactonized benzyl alcohol 6was observed in a3.0:1.0ratio favoring trialkyl phosphate 5.The reaction conditions(CDCl3,35°C)were maintained for an additional10h.No measurable change was detected in the ratio of lactonized trialkyl phosphate5and benzyl alcohol6 following the completion of the lactonization reaction in the initial2h.This was determined by comparison of the relative integration of the aromatic proton of trialkyl phosphate5at 7.18with the aromatic proton of benzyl alcohol6at7.28ppm and the triplet of doublets of trialkyl phosphate5at5.57ppm with the multiplet of benzyl alcohol6at5.04to an internal standard of mesitilyene(Ar-H,6.79ppm,3H).The rate of lactonization was calculated as the slope of concentration of methyl ester(mM)vs time(min.)for the first60%of methyl ester resonance signal loss.All experiments were performed in triplicate.

Lactonized Trialkyl Phosphate5.A22mM solution of phenol1(5.0mg phenol/0.65mL CHCl3)was stirred with lead-(II)oxide for20min.The suspension was filtered as described above to yield a yellow solution of quinone methide.To the resulting quinone methide solution was added2equiv of dibutyl phosphate(5.3μL,28.6μmol),and the resulting solution was stirred at35°C for2h.The mixture was concentrated in vacuo to yield a crude oil.The desired product was isolated via preparative TLC(3:1EtOAc/hexanes)to yield a semi-white solid(4.8mg,61%):1H NMRδ7.18(s,1H),5.57 (td,J P-H)3.24,1H),3.96(m,4H),3.53-3.44(bm,1H),3.31-3.19(bm,1H),2.94(t,J)6.91,2H),2.73(t,J)6.91,2H), 2.27(s,3H),2.26(s,3H),1.62(m,4H),1.44(s,9H),1.31 (m,4H),0.89(m,6H);13C NMRδ171.3,156.0,148.2,135.7, 134.0,132.6,129.2,126.4,79.3,74.2,63.8,47.3,32.1,29.7,28.5, 21.4,18.7,16.3,15.0,13.1.Anal.Calcd for C26H42NO8P:C, 59.19;H,8.02;N,2.65.Found:C,59.41;H,8.22;N,2.83.

Lactonized Benzyl Alcohol6.1H NMRδ7.28(s,1H),5.04 (bm,1H),3.40(ddd,J)2.97,1H),3.12(m,1H),2.93(t,J) 6.91,2H),2.73(t,J)6.91,2H),2.27(s,3H),2.23(s,3H),1.45 (s,9H).

Acetic Acid o-Tolyl Ester8′.14.3g,99%;1H NMRδ7.18 (m,3H),7.03(d,1H),2.32(s,3H),2.20(s,3H);13C NMR δ169.3,149.5,131.2,130.2,127.0,126.1,122.0,20.9,16.2; IR(NaCl)1761,1213cm-1.Anal.Calcd for C9H10O2:C,71.98; H,6.66.Found:C,71.82;H,6.80.

1-(4-Hydroxy-3-methyl-phenyl)-ethanone9′.11.3g,76%; mp106-109°C;1H NMRδ7.79(s,1H),7.74(d,J)8.41Hz, 1H),7.39(s,1H),6.88(d,J)8.41Hz,1H),2.57(s,3H),2.29 (s,3H);13C NMRδ198.7,159.6,132.1,129.6,128.8,124.6, 114.9,26.4,16.0;IR(NaCl)3252,1652,1591,1281cm-1.Anal. Calcd for C9H10O2:C,71.98;H,6.66.Found:C,72.14;H,6.80.

2-Bromo-1-(4-hydroxy-3-methyl-phenyl)-ethanone10′.

3.44g,72%;mp118-20°C;1H NMRδ7.80(s,1H),7.76 (d,J)8.41Hz,1H),6.85(d,J)8.41Hz,1H),5.95(s,1H),

4.39(s,2H),2.29(s,3H);13C NMRδ190.7,159.4,132.6,129.4, 126.9,124.7,11

5.2,30.8,15.9;IR(NaCl)3386,1670,1587. Anal.Calcd for C9H9BrO2:C,47.19;H, 3.93;Br,34.88. Found:C,47.30;H,4.03;Br,34.64.

4-(2-Bromo-ethyl)-2-methyl-phenol11′. 2.27g,79%; 1H NMRδ6.95(s,1H), 6.90(d,J)8.41Hz,1H), 6.69 (d,J)8.41Hz,1H),4.39(b,1H),3.51(t,J)7.67Hz,2H), 3.05(t,J)7.67Hz,2H),2.23(s,3H);13C NMRδ152.8,131.4, 131.2,127.3,124.2,115.1,38.7,33.6,15.9;IR(NaCl)3415, 1510,1261cm-1.Anal.Calcd for C9H11BrO:C,50.25;H,5.11; Br,37.15.Found:C,50.10;H,5.18;Br,36.94.

4-(2-Azido-ethyl)-2-methyl-phenol12′. 1.57g,89%; 1H NMRδ6.96(s,1H), 6.90(d,J)8.16Hz,1H), 6.70 (d,J)8.16Hz,1H),4.85(s,1H),3.45(t,J)7.18Hz,2H), 2.79(t,J)7.18Hz,2H),2.23(s,3H);13C NMRδ152.7,131.5, 130.2,127.3,124.1,115.2,52.8,34.6,15.9;IR(NaCl)3407, 2102,1509cm-1.Anal.Calcd for C9H11N3O:C,61.00;H,6.21; N,23.71.Found:C,61.20;H,6.33;N,23.58.

2-(4-Hydroxy-3-methyl-phenyl)-ethylammonium Chlo-ride13′.1.19g,72%;mp178-181°C;1H NMRδ6.97(s,1H), 6.89(d,J)8.16,1H),6.71(d,J)8.16Hz,1H),3.10(t,J) 15.09Hz,2H), 2.82(t,J)15.09Hz,2H), 2.17(s,3H); 13C NMRδ154.2,130.8,126.9,126.7,124.8,114.7,41.0,32.5, 14.9.Anal.Calcd for C9H14ClNO:C,57.60;H,7.46;Cl,18.89. Found:C,57.45;H,7.27;Cl,19.03.

