文档库 最新最全的文档下载
当前位置:文档库 › 第11章主成分分析和因子分析习题答案

第11章主成分分析和因子分析习题答案

第11章主成分分析和因子分析习题答案
第11章主成分分析和因子分析习题答案

第11章主成分分析和因子分析

各公所的因子综合得分和排名如下:

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

SPSS进行主成分分析的步骤(图文)精编版

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:

单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果:

KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下:

根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式: λi i i A U = 故可以由这二者通过计算变量来求得主成分载荷矩阵U 。 新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables )的公式分别如下二张图所示:

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

SPSS进行主成分分析报告地步骤(图文)

主成分分析の操作過程 原始數據如下(部分) 調用因子分析模塊(Analyze―Dimension Reduction―Factor),將需要參與分析の各個原始變量放入變量框,如下圖所示:

單擊Descriptives按鈕,打開Descriptives次對話框,勾選KMO and Bartlett’s test of sphericity選項(Initial solution選項為系統默認勾選の,保持默認即可),如下圖所示,然後點擊Continue按鈕,回到主對話框: 其他の次對話框都保持不變(此時在Extract次對話框中,SPSS已經默認將提取公因子の方法設置為主成分分析法),在主對話框中點OK按鈕,執行因子分析,得到の主要結果如下面幾張表。 ①KMO和Bartlett球形檢驗結果:

KMO為0.635>0.6,說明數據適合做因子分析;Bartlett球形檢驗の顯著性P值為0.000<0.05,亦說明數據適合做因子分析。 ②公因子方差表,其展示了變量の共同度,Extraction下面各個共同度の值都大於0.5,說明提取の主成分對於原始變量の解釋程度比較高。本表在主成分分析中用處不大,此處列出來僅供參考。 ③總方差分解表如下表。由下表可以看出,提取了特征值大於1の兩個主成分,兩個主成分の方差貢獻率分別是55.449%和29.771%,累積方差貢獻率是85.220%;兩個特征值分別是3.327和1.786。 ④因子截荷矩陣如下:

根據數理統計の相關知識,主成分分析の變換矩陣亦即主成分載荷矩陣U 與因子載荷矩陣A 以及特征值λの數學關系如下面這個公式: λ i i i A U = 故可以由這二者通過計算變量來求得主成分載荷矩陣U 。 新建一個SPSS 數據文件,將因子載荷矩陣中の各個載荷值複制進去,如下圖所示: 計算變量(Transform-Compute Variables )の公式分別如下二張圖所示:

R语言主成分分析的案例

R 语言主成分分析的案例
R 语言也介绍到案例篇了,也有不少同学反馈说还是不是特别明白一些基础的东西,希望能 够有一些比较浅显的可以操作的入门。其实这些之前 SPSS 实战案例都不少,老实说一旦用 上了开源工具就好像上瘾了,对于以前的 SAS、clementine 之类的可视化工具没有一点 感觉了。本质上还是觉得要装这个、装那个的比较麻烦,现在用 R 或者 python 直接简单 安装下,导入自己需要用到的包,活学活用一些命令函数就可以了。以后平台上集成 R、 python 的开发是趋势,包括现在 BAT 公司内部已经实现了。 今天就贴个盐泉水化学分析资料的主成分分析和因子分析通过 R 语言数据挖掘的小李 子: 有条件的同学最好自己安装下 R,操作一遍。 今有 20 个盐泉,盐泉的水化学特征系数值见下表.试对盐泉的水化学分析资料作主成分分 析和因子分析.(数据可以自己模拟一份)
其中 x1:矿化度(g/L);

x2:Br?103/Cl; x3:K?103/Σ 盐; x4:K?103/Cl; x5:Na/K; x6:Mg?102/Cl; x7:εNa/εCl.
1.数据准备
导入数据保存在对象 saltwell 中 >saltwell<-read.table("c:/saltwell.txt",header=T) >saltwell
2.数据分析

1 标准误、方差贡献率和累积贡献率
>arrests.pr<- prcomp(saltwell, scale = TRUE) >summary(arrests.pr,loadings=TRUE)
2 每个变量的标准误和变换矩阵
>prcomp(saltwell, scale = TRUE)
3 查看对象 arests.pr 中的内容
>> str(arrests.pr)

主成分分析与因子分析的联系与区别

https://www.wendangku.net/doc/e010953914.html,/ysuncn/archive/2007/12/08/1924502.aspx 一、问题的提出 在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。 近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而SPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。 二、主成分分析与因子分析的联系与区别 两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。 主要区别: 1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。 2. 主成分分析是将主成分表示为原观测变量的线性组合, (1) 主成分的个数i=原变量的个数p,其中j=1,2,…,p,是相关矩阵的特征值所对应的特征向量矩阵中的元素,是原始变量的标准化数据,均值为0,方差为1。其实质是p维空间的坐标变换,不改变原始数据的结构。 而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2),

