文档库 最新最全的文档下载
当前位置:文档库 › 概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案
概率统计第一章概率论的基础知识习题与答案

概率论与数理统计 概率论的基础知识习题

一、选择题

1、下列关系正确的是( )。 A 、0∈? B 、{0}?∈ C 、{0}?? D 、{0}?=

答案:C

2、设{

}{

}

22

22

(,)1,(,)4P x y x y Q x y x y =+==+=,则( )。 A 、P Q ? B 、P Q < C 、P Q ?与P Q ?都不对 D 、4P Q =

答案:C 二、填空

1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。 答案:6!720=

2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。 答案:72

3、编号为1,2,3,4,5的5个小球任意地放到编号为A 、B 、C 、D 、E 、F 的六个小盒子中,每一个盒至多可放一球,则不同的放法有_________种。 答案:()65432720????=

4、设由十个数字0,1,2,3,Λ ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。 答案:7

10个

5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。 答案:77!5040P ==

6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。 答案:120

7、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法? 答案:5!120=

8、6个毕业生,两个留校,另4人分配到4个不同单位,每单位1人。则分配方法有______种。

答案:(6543)360???=

9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。 答案:66

10、编号为1,2,3,4,5的5个小球,任意地放到编号为A ,B ,C ,D ,E ,F ,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。 答案:5

6

三、问答

1、集合A 有三个元素即{,,}A a b c =,集合A 的非空子集共有多少个,并将它们逐个写出来。

答案:7个

{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c

2、设A ,B ,C ,D 为任意集合,化简下式()[()]A B C A C B D U U U U U I 答案:因()()A C B D A B C D A B C =?U U I U U I U U 故()()]A B C A C B D A B C =U U U U U I U U

3、设A ,B 为任意集合,化简下式()A A B U I 答案:原式=()()()A A A B U A B A B ==U I U I U U (式中U 是全集)

4、A 是由23n

m

?(n ,m 为正整数)形式的整数所组成的集合,且具有下列性质:(1)A 的任意元素都能被4整除,(2)A 中存在着不能被9整除的元素,(3)A 的最大元素为72,作出此集合。

答案:{12,24,36,48,72}

5、设空间12345678{,,,,,,,}e e e e e e e e Ω=,集合

1234572468136868{,,,,,},{,,,},{,,,},{,}A e e e e e e B e e e e C e e e e D e e ====,

试求下列各集合:

(1)B (2)A C U (3)C D I (4)A D U (5)()A B C I U

答案:(1)1357{,,,}B e e e e =

(2)1234571368{,,,,,}{,,,}A C e e e e e e e e e e ==ΩU U (3)13686868{,,,}{,}{,}C D e e e e e e e e ==I I (4)2468681357{,,,}{,}{,,,}B D e e e e e e e e e e ==U U

(5)1234571234681234(){,,,,,}{,,,,,}{,,,}A B C e e e e e e e e e e e e e e e e ==I U I 6、圆周上有十个等分圆周的点,从这十个点中任取三点为顶点作三角,问有多少个是直角三角形?

答案:其中一边为直径时才是直角三角形,直径取法有5种,

直径两端外的点有8个,任取一个与直径组成直角三角形共有5840?=个。 7、设A ,B 为任意集合,化简下式()()A B A B U I U 答案:原式=[()][()]A A B B A B I U U I U =()()()()A A A B B A B B I U I U I U I

=[()]A A B B φU I U U =A A A =U

8、由3张一元的人民币,5张五元的人民币,6张十元的人民币,问能用来支付多少笔不同的款数。

答案:(31)(5621)1418171+?+?+-=?-=

9、设A ,B ,C 为任意集合,化简下式()()A B C A B C U U I I I 答案:原式=[()][()][()]A A B C B A B C C A B C I I I U I I I U I I I

=???=?U U

(?为空集)

10、设A ,B 为任意集合,化简下式()A B A B U U I

答案:原式=()()B A A A B U U I U =()B A B U U =()B B A U U =U A U =U

(式中U 为全集)

11、设集合{(,)}AA x y x a =<,集合{(,)}BB x y y b =<试用A ,B 表示集合

{(,)max(,)}P x y x y z =<

答案:

{(,)max(,)}{(,)}{(,)}{(,)}()()

P x y x y z x y x z z x y x z x y y z A z B z =<=<=<<=?I 且y<

12、平面上有12个点,且无三点共线,试问: (1)共能作成多少个三角形?

