文档库 最新最全的文档下载
当前位置:文档库 › 溶氧对氨基酸发酵的影响及其控制

溶氧对氨基酸发酵的影响及其控制

溶氧对氨基酸发酵的影响及其控制
溶氧对氨基酸发酵的影响及其控制

龙源期刊网 https://www.wendangku.net/doc/e012428871.html,

溶氧对氨基酸发酵的影响及其控制

作者:张夙夙

来源:《安徽农学通报》2014年第12期

摘要:溶解氧是指溶解于水分子状态的氧。在氨基酸发酵过程中必须提供氧气,菌体才

能繁殖和积累所需的代谢产物。研究溶氧对氨基酸发酵的影响及其控制对提高生产效率、改善产品质量等方面有着重要的意义。

关键词:氨基酸发酵;溶氧;影响;控制

中图分类号 TQ920 文献标识码 A 文章编号 1007-7731(2014)12-25-02

Abstract:Dissolved oxygen refers to the state of the oxygen dissolved in water molecules. Bacteria can only multiply and accumulate the metabolites provided by the appropriate amount of sterile air during the amino acid fermentation.It has important significance to study the influence and control of dissolved oxygen during the amino acid fermentation to improve the production efficiency and quality.

Key words:Amino acid fermentation;Dissolved oxygen;Influence;Control

20世纪50年代,日本木下祝郎等首次采用谷氨酸棒状杆菌(Corynebacterium glutamicum)进行L-谷氨酸发酵取得成功[1],从此微生物发酵技术在氨基酸生产工艺中占据了越来越重要的地位。目前,氨基酸生产菌均为需氧菌,即必须供给适量的无菌空气,菌体才能繁殖和积累所需代谢产物[2]。因此,发酵液中的溶氧浓度是氨基酸发酵工艺的一个重要控制

参数[3],同时,合理地供氧还可以降低能源的消耗[4]。

1 溶氧对氨基酸发酵的影响

不同菌种及同一菌种的不同发酵阶段,菌体的需氧量是不同的。发酵液中的溶氧浓度会直接影响微生物酶的活性及代谢途径,进而影响菌体的生长和代谢产物的积累,并最终决定产量的高低[5]。氨基酸发酵的前期是菌体生长的主要阶段,如果发酵液中的溶氧水平过低,菌体

的生长和繁殖就会受到限制,进而抑制氨基酸的合成,生成大量代谢副产物,严重影响氨基酸的最终产量。若菌体长期处于溶氧浓度较低的环境,会导致部分菌体的自溶,给产物的分离提取造成困难。徐庆阳[6]等以L-苏氨酸生产菌TRFC为菌种发酵生产苏氨酸,考察了不同溶氧水平对L-苏氨酸合成的影响。其结果表明,供氧充足、菌体呼吸旺盛可保持较快的生长速

率,此外,L-苏氨酸的前体物草酰乙酸主要由对氧浓度要求较高的TCA循环和磷酸烯醇丙酮酸羧化反应提供,充分供氧可使菌体呼吸充足,有利于产酸和糖酸转化。

溶氧水平也并非越高越好。刘雅桢[7]等研究表明,过高的溶氧除了产生过大的动力消耗外,还会产生大量泡沫,同时溶氧水平过高会产生新生氧、超氧化物基O2-或羟基自由基OH-

氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 1味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 2淀粉生产的流程 原料→清理→浸泡→粗碎→胚的分离→磨碎→分离纤维→分离蛋白质→清洗→离心分离→干燥→淀粉3淀粉的液化及糖化定义。 在工业生产上,将淀粉水解为葡萄糖的过程称为淀粉的“糖化”所制的的糖液称为淀粉水解糖 液化是利用液化酶使淀粉糊化,黏度降低,并水解到糊精和低聚糖的程度 4淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 5液化结束后,为何要进行灭酶处理,如何操作? 液化结束后反应快速升温灭酶,高温处理时,通过喷射器快速升温至120~145°,快速升温比逐步升温产生的“不溶性淀粉颗粒”少,所得的液化液既透明又易过滤。淀粉出糖率高,同时由于采取快速升温法,缩短了生产周期 6葡萄糖的复合反应。 7淀粉的糊化、老化定义及影响老化的因素。 (1)糊化 若将淀粉乳加热到一定温度,淀粉颗粒开始膨胀,偏光十字消失。温度继续上升,淀粉颗粒继续膨胀,可达原体积几倍到几十倍。由于颗粒的膨胀,晶体结构消失,体积膨胀大,互相接触,变成糊状液体,虽然停止搅拌淀粉也不会再沉淀,这种现象称为糊化。 (2)老化 分子间氢键已断裂的糊化淀粉又重新排列成为新氢键的过程。 (3)影响老化的因素①淀粉的成分(直链易老化,支链淀粉难老化)②液化程度③酸碱度④温度⑤淀粉糊浓度 8 DE值与DX值的概念. DE值表示淀粉水解程度或糖化程度。也称葡萄糖值 DE=还原糖浓度/(干物质浓度*糖液相对密度)*100% DX值指糖液中葡萄糖含量占干物质的百分率。 DX=葡萄糖浓度/(干物质浓度*糖液相对密度)*100% 9淀粉水解糖的质量要求有哪些? 1糖液透光率>90%(420nm)。2不含糊精、蛋白质(起泡物质)。3转化率>90%。DE值(Dextrose equivalent,葡萄糖当量值)4还原糖浓度:18%左右。5糖液不能变质。6pH4.6-4.8 10 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 酸水解法是利用无机酸为催化剂,在高温高压下,将淀粉转化为葡萄糖的方法。该法具有工艺简单,水解时间短,生产效率高,设备周转快的优点。该水解法要求耐腐蚀,耐高温,耐压的设备。 酸酶法是先将淀粉用酸水解成糊精或低聚糖,然后再用糖化酶将其水解为葡糖糖的工艺。采用酸酶法水解淀粉制糖,酸用量少,产品颜色浅,糖液质量高 酶水解法主要是将淀粉乳先用α-淀粉酶液化,过滤除去杂质后,然后用酸水解成葡萄糖的工艺。该工艺适用于大米或粗淀粉原料 11 固定化酶的定义及制备方法有哪几种? 固定化酶(immobilized enzyme):由于水溶性酶的缺点,所以将它与固相载体相连,由固相状态催化反应,称酶的固定化. ①吸附法②偶联法③交联法④包埋法 12生物素对谷氨酸生物合成途径影响。 1.生物素对糖代谢的速率的影响(主要影响糖降解速率)