[2-(4-Hydroxy-3-methyl-phenyl)-ethyl]-carbamic Acid tert-Butyl Ester14′.1.69g,70%;mp126-129°C;1H NMR δ6.91(s,1H),6.87(d,J)8.16Hz,1H),6.69(d,J)8.16Hz, 1H),3.30(q,J)6.93Hz,2H),2.67(t,J)6.93Hz,2H),2.21 (s,3H),1.43(s,9H);13C NMRδ156.2,152.8,131.4,130.6, 127.2,124.1,115.1,79.5,42.1,35.3,28.5,15.9;IR(NaCl)3347, 1685,1611,1512cm-1.Anal.Calcd for C14H21NO3:C,66.90; H,8.36.Found:C,67.00;H,8.19.

[2-(4-Hydroxy-3-iodo-5-methyl-phenyl)-ethyl]-carbam-ic Acid tert-Butyl Ester15′.2.060g,81%;1H NMRδ7.30 (s,1H),6.90(s,1H),5.27(s,1H),4.54(bs,1H),3.27(q,J) 6.93Hz,2H),2.64(t,J)6.93Hz,2H),2.26(s,3H),1.43 (s,9H);13C NMRδ155.9,151.6,135.6,132.8,132.0,124.9, 86.0,79.4,41.9,34.9,28.5,17.3;IR(NaCl)3356,1693cm-1.

3-[5-(2-tert-Butoxycarbonylamino-ethyl)-2-hydroxy-3-methyl-phenyl]-acrylic Acid Methyl Ester16′.1.37g,75%; mp138-140°C;1H NMRδ8.04(d,J)16.08Hz,1H),7.14 (s,1H),6.97(s,1H),6.50(d,J)16.08Hz,1H),5.85(s,1H), 4.54(bs,1H),3.79(s,3H),3.30(q,J)6.93,2H),2.68(t,J) 6.93Hz,2H),2.25(s,3H),1.42(s,9H);13C NMRδ168.3,156.0, 152.2,140.5,133.3,130.9,126.5,124.4,121.6,118.1,79.5,51.8, 41.9,35.3,28.5,16.0;IR(NaCl)3391,1630cm-1.Anal.Calcd for C18H25NO5:C,64.46;H,7.45.Found:C,64.58;H,7.31.

3-[5-(2-tert-Butoxycarbonylamino-ethyl)-2-hydroxy-3-methyl-phenyl]-propionic Acid Methyl Ester1′.0.052g, 77%;mp76-79°C;1H NMRδ7.13(s,1H),6.81(s,1H),6.74 (s,1H),4.51(bs,1H),3.68(s,3H),3.27(q,J)6.43,2H),2.84 (t,2H),2.71(t,J)6.43,2H),2.63(t,2H),2.22(s,3H),1.42 (s,9H);13C NMRδ176.2,156.0,151.2,130.6,129.7,128.4, 127.0,125.8,79.2,52.3,42.1,35.2,34.9,28.5,24.7,16.4;IR (NaCl)3372,1693,1169cm-1.Anal.Calcd for C18H27NO5:C, 64.07;H,8.00.Found:C,64.26;H,8.02.

JO050050S

Improved Phosphotriester Formation

https://www.wendangku.net/doc/df18390864.html,.Chem,Vol.70,No.11,20054345

2005年版中国药典附录

2005年版中国药典附录《细菌内毒素检查法》 本法系利用鲎试剂来检测或量化由革兰阴性菌产生的细菌内毒素,以判断供试品中细菌内毒素的限量是否符合规定的一种方法。 细菌内毒素检查包括两种方法,即凝胶法和光度测定法,后者包括浊度法和显色基质法。供试品检测时,可使用其中任何一种方法进行试验。当测定结果有争议时,除另有规定外,以凝胶法结果为准。 细菌内毒素的量用内毒素单位(EU)表示。 细菌内毒素国家标准品系自大肠埃希菌提取精制而成,用于标定、复核、仲裁鲎试剂灵敏度和标定细菌内毒素工作标准品的效价。 细菌内毒素工作标准品系以细菌内毒素国家标准品为基准标定其效价,用于试验中鲎试剂灵敏度复核、干扰试验及各种阳性对照。 凝胶法细菌内毒素检查用水系指含量小于0.015EU/ml灭菌注射用水。光度测定法用的细菌内毒素检查用水,其内毒素的含量应小于0.005EU/ml。 试验所用的器皿需经处理,以去除可能存在的外源性内毒素。常用的方法是在250℃干烤至少60分钟,也可采用其他确证不干扰细菌内毒素检查的适宜方法。若使用塑料器械,如微孔板和与微量加样器配套的吸头等,应选用标明无内毒素并且对试验无干扰的器械。试验操作过程应防止微生物的污染。 供试品溶液的制备某些供试品需进行复溶、稀释或在水性溶液中浸提制成供试品溶液。一般要求供试品溶液的PH值在6.0—8.0的范围内。对于过酸、过碱或本身有缓冲能力的供试品,需调节被测溶液(或其稀释液)的PH值,可使用酸、碱溶液或鲎试剂生产厂家推荐的适宜的缓冲液调节PH值。酸或碱溶液须用细菌内毒素检查用水在已去除内毒素的容器中进行配制。缓冲液必须经过验证不含内毒素和干扰因子。 内毒素限值的确定药品、生物制品的细菌内毒素限值(L)一般按以下公式确定: L=K/M 式中L为供试品的细菌内毒素限值,以EU/ml、EU/mg或EU/U(活性单位)表示; K为人每公斤体重每小时最大可接受的内毒素剂量,以EU/(kg2h)表示,注射剂K=5E U/(kg2h),放射性药品注射剂K=2.5 EU/(kg2h),鞘内用注射剂K=0.2 EU/(kg2h);

雷电防护标准

雷电防护标准 中国相关防雷标准 《广东省防御雷电灾害管理规定》 低压配电系统的电涌保护器(SPD)第1部分:性能要求和试验方法(GB18802.1-2000) 通信局(站)接地设计暂行技术规定(综合楼部分)(YDJ26-89) 移动通信基站防雷与接地设计规范(YD5068-98) 通信工程电源系统防雷技术规定(YD5078-98) 国际电信联盟标准 局端通讯交换设备设备过压过流防护标准ITU-T K20 用户端网络通讯设备过压过流防护标准ITU-T K21 国际电工委员会标准 电磁兼容性雷击浪涌抗扰度测试标准IEC61000-4-5 雷电电磁脉冲的防护(IEC1312) 低压配电系统的电涌保护器(SPD)(IEC61643) 欧美国家防雷标准 低压配电系统的电涌保护器(SPD)(法国NFC61740) 低压配电系统的电涌保护器(SPD)(美国UL1449) 低压配电系统的电涌保护器(SPD)(德国VDE0675) 低压配电系统的电涌保护器(SPD)(英国BS6651)