(2)设其中有一点A ,以A 为顶点的三角形能作成多少个? 答案:(1)共能作成()3

1212!

2203!123!

C =

=-个

(2)共能作成()2

1111!

552!112!

C =

=-个

13、若集合A 有n 个元素{}12,,,n A x x x =???则集合A 的所有非空子集共有多少个? 答案:含1个元素的子集有1

n C 个. 含2个元素的子集有2

n C 个 ……

含K 个元素的子集有k n C 个(1,2,,)K n =L ……

所有非空子集的个数为1221k n n

n n n n C C C C +++++=-L L

14、设{15}A x x =≤≤,{37}B x x =<≤,{1}C x x =<都是1{}R x x =-∞<<+∞中的集合,试求下列各集合: (1)A B U

(2)B C I (3)A B C I I

(4)()A B C U I

答案:(1){|17}A B x x =≤≤U

(2){|37}{|1}{|37}B C x x x x x =<≤≥=<≤I I (3){|7}A B C x x =>I I

(4)(){|17}{|1}A B C x x x x =≤≤<=ΦU I I

15、设46

n n C C =,求n 。

答案:

()()!!

4!4!6!6!n n n n =--

()()

1

14530

n n =-- 29100n n --=

11n =-(舍去) 210n =

故10n =

16、从0,1,2,…,9的10个数字中任取4个排列成没有重复数字的4位数,问有多少个是偶数。

答案:偶数个位数字只能取0,2,4,6,8,中任一个,现分两种情况: (1)个位数为0时,则前三位数有3

9A 种取法,

(2)当个位取2,4,6,8,中任一个时,则有1

4A 种取法,因为首位不能取0,故首位有1

8A 种取法,第二、三位数有2

8A 种取法,因此共有1

1

2

488A A A 种取法。

综合以上两种情况,共有3112

94882296A A A A +=种取法,即能排成2296个是偶数的4位数。

17、设点集{(,)}AA x y x a =<,{(,)}BB x y y b =<,集合C 表示全平面,试用A ,B ,

C 表示集合{(,)min(,)}Q x y x y z =≥。

答案:{(,)min[,]}{(,)}Q x y x y z x y x z y z =≥=≥≥且

{(,)}{(,)}

[{(,)}][{(,)}]

(())(())()()()()

x y x z x y y z C x y x z C x y y z C A z C B z A z B z A z B z =≥≥=-<-<=--==I I I I U

四、计算

1、若{1.2.3.4}A =,()(){1.3.6}A B A B =U I U 试求集合B 的元素。 答案:解一:

24

A 13

B 6

U

由图可得:{2.4.6}B =

解二:{1,3,6}()()A B AB =I U ,因A 中之2,4A B ∈I 故知

2,4.B B ∈∈即2,4B B ∈∈,6A ∈故由6AB ∈知b B ∈

故{2,4,6}B =

2、从10名队员中选出3名参加比赛,试求: (1)共有多少种选法。

(2)如队长必须被选上有多少种选法。

(3)如某运动员甲不被考虑选上,有多少种选法。 答案:(1)3

101098

120123

C ??==??

(2)2

998

3612C ?=

=? (3)3

998784123

C ??==??

3、5个篮球队员,分工两人打前锋,两个打后卫,一人打中,共有多少种不同的分工方法。

答案:2

2

1

5315432

1302121

C C C ????=

??=?? 4、有5块不同试验田,从10种不同的水稻品种选出5种进行试验,试求 (1)共有多少种试验方案?

(2)若被选品种必须包含品种A ,有多少种试验方案?

