文档库 最新最全的文档下载
当前位置:文档库 › 水泥搅拌桩作为基坑支护结构的探讨

水泥搅拌桩作为基坑支护结构的探讨

水泥搅拌桩作为基坑支护结构的探讨
水泥搅拌桩作为基坑支护结构的探讨

水泥搅拌桩作为基坑支护结构的探讨

摘要:本文介绍了某工程基坑开挖采用水泥搅拌桩作支护结构的工程实例,着重叙述了水泥搅拌桩挡墙的设计计算要点。该建筑物基坑在地质条件与周围环境较差的情况下,采用水泥搅拌桩支护结构方案,达到了预期的目的,值得同类工程借鉴参考。

关键词:水泥搅拌桩基础支护结构

搅拌桩是用搅拌机械将水泥、石灰之类的固化剂和地基土相拌和,从而达到加固地基目的的一种方法。一般水泥搅拌桩挡土结构具有良好的抗渗特性,在基坑开挖时可以不用井点降水,从而避免了对周围地下设施造成危害。这种施工方法无排污,基本上无振动和噪声,造价又低,因此近年来逐步发展成为基坑围护的主要形式之一。

1工程概况

某排水泵站宽9 m、长15 m、地下深5 m、地上高9 m,采用钻孔灌注桩基础,基坑四周采用水泥搅拌桩围桩支护。

该场地处于冲积海积平原上,原为盐池,后经多次填垫至现在地平面。现地面标高为3. 51 ~4. 53 m。本次岩土工程勘察最大钻探深度为80 m,皆为第四系全新统和更新统沉积物,按其形成年代、成因类型及物质组成特征,共划为7 层工程地质层。

表1土层物理力学指标汇总

通过钻探土质鉴别及室内土工试验成果分析,埋深在13.0 m以上的地基土结构以海绵结构为主,表现为含水量高、容重小、强度低及压缩性高等欠固结土特征。13.0~25.0m地基土结构多为单粒结构为主、含水量低、容重大、强度为中等及低压缩性的超固结土。25.0m以下地基土结构多为蜂窝状结构及单粒结构,水量低、容重大、强度高,中—低压缩性正常固结土及超固结土。该场地表层粘土层很薄,基坑支护影响最大的为厚13.0m的淤泥质粘土层。

该场地地下水属潜水及潜水—微承压水类型。地下水位埋深在1.45 ~1.67m 之间,水位标高2.56m。该场地地下水属Cl- 、Na+ 、K+ 型,pH 值等于7.36,中性水,矿化度为78825 mg / L,水中SO42-质量浓度为2814 mg / L,对混凝土具有中等腐蚀性(中等结晶侵蚀性),对金属具有强侵蚀性。根据室内渗透试验分析,该场地13.0m浅层土皆具有弱透水性。

深基坑支护结构设计与施工

深基坑支护结构设计与施工 深基坑支护的目的是保证地下结构施工的安全和基坑周边环境的安全,实现手段是对深基坑侧壁和周边环境采取支挡、加固的保护措施。深基坑支护的设计和施工包括坑壁支挡技术,维护坑壁稳定的结构设计和施工手段。 深基坑支护结构的种类 深基坑支护结构是多种多样的,依据施工地形、地质条件的不同,可以进行自由选择和组合,最大程度地实现深基坑支护结构的稳妥性。一般的深基坑支护结构有水泥土挡墙结构、护坡桩与板墙结构和边坡稳定结构。水泥土挡墙结构一般是不加设支撑的,它依靠自身重量和抗变形能力来保护基坑坑壁,而在特殊的情况下,通过采取一系列措施也可以在其局部设置支撑;护坡桩与板墙结构的组成部分包括围护墙、土层锚杆和防渗帷幕;边坡稳定结构包括土钉墙和喷灌支护结构,土钉墙的组成部分有密集的土钉群,喷射的混凝土面层和加固了的原位土体。 深基坑支护结构的设计与施工 深基坑支护结构的设计与施工是密切相关的,整个工程的完成需要两者进行合作配合,其中,设计对施工具有指导意义,而施工又可以不断去完善设计。以唐山市金融中心项目为例,该项目是由唐山市通城房地产开发有限公司筹建的,双塔楼层高23层,高度为99.9米;裙房层高5层,高度为23米;地下为三层建筑。其基坑呈梯形