1.SPS电源净化系统填补了国内室内电源环保无污染的空白。 2.行业的领导者-SPS电源净化系统,集成浪涌保护器,电源净化器,电源控制器,电源保护器,电源滤波器,防雷器,浪涌消除器,噪声消除器为一体,提供干净无污染的室内电源。 3.SPS电源净化系统采用复合模式四级保护零通过技术:“一阻,二存,三放,四滤”,执行保护时不损坏元件,更不需要复位,零通过技术提供了最可靠的保障,吸收所有的浪涌,而且不会产生有害的副作用----如地面污。 4.SPS电源净化系统保护您的设备免受雷击浪涌,尖峰电压,EMI噪声,RFI噪声,过压和线路故障的损坏,提高您设备的质量与性能,并且不损坏元件就能消除浪涌高达6KV,3KA,1000次以上. 5.SPS电源净化系统结合耐阻抗,EMI滤波器,RFI滤波器设计,考滤电源线阻抗,允许信号源和负载阻抗不匹配,长期耐阻抗能力非常强。 6.SPS电源净化系统代表着浪涌保护领域最高水平的性能和最稳定的可靠性。 7.SPS电源净化系统所有产品均符合:A级,1类,模式1。 8.SPS所有产品均享有5年保修。 主要应用于:专业音频电源滤波系统,专业浪涌保护系统,专业室内电源防雷滤波系统

最新河南省中招数学试卷及答案

2008年河南省高级中等学校招生统一考试试卷 数 学 注意事项: 1、本试卷共8页,三大题,满分120分,考试时间100分钟。请用钢笔或圆珠笔答在试卷指定位置上。 一、 选择题(本题满分18分,共有6道小题,每小题3分)下列每小题 都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。 A. 7 B. -7 C. 71 D.17 - 2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( ) A. 43 B. 34 C. 53 D. 5 4 3.如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( ) A. ?360 B. ?180 C. ?150 D. ?120 4.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A. 9,10,11 B.10,11,9 C.9,11,10 D.10,9,11 5.如果关于x 的一元二次方程2 2 (21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14- B.k >14-且0k ≠ C.k <14- D.1 4 k ≥-且0k ≠

6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( ) 二、填空题(本题满分27分,共有9道小题,每小题3分) 7.16的平方根是 8.如图,直线a,b 被直线c 所截,若a ∥b ,?=∠501,则=∠2 9.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是 10.如图所示,AB 为⊙0的直径,AC 为弦,OD ∥BC 交AC 于点D ,若AB=20cm,?=∠30A ,则AD= cm 11.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm 12.如图,矩形ABCD 的两条线段交于点O ,过点O 作AC 的垂线EF,分别交AD 、BC 于点E 、F ,连接CE,已知CDE ?的周长为24cm ,则矩形ABCD 的周长是 cm 13、在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm 2 ,设金色纸边的宽为x cm ,那么x 满足的方程为 14、如图是二次函数2)1(2 ++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标 是

浪涌保护器(SPD)的设置及应用现状

浪涌保护器(SPD)的设置及在福建省的应用现状 作者:福建省建筑设计研究院林卫东 杭州鸿雁电器公司谢文平 摘要:为减少雷电电磁脉冲、开关浪涌等对设备所造成的损坏,本文分析了建筑物内电气设备要设置浪涌保护器(SPD)的原因,列出了部分防雷规范、规定及标准,介绍了选用设置各种电源浪涌保护器和信号浪涌保护器的方法;同时本文简述了浪涌保护器在福建省的应用现状,对常用几个厂家的产品进行了市场信息比较,指出浪涌保护器在福建省各个地区必将得到进一步普及。关键词:浪涌保护器(SPD)应用选用设置电压保护水平放电电流雷电电磁脉冲 (转载请保留电气论坛https://www.wendangku.net/doc/df18390864.html, 版权!) 在地球上,雷电时时刻刻都存在,国际电工委员会(IEC)将雷电称之为电子化时代的一大公害。据统计,在任一时刻平均有2000多个雷暴在进行着,火灾、爆炸、建筑物破坏、人畜伤亡、设备损坏等无不与之相连,雷暴被联合国列为十大自然灾害之一,它严重影响着人类的各种活动。我国每年因雷害造成的损失达100亿元人民币。 当人类社会进入电子信息时代后,雷灾出现的特点与以往有极大不同,可概括为:(1)受灾面积大大扩大,雷害从电力、建筑这两个传统领域扩展到几乎所有行业,特别是与高新技术关系最密切的领域,如航天航空、国防、邮电通信、计算机、电子工业、石油化工、金融证券等。(2)入侵方式从平面入侵变为立体入侵,从闪电直击和雷电波沿线传输变为空间闪电的脉冲电磁场从立体空间入侵到任何角落,无孔不入地造成灾害,因而防雷工程已从防直击雷、感应雷进入防雷电电磁脉冲(LEMP)。(3)雷灾的经济损失和危害程度大大增加了。有时候雷电袭击对象本身的直接经济损失并不太大,而由此产生的间接损失和影响却难以估量。例如,1999年8月27日下午3点,某寻呼台遭受雷击,导致该台中断数小时,其直接损失是有限的,但间接损失大大超过直接损失。 产生上述现象的根本原因是雷灾的主要对象已集中在微电子设备上,雷电本身并没有变,而是随着科学技术的发展,微电子技术的应用渗透到各种生产和生活领域,微电子器件极端灵敏这一特点很容易受到无孔不入的LEMP的作用,造成微电子设备的失控或者损坏。为此,当今时代的防雷工作的重要性、迫切性、复杂性大大增强了,雷电的防御已从直击雷防护进入到感应雷、雷电电磁脉冲等的防护。当然,来自电路的开、断操作,感性和容性负载的开关操作及来自短路电流的阻断等引起的开关浪涌也是造成微电子设备失控或损坏的原因之一。美国的调查数据表明,在保修期内出现问题的电气产品中,有63%是由于浪涌造成的。 一、浪涌保护器的设置原因 雷电防护包括针对建筑物的直击雷防护,以及针对建筑物内设备、人员的雷电波侵入防护和雷击电磁脉冲防护两大部分。 多数人对直击雷防护并不陌生,但对雷电电磁脉冲防护的认识仍非常有限。雷击发生时,大约50%的雷电流将沿接闪——引下线通路直接泄放入地,频率成分非常复杂的雷电流快速通过引下线时会感应出极强的电磁场,建筑物中的管线相对切割磁力线产生感应电流(即雷击电磁脉冲),间接导致设备损坏和人员伤亡;另一方面,至少有50%的雷电流将沿着进出建筑物的管线泄放,对人员和设备构成直接威胁。因此,雷电波侵入与雷击电磁脉冲防护已成为现代防雷设计的重中之重。依据IEC61024-1的说明,室内雷电保护的主要防护措施是:浪涌保护器安装和等电位连接。等电位连接的目的,在于减小保护区间内,各金属部件和各系统之间的电位差。对非带电金