好氧发酵过程中溶氧的影响因素和控制策略

好氧发酵过程中溶氧的影响因素和 控制策略 作者:刘伟 单位:河北天俱时自动化科技有限公司 2009年4月10日

好氧发酵过程中溶氧的影响因素和控制策略 刘伟 河北天俱时自动化科技有限公司 摘要:好氧发酵过程中溶氧检测值受多种参数的影响,包括生物代谢过程本身,也包括外部补料、通风量等,为了保证发酵过程中合适的溶解氧含量,对溶氧值进行控制,本文分析了溶氧检测值的影响因素,并指出溶氧控制的一般性控制策略。 关键词:好氧发酵,溶氧调节 一、引言 好氧发酵过程溶氧浓度(DO)是一个非常重要的发酵参数,它既影响细胞的生长,又影响产物的生成。控制发酵液溶氧值一方面可以改善微生物的生长代谢环境,有效促进发酵单位的提高,另一方面还可以起到节能降耗的作用,对企业生产意义重大。 二、影响因素 通常情况下,对发酵液溶氧参数影响较大的几个物理参数包括:通风量、搅拌转速、发酵罐温度、压力等。 通风量的影响 通风量的影响是最直观的,溶氧值大小的影响最主要的是进入发酵罐的氧的量,因为在好氧发酵过程中,如果截断进风的补给发酵液中的氧很快将被微生物消耗掉,通常在进风管道上安装调节阀门进行进风流量的调节。 搅拌的影响 由于溶氧电极在工作中存在明显的电流,自身消耗大量的氧。电

极的信号与氧向电极表面传递的速率成比例,而氧的传递速率则受氧跨膜扩散速率控制。这一速率与发酵液的浓度成比例,其比值(以及电极的校准)取决于总的传质过程。电极的一般工作条件是,氧向膜外表面的传递速率很快且不受限制。因此整个过程受跨膜传递的限制,比例常数(传质系数)较易维持恒定。发酵实验时搅拌操作可以获得满意的跨膜传递速率。需要指出,在对电极进行最初校准的过程中,必须对发酵罐进行搅拌。 温度的影响 溶氧电极的信号随温度的升高而显著增强,这主要是因为温度影响氧的扩散速率。发酵实验过程中需控制发酵罐的温度,因为即使0.5℃左右的温度变化,也会使电极信号发生显著变化(超过1%)。溶氧读数的周期性变化(每隔若干分钟观察1次)显示了温度波动的影响,而且较大的温度变化能引起校准的较大漂移。因此在实验过程中改变温度控制时要格外注意。在以发酵罐的操作温度进行控制以前,需对溶氧电极进行校准。考虑到上述影响的存在,一些溶氧电极带有温度传感器等仪表,以实现自动温度补偿。此外,对于具有计算机监控的发酵罐,可利用来自独立的温度传感器的信号,由相关软件实现温度补偿。 压力的影响 压力变化会影响溶氧电极的读数,尽管这实际上反映了溶氧的变化情况。电极的响应主要由溶液的平衡氧分压确定。读数通常表示为大气压下空气的饱和度(%),100%的溶氧张力(DOT)约相当于160mmHg (1mmHg≈133Pa)的氧分压。如果发酵液的平衡气体总压发生变化,

水域溶解氧分布特征及影响因素研究综述

水域溶解氧分布特征及影响因素研究综述 摘要:基于水域溶解氧分布特征及影响因素的前期研究成果,本文对其进行系统分区整理,总结归纳影响溶解氧含量变化的主要因素,并对后续研究方向提出建议,望能够对同行业有一定的参考性价值。 关键词:溶解氧;影响因素;研究综述 随着海洋经济不断发展,海洋污染日益严重,富含N、P等营养物质的生活、工业废水大量排入海洋造成某些海域富营养化,直接导致某些海区海水缺氧现象日益严重。溶解氧(DO)代表溶解于海水内氧气的含量,绝大部分的海洋生物均需依赖溶解氧来维持生命。溶解氧水平不仅是衡量水体自净能力的一个重要指标,也反映了海洋生物的生长状况和海水的环境质量,对海洋渔业发展有重大影响。 然而,当前低氧已经成为世界范围内沿岸物理交换不良水域的一个主要环境问题,典型的例子当属长江口外的季节性大范围底层低氧现象[1]。Vaquer-Sunyer 等人研究发现,许多海洋生物在溶解氧3mg/L~4mg/L时就受到显著影响[2]。此外,溶解氧水平在很短时间内就会发生剧烈变化,因此海洋溶解氧一直是保持海洋生态平衡最重要的环境因素之一。 为及时有效应对溶解氧含量过低对海洋环境产生的恶劣影响,针对溶解氧含量的分布特征及影响因素研究,一直是海洋环境监测和海洋动力学、海洋化学研究的重要内容之一,国内外众多学者针对重点海域、湖泊及生物养殖区溶解氧的分布特征及影响因素给予大量关注,整理归纳,主要有以下几片海域。 长江口海域溶解氧分布特征及影响因素研究 张莹莹、张经等[3]对长江口及其毗邻海域某断面上的溶解氧的分布特征的研究结果表明,在6月的航次中,DO值随着离岸距离的增加逐渐增加,底层DO值低于表层;8月份调查海区底层明显出现低氧状态,形成原因主要是海水层状结构稳定水交换较弱和有机物分解耗氧;长江径流N、P污染物的不断输入为低氧区域表层浮游植物的生长提供了丰富的营养盐,从而加剧了氧亏损。石晓勇、陆茸等[4]对长江口邻近海域的秋季溶解氧分布特征及主要影响因素进行了研究,结果显示,溶解氧平面分布整体上呈近岸高、外海低,表层高、底层低的分布趋势,在约20m深度存在溶解氧跃层。调查海域溶解氧不饱和状态由表层至底层逐渐加剧。该海域秋季溶解氧分布主要受陆地径流和外海水等物理过程控制,生物活动仅在底层溶解氧低值区有较大的影响。 黄东海海域溶解氧分布特征及影响因素研究 胡小猛、陈美君等[5]分析了黄东海海域的DO分布和季节变化规律,结果表明:基于太阳辐射导致的海水温度时空差异,影响黄东海DO分布及其季节变化的主要因素是黄海暖流和大陆入海径流。杨庆霄、董娅婕等[6]描述了黄、东