答案:(1)55

1051010987630240C P A ?==????=(种)

(2)4

955987615120A ?=????=(种)

5、从四个字母a ,b ,c ,d 中每次取出2个字母,如果取出时分别按下列要求:(1)不许重复(2)允许重复。计算两种情况下所有可能的排列总数。

答案:(1)244312A =?= (2)2

416=

6、由数字0、1、2、3、4、5能组成多少个没有重复数字的五位数。

答案:因为首位数不能为0,所以首位只有5种选择,其余4个位数共有4

5A 种选择,故组

成没有重复数字的五位数共有4

55600A =个

7、由0,1,2,3,4,5六个数字可以构成多少个不能被5整除的六位数。 答案:个位数不能是0也不能是5,故有4种方法; 选定了个位数则首位数也有4种选取方法; 中间的四位数共有4!不同的选取方法;

共有444!384??=(种)不同的选择方法。

8、五种不同的电视机和四种不同的录像机陈列成一排,如果任何两台录像机不靠在一起,共有多少种排法?

答案:五种不同的电视机有55!P =种排法。 录像机按要求可有()4

66!64!

A =

-种排法,故总共有42

563(5!)P A =?种排法。

9、5个男兵和2个女兵排成一列,如两头都是男兵共有多少种排法?

答案:两头一定是男兵的排法为2

520A =种

剩下5个兵排在中间,有5!种排法所求共有205!2400?=种排法。

10、用0,1,2,3,4,5,6,七个数码,排成没有重复数字的七位数,问其中有多少个是10的倍数,有多少个是25的倍数。

答案:10的倍数最末一位是0,其余各位任意共有16!720?=(个) 25的倍数末两位必是25或50,共有144!15!216??+?=。

11、3个男运动员,5个女运动员排成一行,(1)有多少种排法,(2)使3个男运动员排在一起有多少种排法?(3)使3个男运动员和5个女运动员分别排在一起,有多少种排法? 答案:(1)总的排法有(53)!4320+=(种) (2)(51)!3!4320+?=(种)

(3)1

23!5!261201440C ??=??= (种)

12、某乒乓球队有6名女队员,8名男队员,从中选出2名女队员,2名男队员进行混合双打练习,共有多少种分组方法。

答案:从6名女队员中选2名的方法共有2

615C =(种) 从8名男队员中选2名的方法共有2

828C =(种)

2名女队员,2名男队员搭挡方法共有22P =(种) 故共有2

26C 28C =840(种)分组方法

13、15支球队分成三个小组进行预赛,每组5个队,问:(1)共有多少种分组法?(2)若有三支种子队,希望每个小组恰有一个种子队,有多少种分法? 答案:(1)5

5

5

1510515!

7567565!5!5!

C C C =

=

(2)

3!12!

207904!4!4!

=

14、有12本不同的书排成一列,其中有3本书必须排在一起,试问共有多少种排法。 答案:有3本书必须排在一起的共有33!P =种排法

将这3本书看作1本书,与剩下的9本书的所有排共有1010!P =种,故总共有:

3103!

10!P P ?=?种, 15、用0,1,2,3,4,5,六个数码排成数字不重复的六位数,共有多少个六位数,其中有多少个奇数?多少个偶数? 答案:六位数总数55!600?= 奇数个数344!288??= 偶数个数600288312-= (或5!244!312+??=)

16、120件产品中有4件次品,在抽样检查时,从中任取5件,其中有且仅有一件次品的抽法共有多少种?

答案:抽取5件产品,其中有4件正品的抽法有C 1164

1164112=

!

!!

另一件是次品的抽法有1

44C =种

故抽取4件正品,1件次品的抽法共有

411164116!

116115191133!112!

C C ?=

=???(或=28640980)

17、有编为1,2,3,4,5的5个小球,任意地放到编号为A ,B ,C ,D ,E 的五个盒子中,每个盒子可放0至2个球,问有多少种不同放法。 答案:第一种可能:每一个盒子放一球共有15!n =种

第二种可能:有一个盒子放2个球,另三个盒子各放一个球

23

25451054!1200n C A =??=??=

第三种可能:有二个盒子放2个球,一个盒子放一球.