最新 2020年河南中考数学试卷及答案

2018年河南省中考数学试卷 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是() A.﹣ B.C.﹣ D. 2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011 3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3.00分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3?x4=x7D.2x3﹣x3=1 5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为() A.B. C.D. 7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()

A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 8.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面 上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是() A.B.C.D. 9.(3.00分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F; ③作射线OF,交边AC于点G,则点G的坐标为() A.(﹣1,2)B.(,2) C.(3﹣,2)D.(﹣2,2) 10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为() A.B.2 C.D.2 二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上) 11.(3.00分)计算:|﹣5|﹣=.

《中国药典》2005年版一部值得商榷问题探讨

《中国药典》2005年版一部值得商榷问题探讨 黄勤挽1,陈文文1,郝柳妮2 1 成都中医药大学(611731) 2四川维奥制药有限公司(611130) E-mail :hqwan2163@https://www.wendangku.net/doc/df18390864.html, 摘 要:本文对《中国药典》2005年版一部某些值得商榷的问题进行探讨,结合自身学习心得并参考网络论坛中某些观点和勘误表,认为槐花性状、对照品称量等问题需要完善或修订。通过探讨,可为2006年版《中国药典》(2005年版修订本)进言。 关键词:《中国药典》2005年版,槐花性状,对照品称量,问题探讨 1.引言 《中国药典》2005年版已于2005年7月1日正式使用,部分值得商榷的问题已见报道[1]。国家药典委员会于2005年9月2日在网上颁布了一、二、三部勘误表,修订了部分出错问题。笔者发现一部仍存在部分未勘误的问题,对其进行归纳探讨。 2.值得商榷的问题 2.1 性状方面 药典收载的有不同入药部位的品种其性状多为分别描述,而蒲黄项下却未对草蒲黄(带有雄花的花粉)规格的性状进行描述。槐花项下性状为“雄蕊10,其中9个基部连合,花丝细长”。而《中国中药材真伪鉴别图典》槐花性状为“雄蕊10枚,基部稍联合,花丝细长”,伪品刺槐花性状为“雄蕊10枚,两体,分别为9个联合成鞘状,另一个上部离生或部分离生”;《中华本草》中槐花性状为“雄蕊10,分离,不等长”。故疑药典中槐花的性状有误。 [2][3][4]2.2 制法方面 刺五加浸膏为制备刺五加片的原料,来源为“刺五加加工制成的浸膏。用水提者为水浸膏,用醇提者为醇浸膏”。其制法为“取刺五加药材1000g ,粉碎成粗粉,用水煎煮两次,每次3小时,……;或加75%乙醇,回流提取12小时,……”。笔者提出三个疑问:药材粗粉水煎,大生产滤过有无困难?刺五加水浸膏和醇浸膏的物质基础及药效是否等同?企业从生产成本考虑是否会采取成本较高的醇提?刺五加浸膏始见于77版药典,直到2000版药典其制法均只有醇提。05版药典网上征求意见稿中新增的“刺五加提取物”,实为水浸膏工艺。在药典定稿后将两者合二为一,可能会给刺五加浸膏及刺五加片的生产、检验带来波动。 [5]2.3 含量测定方面 2.3.1 对照品称量 药典凡例规定“精密称定是指称取重量应准确至所称取重量的千分之一”。目前制药企业、药检所、科研院校大多仅有十万分之一的电子天平,少有百万分之一的电子天平,按精密称定要求,需称取10mg 以上方能称准。但马钱子、半枝莲、血竭、蒲公英、蓼大青叶、七厘散、午时茶颗粒等项下对照品的称量在10mg 以下。 [6]2.3.2 供试品制备粉末等级

2010版中国药典修改-附录部分

【话题】制剂通则-片剂 【2010版页数】附录5-6 【2005版页数】附录5-6 【区别分析】 1. 含片的定义由原来“含于口腔中,药物缓慢溶解产生持久局部作用的片剂”改为“含于口腔中缓慢溶化产生局部或全身作用的片剂”。指出了含片亦可实现全身作用。 2. 原含片的崩解时限描述为含片的溶化性,测定法仍按照崩解时限检查法,崩解时限由之前“30分钟内应全部崩解”改为“10分钟内不应全部崩解或溶化”,这点修改有些特殊,设定崩解时限的下限主要是为了防止含片在口中迅速溶化,与舌下片区别,但是取消了含片的崩解上限。 3.咀嚼片的定义由原来“口腔中咀嚼或吮服使片剂溶化后吞服,在胃肠道中发挥作用或胃肠道吸收发挥全身作用”修改为了“口腔中咀嚼后吞服的片剂”,定义大大简化。 4. 片剂的注意事项中,增加了“薄膜包衣在必要时检查残留溶剂”,这点规定将更有利于水性包衣技术的应用和推广。 5.分散片分散均匀性的检查方法由之前“取供试品2片,置20±1℃的水中,振摇3分钟,应全部崩解并通过二号筛”,改为“取供试品6片,置250ml烧杯中,加15-25℃的水100ml,振摇3分钟,应全部崩解并通过二号筛”。新方法增加了供试片剂的数量,特别是规定了进行分散均匀性所需介质的体积,可以充分保证分散均匀性的重现性。 【话题】制剂通则-药用辅料 【2010版页数】附录20 药用辅料 药用辅料系指生产药品和调配处方时使用的赋形剂和附加剂;是除活性成分以外,在安全性方面已进行了合理的评估,并且包含在药物制剂中的物质。药用辅料除了赋形、充当载体、提高稳定性外,还具有增溶、助溶、缓控释等重要功能,是可能会影响到药品的质量、安全性和有效性的重要成分。 药用辅料可从来源、作用和用途、给药途径等进行分类。按来源分类可分为天然物、半合成物和全合成物。按作用与用途分类可分为溶媒、抛射剂、增溶剂、助溶剂、乳化剂、着色剂、黏合剂、崩解剂、填充剂、润滑剂、润湿剂、渗透压调节剂、稳定剂、助流剂、矫味剂、防腐剂、助悬剂、包衣材料、芳香剂、抗黏着剂、抗氧剂、螯合剂、渗透促进剂、pH 调节剂、增塑 剂、表面活性剂、发泡剂,、消泡剂,、增稠剂、包合剂、保湿剂、吸收剂、稀释剂、絮凝剂与反絮凝剂、助滤剂等。 按给药途径分类可分为口服、注射、黏膜、经皮或局部给药、经鼻或口腔吸入给药和眼部给药等。同一药用辅料可用于不同给药途径,且有不同的作用和用途。药用辅料在生产、贮存和应用中应符合下列规定:生产药品所用的药用辅料必须符合药用要求;注射剂用药用辅料应符合注射用质量要求。药用辅料应经安全性评估对人体无毒害作用;化学性质稳定,不易受温度、pH 值、保存时间等的影响;与主药及辅料之间无配伍禁忌,不影响制剂的检验,或可按允许的方法除去对制剂检验的影响,且尽可能用较小的用量发挥较大的作用。药用辅料的质量标准应建立在经主管部门确认的生产条件、生产工艺以及原材料的来源等基础上,上述影响因素任何之一发生变化,均应重新确认药用辅料质量标准的适用性;药用辅料可用于多种给药途径,同一药用辅料用于给药途径不同的制剂时,其用量和质量要求亦不相同,应根据实际情况在安全用量范围内确定用量,并根据临床用药要求制定相应的质量控制项目,质量标准的项目设置需重点考察安全性指标。在制定药用辅料质量标准时既要考虑药用辅料自身的安全性,也要考虑影响制剂生产、质量、安全性和有效性的性质。药用辅料质量标准的内容主要包括两部分:(1)与生产工艺及安全性有关的常规试验,如性状、鉴别、检查、含量测定等项目;(2)影响制剂性能的功 能性试验,如粘度等。