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 (2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20~3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5~7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20~3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。(4)水解等电点法 发酵液-----浓缩(78.9kPa,0.15MPa蒸汽)----盐酸水解(130 ℃,4h )----过滤-----滤液脱色-----浓缩-----中和,调pH至3.0-3.2(NaOH或发酵液) -----低温放置,析晶-------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (5)低温等电点法 发酵液-----边冷却边加硫酸调节pH4.0-4.5-----加晶种,育晶2h-----边冷却边加硫酸调至pH3.0-3.2------冷却降温------搅拌16h------4 ℃静置4h------离心分离 --------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (6)直接常温等电点法 发酵液-----加硫酸调节pH4.0-4.5-----育晶2-4h-----加硫酸调至pH3.5-3.8------育晶2h------加硫酸调至pH3.0-3.2------育晶2h------冷却降温------搅拌16-20h------沉淀2-4h-------谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1)浓缩段 原料:蒸汽 将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa,浓缩时间6h,结晶。终点产物:结晶液(去一次中和段) (2)一次中和段 辅料:硫酸,纯水 结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤 终点产物:1,滤液(回收利用)2,滤渣(去氨解段)

氨基酸发酵

第一部分基础练习 一、名词解释 1.末端产物阻遏:是指由某代谢途径末端产物的过量累积时而引起的反馈阻遏,是一种较为重要的反馈阻遏。 2.分解代谢物阻遏:是指细胞内同时存在两种碳源(或两种氮源)时,利用快的那种碳源(或氮源)会阻遏利用慢的那种碳源(或氮源)的有关酶合成的现象。 3.代谢调控:在发酵工业中,为了大量积累人们所需要的某一代谢产物,常人为地打破微生物细胞内的自动代谢调节机制,使代谢朝人们所希望的方向进行,这就是所谓的代谢调控。 4.营养缺陷型菌株因基因突变致使某一合成途径中断,丧失合成其生长中必需的某种物质的能力,使末端产物减少,解除了末端产物参与的反馈抑制或调节,可使代谢途径中的某一中间产物过量积累,也可使分子代谢的中间产物和另一分支途径中的末端产物积累。 5.外源诱导物:抗生素生物合成过程中,参与次级代谢的酶,有些是诱导酶,诱导物有的是外界加入的,称外源诱导物。 二、问答题 1.答:氨基酸生产方法主要有合成法与发酵法两种。 2.答:野生型菌株,营养缺陷型突变株,或是氨基酸结构类似物抗性突变株. 3.答:氨基酸生物合成的基本调节机制有反馈控制和在合成途径分枝点处的优先合成,除此之外,还有一些特殊的调节机制,如协同反馈抑制、合作(或增效)反馈抑制、同功酶控制、顺序控制、平衡合成、代谢互锁等。 4.答:在乳糖发酵短杆菌中,赖氨酸合成分支上的第一个酶——二氢吡啶合成酶(DDP合成酶)受到与本途径无关的另一种氨基酸——亮氨酸的阻遏(即代谢互锁)。 5.答:具有分子代谢途径的分支点。即在分支合成途径中,分支点后的两种酶竞争同一种底物,由于两种酶对底物的Km值(即对底物的亲和力)不同,故 两条支路的一条优先合成。 第二部分技能训练 一、选择题 1.D 2.C 3.D 4.B 5.B 6.A 7.C 二、问答题

第三篇第五章芳香族氨基酸和其他氨基酸发酵机制

芳香族氨基酸和其他氨基酸发酵机制 一、芳香族氨基酸生物合成途径与发酵机制 芳香族氨基酸---------分子中都含有苯环 色氨酸Trp 苯丙氨酸Phe 酪氨酸Tyr 二、芳香族氨基酸的生物合成途径 合成途径特点: ?从4-磷酸赤藓糖与磷酸烯醇丙酮酸合成3-脱氧-D-阿拉伯糖型庚酮糖-7-磷酸(DAHP)到分支酸,是Phe、Tyr和Trp的共同途径; ?从分支酸到预苯酸(PPA),是Phe和Tyr的共同途径; ?在分枝酸处,倾向于优先合成氨茴酸;在预苯酸处,倾向于优先合成对羟苯丙酮酸。即优先合成顺序是:Trp- Tyr- Phe。 ?