22235353900n C C C =???=

故不同方法共有:

12312012009002220n n n n =++=++= (种)

18、一项工作需5名工人共同完成,其中至少必须有2名熟练工人,现有9名工人,其中有4名熟练工人;从中选派5人去完成该项任务,有多少种选法。

答案:含2名熟练工人的选法:2

3

4543543

602123C C ???=

?=?? 含3名熟练工人的选法:32

45544402

C C ?=?=

含4名熟练工人的选法:41

45 5C C =

60405105++=(种),故共有105种选法。

19、口袋里有两个伍分的、三个贰分的和五个壹分的钱币,从中任取五个求钱额总数超过一角的取法有多少种。

答案:钱额总数超过一角的有且仅有下列三种情况

(1)两个伍分的都取,在其余8个钱币中任取三个,共有23

2856C C =种取法

(2)取1个伍分,3个贰分,1个壹分,共有131

23510C C C =种取法. (3)取1个伍分,2个贰分,2个壹分,共有122

23560C C C =种取法

故总共有126种取法。

五、证明

1、设A ,B 为任意集合,化简下式()A B A I U 答案:因()A B A ?I 故()A B A A =I U

2、设集合A 与集合B 有关系A B ?,试证明A B ?。 答案:设任取x B ∈,即x B ? 由A B ?,知x A ? 即x A ∈

A B ?

3、若A B =?I (空集),试证明A B ?

答案:任取x A ∈,则由A B =?I 知x B ? 从而x B ∈ 故得A B ?

4、设A ,B 是任意二集合,证明A B A B =I U

答案:任取x A B ∈I 则x A B ∈I 于是或x A ∈或x B ∈,故x A B ∈U 反之,任取y A B ∈U 则有y A ∈或y B ∈,即y A ?或y B ?从而.y A B ?I 即y A B ∈I

5、证明:(1)k n k n n C C -= (2)111k k k n n n C C C ---=+

答案:

(1)

!!()![()]!!()!

n k k

n n n n C C n k n n k k n k -=

==----

(2)1

11(1)(2)()(1)(2)(1)

!(1)!k k n n n n n k n n n k C C k k ---------++=

+

-L L

(1)(2)(1)!

!k

n n k k n n n k C k k -??=---++=?

???L 6、证明:1

1m m m

n n n C C C -++=(式中m ,n 是正整数,且m n <)

左式

()()()!!

1!1!!!

n n m n m m n m =+

--+-()()!1!1!

n m n m m n m +-+????=

-+

()()1!!1!

n m n m +=

+-

1m n C +==右式

7、证明:对任意集合A ,B 有()()()A B C A C B C =I U U I U 。 答案:任取()x A B C ∈I U ,则有两种可能

(1)()x A B ∈I 即x A ∈且x B ∈从而()x A C ∈U 且()x B C ∈U 故()()x A C B C ∈U I U

(2)x C ∈则()x A C ∈U 且x B C ∈U ,故()()x A C B C ∈U I U 反之,设任取()()y A C B C ∈U I U 则必有()y A C ∈U 且()y B C ∈U 若y C ∈,则立即有()y A B C ∈I U

若y C ∈则必有y A ∈且y B ∈,即y A B ∈I 从而()y A B C ∈I U 8、证明:1!+22!+33!++n n!=(n+1)!-1?????? 答案:证:1!2!1=- 22!3!2!?=- 33!4!3!?=- ……

!(1)!!n n n n ?=+-

左式(2!1)(3!2!)(4!3!)[!(1)!](1)!!(1)!1n n n n n =-+-+-++--++-=+-L

经济数学基础-概率统计课后习题答案

习 题 一 写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次; (3) 掷一枚硬币,直到首次出现正面为止; (4) 一个库房在某一个时刻的库存量(假定最大容量为M ). 解 (1) Ω={正面,反面} △ {正,反} (2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”, B =“奇数点”, C =“点数小于5”, D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,C ?D. 3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++= B - C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B = 321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+ C B A B A A C B A ++=++ C B A B B AC +=+ BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对立的区别何在,举例说明. 解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系. 解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有 A =C +F ,C 与F 互不相容, D ?A ?F ,A ?C. 8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1 315 C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有 图1-1 图1-2