2018年河南中考数学试卷及答案解析版

2018年河南省初中学业水平暨高级中等学校招生考试试卷 数学 注意事项: 1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。 2.答卷前将密封线内的项目填写清楚。 参考公式:二次函数图像 2(y ax bx c a =++≠ 的顶点坐标为24(,)24b ac b a a --一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。 1、-2的相反数是【】 (A )2(B)2--(C)12(D)1 2 -【解析】根据相反数的定义可知:-2的相反数为2 【答案】A 2、下列图形中,既是轴对称图形又是中心对称图形的是【】 【解析】轴对称是 指在平面内,如果一 个图形沿一条直线 折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。 中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。 结合定义可知,答案是D 【答案】D 题号一二三总分1~89~151617181920212223

3、方程(2)(3)0x x -+=的解是【】 (A )2x =(B )3x =-(C )122,3x x =-=(D )122,3 x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3 x x ==-【答案】D 4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】 (A )47(B )48(C )48.5(D )49 【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。本题的8个数据已经按照从小到大的顺序排列了,其中间的两 个数是48和49, 它们的平均数是48.5。因此中位数是48.5【答案】C 5、如图是正方形的一种张开图,其中每个面上都标有一个数字。 那么在原正方形 中,与数字“2”相对的面上的数字是【】(A )1(B )4(C )5(D )6 【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。 【答案】B 6、不等式组221 x x ≤??+>?的最小整数解为【】 (A )-1 (B )0(C )1(D )2【解析】不等式组的解集为12x -<≤,其中整数有0,1,2。最小的是0 【答案】B

中国药典2005版一部标准凡例

凡例(2005年版一部) 凡例 《中华人民共和国药典》简称《中国药典》是国家监督管理药品质量的法 定技术标准。《中国药典》一经国务院药品监督管理部门颁布实施,同品种 的上版标准或其原国家标准即同时停止使用。除特别注明版次外,《中国药 典》均指现行版《中华人民共和国药典》 “凡例”是解释和使用《中国药典》正确进行质量检定的基本指导原则,并把与正文、附录及质量检定有关的共性问题加以规定,避免在全书中重 复说明。“凡例”中的有关规定具有法定的约束力。 凡例和附录中采用“除另有规定外”这一修饰语,表示存在与凡例或附录有关规定未能概括的情况时,在正文各论中另作规定,并按此规定执行。 药典中引用的药品系指本版药典收载的并符合规定的品种。 附录中收载的指导原则,是为执行药典、考察药品质量、起草与复核药品标准所制定的指导性规定。 名称及编排 一、本部正文分三部分排列:药材及饮片;植物油脂和提取物;成方制剂 和单味制剂。 二、正文品种中文名称按笔画数顺序排列,同笔画数的字按起笔笔形─ 丨ノ丶フ顺序排列;单列的饮片排在相应药材的后面,制剂中同一品种凡因规 格不同而臻主标准内容不可须单列者,在其名称后加括号注明规格;附录包括 制剂通则、通用检测方法和指导原则,按分类编码;索引分别按中文索引、汉 语拼音索引、拉丁名索引和拉丁学名索引顺序排列。 三、每一品种项下根据品种和剂型不同,按顺序可分别列有: ⑴中文名称(必要时用括号加注副名),汉语拼音名与拉丁名;⑵来源; ⑶处方;⑷制法;⑸性状;⑹鉴别;⑺检查;⑻浸出物;⑼含量测定;⑽性 味与归经;⑾功能与主治;⑿用法与用量;⒀注意;⒁规格;⒂贮藏;⒃制 剂等。 项目与要求 四、药材的质量标准,一般按干品规定,特殊需用鲜品者,同时规定鲜 品的标准,并规定鲜品用法与用量。 五、药材原植(动)物的科名、植(动)物名、学名、药用部位(矿物 药注明类、族、矿石名或岩石名、主要成分)及采收季节和产地加工等,均 属各该药材的来源范畴。 药用部位一般系指已除去非药用部分的商品药材。采收(采挖等)和产 地加工即对药用部位而言。 六、药材产地加工及炮制规定的干燥方法如下:(1) 烘干、晒干、阴干均 可的,用“干燥”;(2) 不宜用较高温度烘干的,则用“晒干”或“低温干燥”(一般不超过60℃);(3) 烘干、晒干均不适宜的,用“阴干”或“晾干”;(4) 少数药材需