三、芳香族氨基酸的代谢调控机制 ?大肠杆菌中有三种DAHP合成酶 ?谷氨酸棒杆菌中,在芳香族氨基酸生物合成途径中受调节控制的关 键酶:DAHP合成酶(DS)、分枝酸变位酶(CM)、预苯酸脱氢酶 (PD)、预苯酸脱水酶(PT)和氨茴酸合成酶(AS)?黄色短杆菌中有一种DAHP合成酶,代谢调节较易控制 1、大肠杆菌中芳香族氨基酸生物合成途径与代谢控制 ①DAHP合成酶 ②分支酸变位酶 ③PPA脱氢酶 ④PPA脱水酶

⑤氨茴酸合成酶 2、在黄色短杆菌中芳香族氨基酸生物合成的调节机制 DS-DAHP合成酶 CM-分支酸变位酶 PD-预苯酸脱氢酶 PT-预苯酸脱水酶 AS-氨茴酸合成酶 四、色氨酸发酵机制

色氨酸生产菌的遗传标记位置 色氨酸代谢调控机制(大量生成和积累色氨酸) 切断支路代谢,选育苯丙氨酸和酪氨酸双重缺陷型(phe-+tyr-)的突变株;然后遗传性的解除色氨酸自身的反馈抑制和阻遏及苯丙氨酸、酪氨酸和色氨酸对DAHP合成酶的反馈调节; 选育色氨酸多重结构类似物抗性突变株; 在发酵过程中限量添加苯丙氨酸和酪氨酸。 苯丙氨酸和酪氨酸发酵机制 苯丙氨酸代谢调控机制

溶解氧影响因素

什么是水的溶解氧?受哪些因素的影响? 溶解于水中的游离氧称为溶解氧,常以mg/L、ml/l等单位来表示.天然水中氧的主要来源是大气溶于水中的氧,其溶解量与温度/压力有密切关系.温度升高氧的溶解度下降,压力升高溶解度增高.天然水中溶解氧含量约为8-14mg/l,敞开式循环冷却水中溶解氧一般约为5-8mg/L. 水体中的溶解氧含量的多少,也反映出水体遭受到污染的程度.当水体受到有机物污染时,由于氧化污染质需要消耗氧,使水中所含的溶解氧逐渐减少.污染严重时,溶解氧会接近于零,次数厌氧菌便滋长繁殖起来,并发生有机物污染的腐败而发臭.因此,溶解氧也是衡量水体污染程度的一个重要指标. 影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。 1. 温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a 的影响可以根据Henry 定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。 (1)氧的溶解度系数:由于溶解度系数a 不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a 的变化约为2%/ ℃。 (2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T 的关系为: C=KPo2·exp(-β/T),其中假定K、Po2 为常数,则可以计算出β在25℃时为2.3%/ ℃。当溶解度系数a 计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。 2. 大气压的影响根据Henry 定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。

溶解氧对发酵的影响及其控制

溶解氧对发酵的影响及其控制 1 溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的 改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。 1.2 溶氧对发酵产物的影响 对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。 在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。

需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。 DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。 2 溶氧量的控制 对溶解氧进行控制的目的是把溶解氧浓度值稳定控制在一定的期望值或范围内。在微生物发酵过程中,溶解氧浓度与其它过程参数的关系极为复杂,受到生物反应器中多种物理、化学和微生物因素的影响和制约。从氧的传递速率方程也可看出,对DO值的控制主要集中在氧的溶解和传递两个方面。 2.1 控制溶氧量(C*-CL)是氧溶解的推动力,控制溶氧量首要因素是控制氧分压(C*)。高密度培养往往采用通入纯氧的方式提高氧分压,而厌氧发酵则采用各种方式将氧分压控制在较低水平。如啤酒发酵,麦汁充氧和酵母接种阶段,一般要求氧含量达到8~10PPM;而啤酒发酵阶段,一般啤酒中的含氧量不得超过2PPM。 2.2控制氧传递速率氧传递速率主要考虑KLa的影响因素。从一定意义上讲,KLa愈大,好氧生物反应器的传质性能愈好。控制KLa的途径可分为操作变量、反应液的理化性质和反应器的

氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 淀粉生产的流程。 淀粉的液化及糖化定义。 淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 液化结束后,为何要进行灭酶处理,如何操作? 葡萄糖的复合反应。 淀粉的糊化、老化定义及影响老化的因素。 DE值与DX值的概念 淀粉水解糖的质量要求有哪些? 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 固定化酶的定义及制备方法有哪几种? 生物素对谷氨酸生物合成途径影响。 在谷氨酸发酵中如何控制细胞膜渗透性。 诱变育种概念。 谷氨酸生产菌的育种思路 现有谷氨酸生产菌主要有哪四个菌属。 谷氨酸发酵生产菌的主要生化特点。 日常菌种工作。 菌种扩大培养的概念和任务 谷氨酸发酵一级种子和二级种子的质量要求 影响种子质量的主要因素 氨基酸生产菌菌种的来源有哪些。 工业微生物菌种保藏技术是哪几种? 冷冻保藏的分类 菌种衰退和复壮的概念 代谢控制发酵的定义 谷氨酸发酵培养基包括哪些主要营养成分。 生长因子的概念 影响发酵产率的因素有哪些。 谷氨酸发酵过程调节pH值的方法 谷氨酸发酵不同阶段对PH的要求:前期pH7.3、中期pH7.2 、后期pH7.0 放罐pH6.8 谷氨酸发酵时,出现泡沫过多,一般是什么原因,该怎样处理? 谷氨酸发酵过程,菌体生长缓慢或不长的原因及解决方法? 谷氨酸发酵过程,耗糖快,pH偏低, 产酸低原因及解决方法 谷氨酸生产菌最适生长温度为?,发酵谷氨酸最适发酵温度?,最适合生长pH为?。 发酵过程中CO 2迅速下降,说明污染噬菌体, CO 2 连续上升,说明污染杂菌 消泡方法有哪几种?一次高糖发酵工艺 噬菌体侵染的异常现象染菌的分析