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 公司销售净利率(X1)资产净利率(X2)净资产收益率(X3)销售毛利率(X4) 歌华有线五粮液用友软件太太药业浙江阳光烟台万华方正科技红河光明贵州茅台中铁二局红星发展伊利股份青岛海尔湖北宜化雅戈尔福建南纸43.31 17.11 21.11 29.55 11.00 17.63 2.73 29.11 20.29 3.99 22.65 4.43 5.40 7.06 19.82 7.26 7.39 12.13 6.03 8.62 8.41 13.86 4.22 5.44 9.48 4.64 11.13 7.30 8.90 2.79 10.53 2.99 8.73 17.29 7.00 10.13 11.83 15.41 17.16 6.09 12.97 9.35 14.3 14.36 12.53 5.24 18.55 6.99 54.89 44.25 89.37 73 25.22 36.44 9.96 56.26 82.23 13.04 50.51 29.04 65.5 19.79 42.04 22.72 第一,将EXCEL中的原始数据导入到SPSS软件中; 注意: 导入Spss的数据不能出现空缺的现象,如出现可用0补齐。 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。 所做工作: a. 原始数据的标准化处理

主成分分析和因子分析-回归分析和相关分析的区别

主成分分析和因子分析的区别 通过主成分分析所得来的新变量是原始变量的线性组合,每个主成分都是由原有P个变量线组合得到,在诸多主成分z中,Z1在总方差中占的比重最大,说明它综合原有变量的能力最强,其余主成分在总方差中占的比重依次递减,说明越往后的主成分综合原信息的能力越弱。以后的分析可以用前面几个方差最大的主成分来进行,一般情况下,要求前几个z 所包含的信息不少于原始信息的85%,这样既减少了变量的数目,又能够用较少的主成分反映原有变量的绝大部分信息。如利用主成分来消除多元回归方程的多重共线性,利用主成分来筛选多元线性回归方程中的变量等。 通过因子分析得来的新变量是对每一个原始变量进行内部剖析。打比喻来说,原始变量就如成千上万的糕点,每一种糕点的原料都有面粉、油、糖及相应的不同原料,这其中,面粉、油、糖是所有糕点的共同材料,这正好象是因子分析中的新变量即因子变量。正确选择因子变量后,如果想考虑成千上万糕点的物价变动,只需重点考虑面粉、油、糖等公共因子的物价变动即可。所以因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。即因子分析就是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它把原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子构成的,另一部分是每个原始变量独自具有的因素,即特殊因子。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各个变量的线性组合。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。 2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这种区分不是绝对的。

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

(完整版)主成分分析与因子分析的优缺点

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关.因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法. 聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程.其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似. 三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益. 二、基本思想的异同 (一) 共同点 主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题.并且新的变量彼此间互不相关,消除了多重共线性.这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量.在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到.在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱.因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分.公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子.对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度. 聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的

主成分分析 实例

§8 实例 实例1 计算得 1x =71.25,2x =67.5 分析1:基于协差阵∑ 求主成分。 369.6117.9117.9214.3S ?? = ??? 特征根与特征向量(S无偏,用SPSS ) Factor 1 Factor 2 11x x - 0.880 -0.474 22x x - 0.474 0.880 特征值 433.12 150.81 贡献率 0.7417 0.2583 注:样本协差阵为无偏估计11(11)1n n n S X I X n n ''= --, 所以,第一、二主成分的表达式为 112212 0.88(71.25)0.47(67.5) 0.47(71.25)0.88(67.5)y x x y x x =-+-?? =--+-? 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。1y 越大,综合成绩越好。(综合成分) 第二主成分的两个系数异号(反映了两科成绩的均衡性)。不妨将英语称为文科,数学称为理科。2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。(结构成分)

问题:英语的权数为何大?如何解释? 分析2: 基于相关阵R 求主成分。因为 1x =71.25,2x =67.5 所以相关阵 11R ? =? ? ? 解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为: Factor 1 Factor 2 11 1x x s - 0.707 0.707 22 2 x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率 0.709 0.291 所以,第一、二主成分的表达式为 12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --? =+=+?? ? --?=-=-?? 1122120.039(71.25)0.052(67.5) 0.039(71.25)0.052(67.5)y x x y x x =-+-?? =---? 112212 0.0390.052 6.273 0.0390.0520.671y x x y x x =+-?? =-+? * 2*11707.0707.0x x y += *2*12707.0707.0x x y -= 基于相关阵的更说明了: 第一主成分是英语与数学的加权总分。 第二主成分是对两科成绩均衡性的度量。 此例说明:基于协差阵与基于相关阵的主成分分析的结果不一致。结合此例的实际背景,经对比分析可知,基于协差阵的主成分分析更符合实际。

spss进行主成分分析及得分分析

spss进行主成分分析及得分分析 1 将数据录入spss 1. 2 数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量: 2.3 进行主成分分析:选择分析→降维→因子分析,