中国药典部分

2010版中国药典 2010版中国药典二部word版电子书 凡例 总则 一、《中华人民共和国药典》简称《中国药典》,依据《中华人民共和国药品管理法》组织制定和颁布实施。《中国药典》一经颁布实施,其同品种的上版标准或其原国家标准即同时停止使用。 《中国药典》由一部、二部、三部及其增补本组成,内容分别包括凡例、正文和附录。除特别注明版次外,《中国药典》均指现行版《中国药典》。 本部为《中国药典》二部。 二、国家药品标准由凡例与正文及其引用的附录共同构成。本部药典收载的凡例、附录对药典以外的其他中药国家标准具同等效力。 三、凡例是为正确使用《中国药典》进行药品质量检定的基本原则,是对《中国药典》正文、附录及与质量检定有关的共性问题的统一规定。 四、凡例和附录中采用的“除另有规定外”这一用语,表示存在与凡例或附录有关规定不一致的情况时,则在正文中另作规定,并按此规定执行。 2010版中国药典word版pdf版exe版

五、正文中引用的药品系指本版药典收载的品种,其质量应符合相应的规定。 六、正文所设各项规定是针对符合《药品生产质量管理规范》(Good Manufacturing Practices, GMP)的产品而言。任何违反GMP 或有未经批准添加物质所生产的药品,即使符合《中国药典》或按照《中国药典》没有检出其添加物质或相关杂质,亦不能认为其符合规定。 七、《中国药典》的英文名称为Pharmacopoeia of The People’s Republic of China, 英文简称Chinese Pharmacopoeia;英文缩写为Ch.P.。 正文 八、正文系根据药物自身的理化与生物学特性,按照批准的处方来源、生产工艺、贮藏运输条件等所制定的、用以检测药品质量是否达到用药要求并衡量其质量是否稳定均一的技术规定。 九、正文项下根据品种和剂型不同,按顺序可分别列有:(1)品名(包括中文名称、汉语拼音与英文名);(2)有机药物的结构式;(3)分子式与分子量;(4)来源或有机药物的化学名称;(5)含量或效价规定;(6)处方;(7)制法;(8)性状;(9)鉴别;(10)检查;(11)含量或效价测定;(12)类别;(13)规格;(14)贮藏;(15)制剂等。 2010版中国药典word版pdf版exe版

《中国药典》二部凡例和附录习题

中国药典(二部)凡例附录试题 姓名:成绩: 一.填空 1.自建国以来共出版9版药典,现行版为2010年版,实行日期为 2010年7月1号。 2.《中国药典》现行版由一部、二部、三部及其增补本组成,内容分别包括凡例、正文、附录,《中国药典》英文缩写为 Ch.p 。 3.附录主要收载制剂通则、通用检测方法、指导原则。 4.对于生产过程中引入的杂质,应在后续的生产环节中有效去除。 5.任何违反GMP或有未经批准添加物质所生产的药品,即使符合《中国药典》或按照《中国药典》没有检出其添加物质或相关杂质,亦不能认为其符合规定。 6.除另有规定外,贮藏项下未规定贮藏温度的一般系指常温。 7.HPLC法测定有关物质,在保证灵敏度的前提下,一般以等度洗脱为主;必要时可采用梯度洗脱方式。 8.HPLC法流动相宜选用甲醇-水流动相,尽量不加 缓冲盐。 9.“精密称定”系指称取重量应准确至所取重量的千分之一;“称定”系指称取重量应准确至所取重量的百分之一;取用量为“约”若干时,系指取用量不得超过规定量的 10%;含量测定时,取供试品约0.2g,精密称定,应称取 0.2XXXg 。 10.溶出度指活性药物从片剂、胶囊剂或颗粒剂等制剂在规定条件下溶出的速率和程度。 11.溶出度测定法量取溶出介质实际量取的体积与规定体积的偏差不超过±1% ,实际取样时间与规定时间的差异不得过±2% ,溶出介质温度控制在

37°C±0.5°C 。 12.常用的波长范围, 200-400nm 为紫外光区,400-760nm 为可见光区,2.5-25μm为中红外光区,其皆符合朗伯比尔定律,其关系表达式为 A=lg1/T=Ecl 。 13.微生物限度检查中细菌及控制菌的培养温度为30-35°C ℃,细菌培养时间为 2 天,霉菌和酵母菌的培养时间为 3 天,必要时可延长至 5-7天。14.本版药典中附录电导率检查中,影响只要用水电导率的因素主要有:、、等。 15.试验中规定“按干燥品(或无水物,或无溶剂)计算”时,除另有规定外,应取未经干燥(或未去水、或未去溶剂)的供试品进行试验,并将计算中取用量按检查项下测得的干燥失重(或水分、或试剂)扣除。 16.试验中的“空白试验”,系指在不加供试品或以等量溶剂替代供试液的情况下,按同法操作所耗滴定液的量(ml)与空白试验中所耗滴定液量(ml)之差进行计算。 17.某品种重金属规定,取供试品4.0g,依法检查重金属不得过百万分十,应取标准铅溶液 4 ml。18.标准溶液必须规定有效期,除特殊情况另有规定外,一般规定为 3 个月。标准缓冲液一般可保存 2-3 个月,但发现有浑浊、发霉等现象,不得继续使用。 19.0.01805取三位有效数字是: 0.0180 ,PH=2.464取两位有效数字是 2.46 ,10.1583+1.1+0.208经数据处理后的值为 10.4 ,(2.1064×74.4)/2经数据处理后的值为 78.4 。 20.天平的称量操作方法可分为直接法和减量法,需称取准确重量的供试品常采用减量法。