第三篇第四章天冬氨酸族氨基酸发酵机制

§第七章天冬氨酸族氨基酸发酵机制 第一节天冬氨酸族氨基酸生物合成途径 及代谢调节机制 一、天冬氨酸族氨基酸生物合成途径 Glucose EMP 丙酮酸 草酰乙酸 Asp 天冬氨酸激酶(AK) 天冬氨酰磷酸(asp-p) 天冬氨酸β-半醛 DDP合成酶(PS)高丝氨酸脱氢酶(HD) 二羟吡啶羧酸(DDP)高丝氨酸(Hos) 琥珀酰高丝氨酸合成酶高丝氨酸激酶 二氨基庚二酸(DAP) 琥珀酰高丝氨酸Thr Lys 苏氨基酸脱氨酶 Met Ile

二、天冬氨酸族氨基酸生物合成的代谢调节机制 1、大肠杆菌中天冬氨酸族氨基酸生物合成的调节机制 Glucose EMP 丙酮酸 草酰乙酸 Asp (天冬氨酸激酶AK,同功酶) 天冬氨酸磷酸(asp-p) 天冬氨酸β-半醛 (同功酶) 二羟吡啶羧酸 高丝氨酸(Hos) Lys 琥珀酰高丝氨酸 O-磷酸高丝氨酸 Met Thr

大肠杆菌天冬氨酸族氨基酸代谢特点:生物合成途径要比黄色短杆菌、谷氨酸棒杆菌、乳糖发酵短杆菌的代谢调控要复杂,其过程如下: 关键酶:天冬氨酸激酶是一个同功酶,分别受三个代谢产物的抑制,这三个终产物分别是:Lys、Met和Thr,只有当这三个代谢产物同时过量时,Asp激酶 的活性才能完全被抑制。 同功酶:几种在同一细胞中催化同一反应的酶,但其活性受不同代谢产物体调节。 2、谷氨酸棒杆菌,黄色短杆菌天冬氨酸族氨基酸生物合成的调控 Glucose EMP 丙酮酸 草酰乙酸 Asp (天冬氨酸激酶,AK) 天冬氨酸磷酸(asp-p) 天冬氨酸β-半醛 二羟吡啶羧酸高丝氨酸 Lys

O-琥珀酰高丝氨酸 O-磷酸高氨酸 Met Thr 黄色短杆菌与大肠杆菌(E.coli)的区别: (1)天冬氨酸激酶(AK),在黄色短杆菌中是一个变构酶,并有两个活性中心,分别受Lys、Thr的协同反馈抑制 (2)黄色短杆菌中,存在两个分支点的优先合成机制:P75 如图所示),即优先合成Hos,然后再优先合成Met,当Met过量时,阻遏:催化Hos 琥珀酰高丝氨酸所需要的酶的合成(即,琥珀酰高丝氨酸合成酶),使代谢流向合成Thr的方向进行,当Thr过量时,反馈抑制:Asp-β-半醛 Hos所需要的酶的的活性(即高丝氨酸脱氢酶),使代谢流向Lys的合成上。(Met>Thr>Lys)(3)代谢互锁:(metabolic interlock)P75 从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 在黄色短杆菌(乳糖发酵短杆菌)中,lys分支途径的初始酶二氢吡啶二羧酸合成酶(PS)受Leu的反馈阻遏。 (4)平衡合成:(balanced synthesis)

溶解氧和造成溶氧不足的原因

溶解氧和造成溶氧不足的原因 内容摘要:水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。 一、养鱼先养水,好水养好鱼 俗话说:“养鱼先养水,好水养好鱼”。水是鱼、虾、蟹、鳖、龟、蛙等水产养殖动物的生活环境,水质的好坏直接影响到水产养殖生物的生长和发育,从而影响到产量和经济效益。每一种水产动物都需要有适合其生存的水质条件,水质若能满足要求,养殖动物就能顺利生长发育。如果水质的一些基本指标超出生物的适应和忍耐范围,轻者养殖动物生长速度缓慢,成活率降低,饲料系数提高,经济效益下降。重者可能造成养殖动物的大批死亡,引起严重的经济损失。 恶化的水质不仅有害于动物机体的健康,甚至还危及它们的生命。众所周知水是一种优良的溶剂和悬浮剂,它可溶解各种气体,如氧气、二氧化碳、氨和硫化氢等,也可溶解各种盐类,如亚硝酸盐、磷酸盐、碳酸盐、硫酸盐等,还可悬浮尘埃、有机碎屑、细菌、藻类、小型的原生动物以及各种虫卵等。水体中溶解和悬浮的种种有形或无形的物质和成分,其中一部分对水产动物的生长、发育是必需的,有一些是无益的,而另一部分则是有害的,或者在含量较多时有害,同样,它们对水体中的其他生物,也有有利和不利的方面,特别是某些成分对养殖动物生长和健康不利,而对一些病原体(如病原菌、寄生原生动物)的繁殖、滋生以及产生毒力等是必需的,就容易导致疾病的发生。 水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。 科学的检测的可得出正确的数据。这些数据可以告诉养殖者水质的状况,从而判断水质是否满足水产动物生长的要求,以及是否会引起动物发病。水质检测的另一个作用是为改善水质、鱼病用药提供依据,减少因施肥、投饵、用药等日常管理造成的鱼类死亡损失。因此,水质检测是保证水质健康的必要,也是水产健康养殖的基础。 二、溶解氧——水产动物生命要素 同人一样,水产动物也必须在有氧的条件下生存,不同的是人呼吸空气中的氧气,而水产动物呼吸的是水体中的溶解氧。水体缺氧可使其浮头,严重时泛塘致死。 1. 养殖(育苗)水体溶氧要求 一般来说,养殖(育苗)水体的溶解氧应保持在5~8mg/l(ppm),至少应保持3mg/l 以上。各种鱼、虾类的需要溶解氧条件如表1。