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

第一章 概率统计基础知识(2)概率的古典定义与统计定义

二、概率的古典定义与统计定义 二、概率的古典定义与统计定义(p5-11) 确定一个事件的概率有几种方法,这里介绍其中两种最主要的方法,在历史上,这两种方法分别被称为概率的两种定义,即概率的古典定义及统计定义。 (一) 概率的古典定义 用概率的古典定义确定概率的方法的要点如下: (1)所涉及的随机现象只有有限个样本点,设共有n个样本点; (2)每个样本点出现的可能性相同(等可能性); 若事件含有k个样本点,则事件的概率为: (1.1-1) [例1.1-3] [例1.1-3]掷两颗骰子,其样本点可用数组(x , y)表示,其中,x与y分别表示第一与第二颗骰子出现的点数。这一随机现象的样本空间为: 它共含36个样本点,并且每个样本点出现的可能性都相同。参见教材6页图。这个图很多同学看不懂!其实就是x+y=?在坐标系反映出来的问题。 (二)排列与组合 (二)排列与组合 用古典方法求概率,经常需要用到排列与组合的公式。现简要介绍如下: 排列与组合是两类计数公式,它们的获得都基于如下两条计数原理。 (1)乘法原理: 如果做某件事需经k步才能完成,其中做第一步有m1种方法,做第二步m2种方法,做第k步有m k种方法,那么完成这件事共有m1×m2×…×m k种方法。 例如, 甲城到乙城有3条旅游线路,由乙城到丙城有2条旅游

线路,那么从甲城经乙城去丙城共有3×2=6 条旅游线路。 (2) 加法原理: 如果做某件事可由k类不同方法之一去完成,其中在第一类方法中又有m1种完成方法, 在第二类方法中又有m2种完成方法,在第k类方法中又有m k种完成方法, 那么完成这件事共有m1+m2+…+m k种方法。 例如,由甲城到乙城去旅游有三类交通工具: 汽车、火车和飞机,而汽车有5个班次,火车有3个班次,飞机有2个班次,那么从甲城到乙城共有5+3+2=10 个班次供旅游选择。 排列与组合 排列与组合的定义及其计算公式如下: ①排列:从n个不同元素中任取)个元素排成一列称为一个排列。按乘法原理,此种排列共有n×(n1) ×…×(n-r+1) 个,记为。若r=n, 称为全排列,全排列数共有n!个,记为,即:= n×(n-1) ×…×(n-r+1), = n! ②重复排列:从n个不同元素中每次取出一个作记录后放回,再取下一个,如此连续取r次所得的排列称为重复排列。按乘法原理,此种重复排列共有个。注意,这里的r允许大于n。 例如,从10个产品中每次取一个做检验,放回后再取下一个,如此连续抽取4次,所得重复排列数为。假如上述抽取不允许放回,则所得排列数为10×9×8×7=5040 。 ③组合: 从n个不同元素中任取x个元素并成一组 (不考虑他们之间的排列顺序)称为一个组合,此种组合数为: .特别的规定0!=1,因而。另外,在组合中,r个元素"一个接一个取出"与"同时取出"是等同的。例如,从10个产品中任取4个做检验,所有可能取法是从10个中任取4个的组合数,则不同取法的种数为: 这是因为取出的任意一组中的4个产品的全排列有4!=24 种。而这24种排列在组合中只算一种。所以。 注意:排列与组合都是计算"从n个不同元素中任取r个元素"的取法总数公式,他们的主要差别在于: 如果讲究取出元素间的次序,则用排列公式;如果不讲究取出元素间的次序,则用组合公式。至于是否讲究次序,应从具体问题背景加以辨别。 [例1.1-4] [例1.1-4] 一批产品共有个,其中不合格品有个,现从中随机取出n个,问:事

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

《概率论》期末考试试题(A卷答案)

《概率论》期末考试试题(A卷答案) 考试时间:120分钟(2005年07月) 班级姓名成绩 1.设甲、乙两人在同样条件下各生产100天,在一天中出现废品的概率分布分别如下: 求甲、乙两人生产废品的数学期望,比较甲、乙两人谁的技术高?() A甲好B乙好C一样好D无法确定 2.某厂产品的合格率为96%,合格品中一级品率为75%。从产品中任取一件为一级品的概率是多少?() A 0.72 B 0.24 C 0.03 D 0.01 3. 任一随机事件A的概率P(A)的取值在() A (0,1) B [0,1] C [-1,0] D (0,∞) 4.已知P(A)=1,P(B)=0,则() A. A为必然事件,B为不可能事件 B. A为必然事件,B不是不可能事件 C. A不必为必然事件,B为不可能事件 D. A不一定是必然事件,B不一定是不可能事件 5. 设A、B两个任意随机事件,则= A P () (B ) A. P(A)+ P(B) B. P(A)-P(B)+ P(AB) C. P(A)+ P(B)-P(AB) D. P(AB)-P(A)-P(B) 6.若已知φ A ,且已知P(A)=0,则() B = A.A与B独立 B. A与B不独立