雷电灾害 课题论文

雷电灾害与预防及案例分析 摘要:雷电是发生在大气中的声、光、电物理现象,是自然界最壮观和重要的大气现象之一。雷电出现时,常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷。雷电及其伴随出现的恶劣天气,常常给人民生产活动造成严重影响,甚至危及生命安全。随着高层建筑的不断涌现和电子信息系统的广泛应用,雷电灾害也日益成为人们日常生活中的重要危害之一。每年夏季,全国各地都会发生雷击灾害事故,诸如电子信息系统遭到破坏、通讯中断、建筑物被毁、甚至危急人的生命安全,因此造成不可估量的经济损失。在此,仅从雷电的形成、雷击灾害的形成以及如何防御雷击灾害等方面作如下简析,用以提醒人们不可小视雷电危害,利用科学知识防御雷击灾害,将雷击灾害的损失降到最低限度。 关键字:雷电的种类、雷电灾害、雷电防范措施 1、雷电的种类和特性 1.1雷电现象的简介 雷电是伴有闪电和雷鸣的一种雄伟壮观而又有点令人生畏的放电现象。雷电一般产生于对流发展旺盛的积雨云中,因此常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷风。积雨云顶部一般较高,可达20公里,云的上部常有冰晶。冰晶的凇附,水滴的破碎以及空气对流等过程,使云中产生电荷。云中电荷的分布较复杂,但总体而言,云的上部以正电荷为主,下部以负电荷为主。因此,云的上、下部之间形成一个电位差。当电位差达到一定程度后,就会产生放电,这就是我们常见的闪电现象。闪电的的平均电流是3万安培,最大电流可达30万安培。闪电的电压很高,约为1亿至10亿伏特。一个中等强度雷暴的功率可达一千万瓦,相当于一座小型核电站的输出功率。放电过程中,由于闪电通道中温度骤增,使空气体积急剧膨胀,从而产生冲击波,导致强烈的雷鸣。带有电荷的雷云与地面的突起物接近时,它们之间就发生激烈的放电。在雷电放电地点会出现强烈的闪光和爆炸的轰鸣声。这就是人们见到和听到的闪电雷鸣。 1.2雷电的种类 雷电分直击雷、电磁脉冲、球形雷、云闪四种。其中直击雷和球形雷都会对人和建筑造成危害,而电磁脉冲主要影响电子设备,主要是受感应作用所致;云闪由于是在两块云之间或一块云的两边发生,所以对人类危害最小。直击雷就是在云体上聚集很多电荷,大量电荷要找到一个通道来泄放,有的时候是一个建筑物,有的时候是一个铁塔,有的时候是空旷地方的一个人,所以这些人或物体都变成电荷泄放的一个通道,就把人或者建筑物给击伤了。直击雷是威力最大的雷电,而球形雷的威力比直击雷小。 1.3雷电的频率和特性 在任何给定时刻,世界上都有1800场雷雨正在发生,每秒大约有100次雷击。在美国,雷电每年会造成大约150人死亡和250人受伤。全世界每年有4000多人惨遭雷击。在雷电发生频率呈现平均水平的平坦地形上,每座300英尺高的建筑物平均每年会被击中一次。每座1200英尺的建筑物,比如广播或者电视塔,每年会被击中20次,每次雷击通常会产生6亿伏的高压。 每个从云层到地面的闪电实际上包含了在60毫秒间隔内发生的3到5次独立的雷击,第

2020河南中招数学试卷及答案(word版)

2020年河南省中考数学试卷 (满分120分,考试时间100分钟) 一、选择题(每小题3分,共30分) 1. 2的相反数是 【 】 A .-2 B .12 - C . 12 D .2 2. 如下摆放的几何体中,主视图与左视图有可能不同的是 【 】 A B . D . 3. 要调查下列问题,适合采用全面调查(普查)的是 【 】 A .中央电视台《开学第一课》的收视率 B .某城市居民6月份人均网上购物的次数 C .即将发射的气象卫星的零部件质量 D .某品牌新能源汽车的最大续航里程 4. 如图,l 1∥l 2,l 3∥l 4,若∠1=70°,则∠2的度数为 【 】 A .100° B .110° C .120° D .130° 5. 电子文件的大小常用B ,kB ,MB ,GB 等作为单位,其中1 GB=210 MB , 1MB=210 kB ,1 kB=210B .某视频文件的大小约为1 GB ,1 GB 等于【 】 A .230 B B .830 B C .8×1010 B D .2×1030 B 6. 若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数6 y x =-的图象上,则y 1, y 2,y 3的大小关系是 【 】 A .y 1>y 2>y 3 B .y 2>y 3>y 1 C .y 1>y 3>y 2 D .y 3>y 2>y 1 7. 定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的 2 l 1l 2 l 3 l 41

根的情况为 【 】 A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .只有一个实数根 8. 国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年 我国快递业务收入由5 000亿元增加到7 500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为 【 】 A .5 000(1+2x )=7 500 B .5 000×2(1+x )=7 500 C .5 000(1+x )2=7 500 D .5 000+5 000(1+x )+5 000(1+x )2=7 500 9. 如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为 (-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为 【 】 A .( 3 2 ,2) B .(2,2) C .( 11 4 ,2) D .(4,2) 10. 如图,在△ABC 中,AB =BC ,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为 【 】 A .B .9 C .6 D . 二、填空题(每小题3分,共15分) A B C D

中国药典 2010 年版一部附录

中国药典2010 年版一部附录 附录Ⅰ A 丸剂丸剂系指饮片细粉或提取物加适宜的黏合 剂或其他辅料制成的球形或类球形制剂,分为蜜丸、水蜜丸、水丸、糊丸、蜡丸和浓缩丸等类型。蜜丸系指饮片细粉以蜂蜜为黏合剂制成的丸剂。其中每丸重量在0.5g(含0.5g)以上的称大蜜丸,每丸重量在0.5g 以下的称小蜜丸。水蜜丸系指饮片细粉以蜂蜜和水为黏合剂制成的丸剂。水丸 系指饮片细粉以水(或根据制法用黄酒、醋、稀药汁、糖液等)为黏合剂制成的丸剂。糊丸系指饮片细粉以米粉、米糊或面糊等为黏合剂制成的丸剂。蜡丸系指饮片细粉以蜂蜡为黏合剂制成的丸剂。浓缩丸系指饮片或部分饮片提取浓缩后,与适宜的辅料或其余饮片细粉,以水、蜂蜜或蜂蜜和水为勤合剂制成的丸剂。根据所用黏合剂的不同,分为浓缩水丸、浓缩蜜丸和浓缩水蜜丸。丸剂在生产与贮藏期间应符合下列有关规定。一、除另有规定外,供制丸剂用的药粉应为细粉或最细粉。二、蜜丸所用蜂蜜须经炼制后使用,按炼蜜程度分为嫩蜜、中蜜和老蜜,制备蜜丸时可根据品种、气像等具体情况选用。除另有规定外,用塑制法制备蜜丸时,炼蜜应雄热加入药粉中,混合均匀;处方中有树脂类、胶类及含挥发性成分的药味时,炼蜜应在60℃左右加入;用泛制法制备水蜜丸时,炼蜜应用沸水稀释后使用。三、浓缩丸所用提取物应按制法规定,采用一定的方法提取浓缩