1 溶解氧对发酵的影响

1 溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的 改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。 1.2 溶氧对发酵产物的影响 对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。[1] 在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。 [2] 需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。[3] DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。[4] 2 溶氧量的控制

氨基酸工艺学

1、味精是L-谷氨酸单钠的商品名称,含有一分子的结晶水,其分子式为NaC5H8O4N·H2O 2、国内味精厂所使用的谷氨酸生产菌株主要有北京棒杆菌AS1.299、钝齿杆菌AS1.542 和天津短杆菌T 6-13三类。 3、谷氨酸发酵中,谷氨酸产生菌只有一条生物合成途径中,生成谷氨酸的前体物为α-酮戊二酸。而在赖氨酸发酵中,存在两条不同的生物合成途径,即二氨基庚二酸途径和α-氨基己二酸途径 4、谷氨酸制味精过程中,中和操作时一般应先加谷氨酸后加碱,否则会发生消旋化,生成DL- 谷氨酸钠。 5、在谷氨酸发酵中,溶解氧的大小对发酵过程有明显的影响。若通气不足,会生成乳酸或琥珀 酸,若通气过量,会生成ɑ-酮戊二酸 6、从发酵液中提取赖氨酸,目前一般采用离子交换方法。影响提取得率最大的是菌体和钙离子 7、谷氨酸的晶型分为α-型结晶和β-型结晶两种,等电点提取谷氨酸时,首先必须形成一定数量 的晶核,然后才能进行育晶。谷氨酸起晶有自然起晶和加晶种起晶两种方法。 8在谷氨酸发酵中,生成谷氨酸的主要酶有谷氨酸脱氢酶(GHD)、转氨酶(AT)和谷氨酸合成酶(GS)三种。 9、L–谷氨酸在水溶液中的等电点是3.22,L–赖氨酸的等电点是6.96 10、在谷氨酸发酵过程中,对生物素的要求是亚适量,而在赖氨酸发酵生产中要求生物素过量。 11、游离的赖氨酸具有很强的呈盐性,因此,一般工业制造产品是以赖氨酸盐酸盐形式存在,其化学性质相当稳定。 二、单项选择题(共10小题,每小题2分,共20分) 得分评卷人 1、下列菌株中,_C_属于赖氨酸产生菌。 A.Hu7251 B.FM84-415 C.AS1.563 D.WTH-1 2、下列哪种氨基酸发酵是在供氧不足的条件下产酸最高?(D ) A.精氨酸B.赖氨酸C.苏氨酸D.亮氨酸 3、谷氨酸发酵产酸期的最适温度一般为(C )。 A.30℃~32℃B.32℃~34℃C.34℃~37℃D.38℃~40℃ 4、在谷氨酸(AS1.299菌)发酵中后期,为有利于促进谷氨酸合成,pH值维持在___C__范围为好。A.pH6.2~6.4 B.pH6.8~7.0 C.pH7.0~7.2 D.pH7.3~7.6

溶氧对氨基酸发酵的影响及控制

溶氧对氨基酸发酵的影响及控制 【摘要】本文对溶解氧在氨基酸微生物工业发酵的影响及控制策略进行了系统分析和探讨。 【关键词】氨基酸发酵;DO;溶解氧控制 利用微生物发酵生产氨基酸的技术已历半个多世纪。氨基酸生物发酵是一个复杂的生化反应过程,溶解氧是氨基酸发酵生产工艺的一个非常重要的控制参数[1]。发酵液中溶氧的高低直接影响菌体的生长和代谢产物的积累,并最终决定着氨基酸产量的高低[2]。因此,研究溶解氧在氨基酸微生物工业发酵中对产物生产的影响及控制策略,对氨基酸发酵工艺管理的优化和工艺过程的放大具有重要意义。笔者对氨基酸发酵工艺的供氧问题进行了分析与探讨,对增加溶氧的主要方法进行了综述,以期对氨基酸工业生产提供一定的借鉴。 1 氧在氨基酸好氧发酵过程的作用 氨基酸发酵生产菌大多为需氧菌或兼性厌氧菌。发酵液中的氧(溶解氧)是菌体生长与代谢的必需品。氨基酸的发酵过程主要包括菌体生长和代谢产物积累2个阶段,溶解氧在氨基酸发酵中的主要作用有两点:①参与氨基酸生物合成所必须的ATP,以完成生物氧化作用,并使菌体能够充分生长;②只有在氧的存在下,氨基酸的生物合成过程中产生的NAD(P)H2才能被氧化生成NAD(P),确保反应向合成氨基酸产物的方向进行。因此在氨基酸发酵过程中要保持一定的溶氧量来满足菌体生长和产酸的耗氧需要;溶氧的高低,应该根据不同菌种,不同培养阶段和培养条件等具体情况决定,将溶解氧控制在一个最佳水平以实现糖和酸最大转化率。 1.1 溶解氧对菌体生长的影响 氨基酸发酵的前期是菌体生长的主要阶段,如果发酵液中溶解氧的浓度受到限制,就会影响菌体的生长与繁殖,进而影响到最终的氨基酸产量。如谷氨酸发酵过程中,在菌体生长期,溶解氧浓度过低,在产酸期则抑制谷氨酸合成,生成大量代谢副产物;反之,溶解氧浓度过高,菌体生长受到高氧抑制,生长慢,耗糖慢,造成后期菌体容易衰老,导致糖酸转化率偏低[3]。 1.2 溶解氧对发酵产物积累的影响 氨基酸发酵按照合成途径不同,需氧量的差异可分为三类,第一类,是合成期需供氧充分,产酸量才能达最大的谷氨酸系氨基酸;第二类,是合成期满足供氧,就能达到最高产量,一但供氧受限,产量会受影响但并不十分明显的是天冬氨酸系氨基酸;第三类,是只有在供氧受限、细胞呼吸受抑制时,才能获得最大量的氨基酸,如果供氧充足,产物形成反而受到抑制的亮氨酸、缬氨酸和苯丙氨酸等。因此,在实际生产应用中,应根据合成氨基酸种类及具体需要确定溶氧控