C.不一定 D.只有当φ=A ,φ=B 时,A 、B 才独立 7.已知X ~B (n ,p ),则D (X )=( ) A.np B.p (1-p ) C.n (1-p ) D.np (1-p ) 8.设),(~2σμN X ,将X 转化为标准正态分布,转化公式Z =( ) A. 2 σ μ -x B. σ μ -x C. σ μ +x D. μ σ -x 9. 设),(~2 σμN X ,P (a ≤x ≤b )=( ) A.()()a b φφ- B.?? ? ??--??? ??-σμφσμφa b C.??? ??-+??? ??-σμφσμφa b D.?? ? ??--??? ??-σμφσμφb a 10. )1,0(~N X ,P (X ≤2)=( ) A.0.6826 B.0.9545 C.0.9973 D.0.5 二、 多项选择题(3*8=24分) 1. 设A 、B 是两个独立随机事件,则( ) A.)()()(B P A P B A P ?= B. )()|(A P B A P = C. )()|(B P A B P = D. )()()(B P A P B A P += E. )()|()(B P B A P B A P ?= 2. 离散型随机变量的概率分布具有性质( )

概率统计基础训练题

第一章基础训练题 一、填空 1、设}1),({},4),({2222>+=≤+=y x y x B y x y x A ,则=?B A 。 2、事件A 、B 、C 至少有一个发生可表示为 ,至少有两个发生 ,三个都不发生 。 3、设}6,5,4,3,2,1{},7,5,3,1{==B A ,则=-B A 。 4、设事件A 在10次试验中发生了4次,则事件A 的频率为 。 5、设,)(),()(p A p B A p AB p ==则=)(B p 。 6、A 、B 二人各抛一枚硬币3次,则出现国徽一面次数相同的概率是 。 7、筐中有4个青苹果和5个红元帅,随机地从中取出2个,则取出的苹果为同一品种的概 率为 ,恰好取出2个青苹果的概率为 ,恰好取出1个青苹果和1个红元帅的概率 为 。 8、从一批由45件正品,5件次品组成的产品中任取3件产品,其中恰有一件次品的概率为 ,至少有一件正品的概率为 。 9、从一筐装有95个一等品,5个二等品的苹果中,每次随机取一个,记录它的等级后放回 原筐搅匀后再取一个,共取50次,则无二等品的概率为 。 10、已知,3.0)(,4.0)(==B p A p 5.0)(=?B A p ,则=)(B A p 。 11、已知,8.0)(,6.0)(,5.0)(===A B p B p A p 则=)(AB p ,=?)(B A p 。 12、对任意二事件B A ,,=-)(B A p 。 13、已知,3.0)(,4.0)(==B p A p (1)当A ,B 互不相容时,=?)(B A p ,=)(AB p (2)当A ,B 相互独立时,=?)(B A p ,=)(AB p ;(3)当A B ?时,=)(A p , =)(A B p ,=?)(B A p ,=)(AB p ,=-)(B A p 。 14、设C B A ,,为三事件,A 与B 都发生而C 不发生,则用C B A ,,的运算关系可表示 为 。设A ,B ,C 都发生,则用C B A ,,的运算关系可表示为 。 15、设B A ,为互斥事件,且,8.0)(=A p 则)(B A p = 。 16、从一批由10件正品,3件次品组成的产品中,任取一件产品,取得次品的概率为 。 17、设B A ,为两事件,则=)(AB p 。若B A ,为互斥事件,则=?)(B A p 。 18、设2.0)(,5.0)(=-=A B p A p ,则=?=)()(B A p B A p 。 (7.0)()()(),()()(=?=-+-=-B A p A B p A p AB p B p A B p )

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

相关文档
相关文档 最新文档