制成。四、除另有规定外,水蜜丸、水丸、浓缩水蜜丸和浓缩水丸均应在80℃以下干燥;含挥发性成分或淀粉较多的丸剂(包括糊丸)应在60℃以下干燥;不宜加热干燥的应采用其他适宜的方法干燥。五、制备蜡丸所用的蜂蜡应符合本版药典该饮片项下的规定。制备时,将蜂蜡加热熔化,待冷却至60℃左右按比例加入药粉,棍合均匀,趁热按塑制法制丸,并注意保温。六、凡需包衣和打光的丸剂,应使用各品种制法项下规定的包衣材料进行包衣和打光。七、丸剂外观应圆整均匀、色泽一致。蜜丸应细腻滋润,软硬适中。蜡丸表面应光滑无裂纹,丸内不得有蜡点和颗粒。八、除另有规定外,丸剂应密封贮存。蜡丸应密封并置阴凉干燥处贮存。除另有规定外,丸剂应进行以下相应检查。【水分】照水分测定法(附录ⅨH测定。除另有规定外,蜜丸和浓缩蜜丸中所含水分不得过15.0%,水蜜丸和浓缩水蜜丸不得过12.0;水丸、糊丸和浓缩水丸不得过9.0%。蜡丸不检查水分。【重量差异】除另有规定外,丸剂照下述方法检查,应符合规定。检查法以10 丸为1 份(丸重1. 5g 及1. 5g 以上的以1 丸为 1 份),取供试品10 份,分别称定重量,再与每份标示重量(每丸标示量×称取丸数)相比较(无标示重量的丸剂,与平均重量比较),按表 1 的规定,超出重量差异限度的不得多于 2 份,并不得有1 份超出限度 1 倍。表1 标示重量(或平均重重量差异限度

2005年版《中国药典》(二部)试药(一)

2005年版《中国药典》(二部)试药(一) 本试药系指在2005年版《中国药典》(二部)中供各项试验用的试剂,不包括各种色谱用的吸附剂、载体与填充剂。除生化试剂与指示剂外,一般常用化学试剂分为基准试剂、优级纯、分析纯与化学纯4个等级,选用时可参考下列原则: (1) 标定滴定液用基准试剂; (2) 制备滴定液可采用分析纯或化学纯试剂,但不经标定直接按称重计算浓度者,则应采用基准试剂; (3) 制备杂质限度检查用的标准溶液,采用优级纯或分析纯试剂; (4) 制备试液与缓冲液等可采用分析纯或化学纯试剂。 一水合碳酸钠 Sodium Carbonate Monohydrate [Na2CO3·H2O=124.00] 本品为白色斜方晶体;有引湿性,加热至100℃失水。在水中易溶,在乙醇中不溶。 一氧化铅 Lead Monoxide [PbO=223.20] 本品为黄色至橙黄色粉末或结晶;加热至300~500℃时变为四氧化三铅,温度再升高时又变为一氧化铅。在热的氢氧化钠溶液、醋酸或稀硝酸中溶解。 一氯化碘 Iodine Monochloride [ICl=162.36] 本品为棕红色油状液体或暗红色结晶;具强烈刺激性,有氯和碘的臭气;有腐蚀性和氧化性。 乙二胺四醋酸二钠 Disodium Edetate [C10H14N2Na2O8·2H2O=372.24] 本品为白色结晶性粉末。在水中溶解,在乙醇中极微溶解。 乙氧基黄叱精 Ethoxychrysoidine Hydrochloride [C14H16N4O·HCl=292.77] 本品为深红棕色或黑褐色粉末。在水或乙醇中溶解。 乙腈 Acetonitrile [CH3CN=41.05] 本品为无色透明液体;微有醚样臭气;易燃。与水或乙醇能任意混合。

浅谈广东省农村雷电灾害原因及防护措施

浅谈广东省农村雷电灾害原因及防护措施 摘要通过对广东省典型的农村雷电灾害分类分析,指出当前农村雷电灾害防御现状及工作中存在的问题,得出导致农村雷电灾害频繁发生的几个主要原因及农村防雷的防护对策,期望引起社会各界的重视,将农村防雷工作落到实处。 关键词浅谈;农村;雷电灾害;防护 雷电是发生在大气层中的一种自然现象,对我们而言,它是一种严重的自然灾害。主要表现为雷电所造成的雷击具有极大的破坏性,雷击建筑物、公共设施、家用电器、计算机机房或受感应雷的影响而损坏、危及人身安全、导致电力设备和油库、气库等发生火灾等。因此,它直接威胁着国民经济建设的发展和人民生命财产的安全。特别是广大的农村地区目前仍一定程度上成为防雷减灾管理的盲区,农村的防雷工作不容忽视。江门市地处珠三角西部,属多雷区与强雷区的边缘处。本文主要通过农村典型的雷击灾害分类分析,探讨农村防雷安全措施。 1 农村雷电灾害的现状 农村是雷电防御的薄弱区和雷电灾害的多发区,是防雷管理工作的簿弱环节,据有关部门防雷减灾调查资料分析,农村雷击灾害约占总数的3/4左右,同时雷击导致农民电视、电话、有线电视等损坏和引发火灾的事例也很多。特别是雷击造成人员伤亡的事例,农村占80%以上。数据表明,雷电灾害无论从数量上还是从危害程度上都是触目惊心的,农村是雷电防御的薄弱区甚至盲区。因此,让广大农村了解雷电相关知识、增强防雷意识、强化防雷措施对农村防雷减灾工作十分有利。 2 农村雷电灾害的成因分类 我们通过对农村雷电灾害分类分析,认为导致农村雷电灾害频繁发生的主要原因包括:农村地理环境和生产条件的限制,防雷设施奇缺及防雷设施基础建设差,防御雷电灾害意识不强,缺乏必要的防雷常识,不能及时获得雷电预警信息,农村防雷减灾行政管理的约束力薄弱。 1)地理环境和生产条件的限制。今年雷雨季节我市已发生多起雷电灾害事故,市防雷设施检测所负责人在接受记者采访时说,市民要防雷意识,特别是村民到田间劳动时要特别注意防范雷击。今年9月3日,新会区大泽镇莲塘村一女村民在田间劳动时遭雷击身亡。同日,崖门镇某中学一女生被雷击受伤住院治疗。今年到目前为止,我市已发生9起雷击人身伤亡事故,共造成7人死亡,2人重伤。这9起雷击人身伤亡事故中有7起发生在农村的田间。另外还发生6宗雷电击损无防雷设施的建筑物事故(所幸未造成人员伤亡),还有70多宗计算机信息系统、家用电子电器设备被雷击损毁的事故。我市今年的雷电灾害为近10年来所罕见。山区和平原都有发生雷击的可能,农村有些房屋本身就建在雷电多发区,容易遭受雷击,这由地理环境限制;因为农民大多长期在空旷的田野或山坡生产劳作,不可避免要遇上雷雨天气,同时,由于现在的田野或山坡基本没有相应的安装有防雷设施

相关文档
相关文档 最新文档