梅特勒-托利多_过程分析_【故障处理】溶氧电极发酵后期读数波动_任嘉麟

知识标题:发酵后期溶氧电极波动的故障处理方法 标签:氧,光学氧,电极,溶解氧,细胞培养,波动 知识来源:□原创;□官方 知识类型:□接线图;□安调指导;□故障处理;□校准说明;□维护保养;□证书;□专业理论;□其他__________ 专业分类:□PH;□DO;□GAS;□电导率;□TOC;□浊度;□CO2;□Si/Na;□Cl/S;□微生物;□Ozone;□其他__________ 设备类型:□传感器;□变送器;□护套;□线缆;□分析仪;□自清洗; □其他__________ 信号类型:□模拟;□智能ISM;□其他__________ 变送器:□M100;□M200;□M300;□M400;□M700;□M800;□M420;□X100;□便携式;□其他__________ 适用行业:□电力;□食品;□化工;□制药;□其他__________ 证书类型:□防暴;□通讯协议;□卫生;□材料材质;□生产标准;□出场证书; □其他__________ 摘要: 本文主要介绍了生物发酵罐,特别是研发小罐,在发酵后期读数波动的解决方法。

下图是细胞培养中常见的一种溶解氧测量读数波动现象,常常会发生在发酵后期。用户往往会发现在发酵后期读数会有不可控波动情况产生。以下介绍了一些故障排查办法。 发酵溶解波动趋势图 遇到类似问题以后,最常见的手段就是过程校准了。但是过程标定往往会更改斜率,影响测量的准确度。

产生这种故障现象的原因一般分为以下几类: 1.极谱氧电极的膜片和电解液没有定期更换或者校准错误导致 2.极谱氧电极内电极积液造成读数波动 3.气泡干扰 4.随着发酵进行,生物生长覆盖传感器膜的现象 5.消泡剂干扰 解决办法: 1.上罐标定前必须正确检测电极性能SOP。严格按照以下步骤操作可以最大程度 的避免上罐后电极异常和波动的产生。在检测电极前建议先更换溶氧膜片和电解液。并作极化(建议6小时) 检测内电极和电极杆的空载电流值:如图所示,将电极连接仪表,并取下溶氧膜把内电极擦干,置于空气中,同时观察电流值。 正常电极空载电流值<±0.03nA(一般使用的电极也应小于±0.5nA)如果大于±1nA则说明电极内有积液,需返厂维修。

影响水中化学需氧量检测的因素分析

影响水中化学需氧量检测的因素分析 水体污染的重要指标之一便是化学需氧量过高,文章从还原性物质、空白实验值及其他方面分析对化学需氧量测定结果的影响进行了分析,并提出相应的解决方法。希望能够为相关工作提供参考。 标签:化学需氧量;检测;因素分析 化学需氧量作为衡量水质标准的一项重要指标,其检测结果的准确性也受到了有关政府部门的高度重视。水中存在着很多还原性的物质,如氯离子、二价铁离子、硫离子等,这些物质会影响化学需氧量测定结果的准确性;此外,水样的取样过程、水样的保存、运输和实验过程中使用的试剂质量、实验用水、试剂加入量、回流时间,以及不同实验人员的操作等,都会对实验结果造成一定程度的影响。因此,作为实验室检测人员有必要对影响其检测结果的因素进行分析,并在检测过程中消除这些因素,保证结果的准确性。文章重点从以下几个方面对影响COD检测结果的准确性的因素进行了简单分析。 1 水中的还原性物质对化学需氧量检测的影响及其解决办法 1.1 氯离子对测定的影响及解决方法 氯离子能够降低催化剂的浓度,导致有机物在进行氧化时并不完全,是测定过程中主要的影响因素。银离子会与氯离子发生反应,使得测定的结果较标准值低;在酸性的条件下,氯离子会被重铬酸钾氧化,反应中产生氯气,氯气能够将水中其他的还原性离子氧化如硫离子和二价铁离子,并且自身为气态能够逸出,导致化学需氧量的测定值偏高。通常实验室采用加入硫酸汞的方法除去部分氯化物,经回流后,氯离子与硫酸汞结合成可溶性的氯汞络合物。 1.2 二价铁离子和硫离子对测定的影响及解决方法 一些水样当中含有二价铁离子和硫离子等干扰元素,在测定前要先测定原始的浓度,默认氧化量是固定的,在测定实验的计算中扣除二价铁离子和硫离子的耗氧量,从而得到实际的化学需氧量。但是这种方法只是理想环境下的方法,在实际应用中的可行性不大,因此可以在水样中提前通入空气,将二价铁离子和硫离子氧化形成沉淀进而除去。 1.3 氨分子或铵根离子对测定的影响及解决方法 当水中有氯离子存在时,氨根离子会发生这样的反应:6NH3+7Cr2O+56H+=6NO2+14Cr3++32H2O,对测定结果的影响更大。因此,可以对水中的氯离子进行消除或是利用重铬酸钾溶液进行测定。 2 空白实验的值对检测的影响及其解决办法