3.4设置描述性,抽取,得分和选项:

4.5 查看主成分分析和分析: 相关矩阵表明,各项指标之间具有强相关性。比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。(下表非完整呈现)

5.6 由Total Variance Explained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。主成分,分别记作F1、F2。 6.7

指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。第一主成分集中反映了总体的经济总量。X11在第二主成分上有较高载荷,相关性强。第二主成分反映了人均的经济量水平。但是要注意: 这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。

7.8 成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX17+0.32ZX18+0. 32ZX19+0.21ZX110+0.15ZX111 F2=8.46ZX21+0.02ZX22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0.02ZX28+0.10Z X29+0.47ZX210+0.78ZX211 8.9 主成分的得分是相应的因子得分乘以相应的方差的算术平方根。即:主成分1得分=因子1得分乘以9.092的算术平方根主成分2得分=因子2得分乘以1.150的算术平方根例如郑州:主成分因子=FAC1_1*9.092的算术平方根=3.59386*9.092的算术平方根=10.83,将各指标的标准化数据带入个主成分解析表达式中,分别计算出2个主成分得分(F1、F2),再以个主成分的贡献率为全书对主成分得分进行加权平均,即:H=(82.672*F1+10.497*F2)/93.124,求得主成分综合得分。

主成分分析和因子分析的区别

更多精彩统计学相关文章,请访问“统计之都”Capital of Statistics——https://www.wendangku.net/doc/e010953914.html,
主成分分析和因子分析的区别
一、二者在 SPSS 中的实现
(一) 、因子分析在 进行因子分析主要步骤如下: 1. 2. 3. 4. 5. 指标数据标准化(SPSS 软件自动执行) ; 指标之间的相关性判定; 确定因子个数; 综合得分表达式; 各因子 Fi 命名; 例子:对沿海 10 个省市经济综合指标进行因子分析 (一)指标选取原则 本文所选取的数据来自 《中国统计年鉴 2003》 2002 年的统计数据,在沿海 10 省市经济状况主要指标 中 体系中选取了 10 个指标: X1——GDP X3——农业增加值 X5——第三产业增加值 X7——基本建设投资 X9——海关出口总额 X2——人均 GDP X4——工业增加值 X6——固定资产投资 X8——国内生产总值占全国比重(%) X10——地方财政收入
SPSS 中的实现
图表 1 沿海 10 个省市经济数据 社会消 农业增加 工业增加 第三产业 固定资产 基本建设 费品零 值 值 增加值 投资 投资 售总额 14883.3 1390 950.2 83.9 1122.6 86.2 680 663 1023.9 591.4 1376.2 3502.5 1406.7 822.8 3536.3 2196.2 2356.5 1047.1 4224.6 367 2258.4 3851 2092.6 960 3967.2 2755.8 3065 1859 4793.6 995.7 1315.9 2288.7 1161.6 703.7 2320 1970.2 2296.6 964.5 3022.9 542.2 529 1070.7 597.1 361.9 1141.3 779.3 1180.6 397.9 1275.5 352.7 2258.4 3181.9 1968.3 941.4 3215.8 2035.2 2877.5 1663.3 5013.6 1025.5
地区
GDP
人均 GDP 13000 11643 9047 22068 14397 40627 16570 13510 15030 5062
海关出 地方财 口总额 政收入 123.7 211.1 45.9 115.7 384.7 320.5 294.2 173.7 1843.7 15.1 399.7 610.2 302.3 171.8 643.7 709 566.9 272.9 1202 186.7
辽宁 5458.2 山东 10550 河北 6076.6 天津 2022.6 江苏 浙江 福建 广东 10636 7670 4682 11770 上海 5408.8
广西 2437.2
(二)因子分析在 SPSS 中的具体操作步骤
1

用SPSS进行详细的主成分分析步骤

怎样用SPSS进行主成分分析 怎样用SPSS进行主成分分析 一、基本概念与原理 主成分分析(principal component analysis) 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。 (1)主成分分析的原理及基本思想。 原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。 基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析在SPSS中的操作应用(详细步骤

主成分分析在SPSS中的操作应用(2) SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。 用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入 “A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F1=0.353ZX1+0.042ZX2-0.041ZX3+0.364ZX4+0.367ZX5+0.366ZX6+0.352ZX7+0.364ZX

主成分分析和因子分析十大不同点

主成分分析和因子分析十大不同点 主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。 1.原理不同 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,而且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维(线性变换)的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)。 2.线性表示方向不同 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3.假设条件不同 主成分分析:不需要有假设(assumptions)。 因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。4.求解方法不同 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)。 注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况)。 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。

相关文档
相关文档 最新文档