溶氧对发酵的影响及其控制

溶氧对发酵的影响及其控制 摘要:发酵液中的溶氧浓度(Dissolved Oxygen,简称DO)是影响发酵的关键因素,对微生物的生长和产物形成有重要的影响。要根据氧的溶解特性及微生物对氧的需求,分析溶氧对发酵的影响及对发酵产物的影响,进而确定溶氧量的控制及在发酵液中的传递,使生产效益最大化。 关键词:溶氧发酵代谢溶氧量控制传递 Abstrac t: The dissolved oxygen concentration in the fermentation broth (Dissolved Oxygen, referred to as DO) is the key factor to influence the fermentation, has an important influence on microbial growth and product formation. According to the demand of dissolution characteristics and microbial oxygen on oxygen, analysis of the effects of dissolved oxygen on the fermentation and the effect on fermentation, and then determine the control of dissolved oxygen in the fermentation broth and transfer, the maximum production efficiency. Key words: dissolved oxygen; fermentation; metabolism;Dissolved oxygen control transfer 溶氧浓度(DO)作为发酵控制中的一个关键参数,直接影响着发酵生产的稳定性和生产成本,受到工业生产和实验室研究的重视,无论是厌氧还是需氧发酵,研究发酵液中溶氧对发酵的影响都有重要意义。 一·氧的溶解特性 溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,用DO 表示。氧是一种难溶气体,在常压、25℃的条件下,空气中的氧在纯水中的溶解度仅约为0.25mmol/L,在发酵液中,由于各种溶解的营养成分、无机盐和微生物[3] 的代谢产物存在,会明显降低氧的溶解度。此外,溶氧浓度会随着温度、气压、盐分的变化而变化。一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。其中就提到一个临界溶氧浓度的确定。 临界溶氧浓度的确定,如右图:[2] 在发酵过程中停止供气,通过观察发酵体系 中DOT的变化可以大致确定细胞生长的临界

氨基酸发酵实用工艺学试题集

氨基酸发酵工艺学试题集 一、名词解释 名词解释: 1. 液化:是利用液化酶使淀粉糊化,粘度降低,并水解得到糊精和低聚糖的程度。 2.糖化:是用糖化酶将液化产物进一步彻底水解成葡萄糖的过程。 3.发酵热:发酵过程中释放出来的净热量称为发酵热,发酵热 = 生物热 + 搅拌热 - 蒸发热 - 辐射热 - 显热。 4. DE值:即葡萄糖值,表示淀粉水解程度及糖化程度。DE值 = 还原糖 / 干物质× 100% 5. DX值:糖液中葡萄糖含量占干物质的百分率。 6. 代谢控制发酵:就是用遗传学或其它生物化学的方法,人为的改变、控制微生物的代谢,使有用产物大量生成、积累的发酵。 7. 噬菌体效价:每毫升试样中所含有具有侵染性的噬菌体的粒子数。 8. 发酵转换:当发酵条件发生改变时,必然会影响到生物代谢途径分支的关键酶的酶量和酶活性的改变,从而导致发酵方向发生转换,从而产生不同的代谢产物。 9. 淀粉液化:利用α-淀粉酶将淀粉液化,转化为糊精及低聚糖,使淀粉的可溶性增加。 10. 临界溶氧浓度:指不影响菌的呼吸所允许的最低氧浓度。 11. 末端产物阻遏:是指由某代谢途径末端产物的过量累积时而引起的反馈阻遏,是一种较为重要的反馈阻遏。 12.糖酸转化率:产出的谷氨酸与投入的葡萄糖总量的百分比,糖酸转化率 = 产出的谷氨酸 / 投入的葡萄糖量× 100% = (产酸水平×放罐体积) / (种子用糖量 + 发酵培养基用糖量 + 流加糖量)× 100% 。 13. 生物素的“亚适量”:指淀粉糖原料产谷氨酸生产过程中,控制发酵培养基的生物素浓度在5~6μg / L,此浓度即为生物素的“亚适量。生物素是催化乙酰CoA羧化酶的辅酶,参与脂肪酸的合成,从而影响磷脂合成及细胞膜的形成。它的作用主要影响谷氨酸产生菌细胞膜的谷氨酸通透性;同时也影响菌体的代谢途径。因此,为了形成有利于谷氨酸向外渗透的细胞膜,必须使磷脂合成不充分,因而必须要控制生物素“亚适量”。 14. 种子扩大培养:指将处于休眠状态的保藏菌种接入试管斜面活化后,再经过摇瓶、种子罐等逐级扩大培养,从而获得一定数量和质量的纯种的过程。 15. 营养缺陷型:对某些必须的营养物质(AA)或生长因子的合成能力出现缺陷的变异菌株或细胞。必须在基本培养基(如由葡萄糖和无机盐组成的培养基)中补加相应的营养成分才能正常生长。 16. 流加发酵:也叫补料分批发酵、半连续发酵、半连续培养。它是以分批培养为基础,间歇或连续地补加新鲜培养基的一种发酵方法。 17. 糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有粘性的淀粉糊,此过程称为糊化。 18. 连续等电点法:是指在大量谷氨酸晶体存在的条件下,一边连续等当量添加发酵液(或谷氨酸锌盐溶液)与盐酸(或硫酸)使溶液始终在结晶点PH3.0(或PH2.4),一边连续从底部打出谷氨酸结晶液,送入育晶罐(池)继续育晶的工艺。

相关文档
相关文档 最新文档