结构,南北长约150米,东西宽约140米,基坑深14.6-16.0米,土方约20万立方米。基坑支护结构采用土钉墙和护坡桩联合护坡,其中土钉墙面积约6209.4m2,护坡桩约882.84m3。 土钉墙边坡支护的设计与施工 土钉墙边坡支护的设计。面板采用的是直径为6.5mm,板宽和板高分别为300mm的单层钢筋网,而对于外网设置来说则采用的是直径为14mm,间距为1500mm的纵横双向拉长筋。之后对土钉尾部的钢筋进行焊接处理。利用水泥、砂子和碎石的初配比1:2.2:0.5的混凝土对其进行喷射,其中最大碎石的径长要求不超过12mm,喷射的混凝土要满足c20的强度要求和100mm的厚度要求。在进行混凝土喷射的过程中,需要对混凝土喷射机的压力值进行限定,最好保证在0.3-0.4MP范围内。最后要在坡顶处设置排水设施,例如设置排水沟或者泛边,泛边要求和坡面的混凝土相连接,且宽度至少达到1.0m。 施工中,做土钉墙边坡支护的方法。(1)进行修坡处理。修坡过程需要通过挖掘机来实现,在挖掘机进行开挖作业时,不仅需要按照施工方案和要求实现支护坡的开挖,同时在开挖完毕后,还需人工进行修坡处理,修过的边坡要实现立面角为71.6度。(2)编扎钢筋网。编扎钢筋网要严格按设计布网的尺寸,单层钢筋网片为准6.5@ 300×300,网外设置为Φ14@1500纵横向拉筋,在制作坡面网钢筋前就应该将网面内的钢筋一一拉直,在网面的交接网点采取绑丝扎牢或焊接的方式进行固定。同时在坡面网内的各个钢筋体、斜拉筋和钢

基坑支护结构设计

3.1 设计原则 3.1.1基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 3.1.2基坑支护结构极限状态可分为下列两类: 1 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; 2 正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 3.1.3基坑支护结构设计应根据表3.1.3选用相应的侧壁安全等级及重要性系数。 表3.1.3 基坑侧壁安全等级及重要性系数 安全等级破坏后果Υ0 一级支护结构破坏、土体失稳或过大变形对基坑周边环境及地 下 1.10 结构施工影响很严重 二级支护结构破坏、土体失稳或过大变形对基坑周边环境及地 下 1.00 结构施工影响一般 三级支护结构破坏、土体失稳或过大变形对基坑周边环境及地 下 0.90

结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 3.1.4支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 3.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 3.1.6根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算。 1 基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括: 1) 根据基坑支护形式及其受力特点进行土体稳定性计算; 2) 基坑支护结构的受压、受弯、受剪承载力计算; 3) 当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2 对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3 地下水控制验算:

基坑工程深层搅拌桩围护及隔水帷幕

上海信达工程建设监理有限公司监理实施细则 基坑工程 深层搅拌桩围护及隔水帷幕 监 理 实 施 细 则 编制人: 审核人: 2013 年4月

一、工程概况: 工程名称: 工程地址: 建设单位: 设计单位: 施工单位: 勘察单位: 分包单位: 围护监测单位: 工程量:立方米左右,准备使用7-8套设备 施工工期:天 2-16号楼为地上18层,1、17号楼为地上17层,地下1层高层住宅,总高度50.40m,层高均为2.80m。结构体系为剪力墙结构,基础形式为桩筏基础。 18、19号楼为3层公建,总高度11.70m,首层层高为4.50m,二、三层层高为3.60m。结构体系为框架结构,基础形式为桩基独立承台。 20号楼为1层独立地下车库,层高为3.65m,主要结构跨度为8.10m ×8.10m。结构体系为框架结构,基础形式为桩筏基础。 高层住宅桩基采用PHCφ400管桩,壁厚95,桩长30、32米(三节),桩身混凝土强度为C80,工程灌注桩型号为ZH1(φ600钻孔灌注桩),桩长30、36、37。地下车库桩基常规工程桩,采用φ400PHC 桩,壁厚95,桩身混凝土强度为C80,桩长23m(二节)。

单体包括:1号楼、17号楼为17层住宅,2-16号楼为18层住宅,18#、19#配套公建为三层,21、22门卫值班室为一层,23-28号变电站为一层、29号有线电视机房、电信机房为一层。 本工程规划用地面积98529.86平方米,拟建总建筑面积241581.48平方米,其中地上建筑面积203579.14平方米,地下建筑面积38002.34平方米,绿化面积36200平方米。 本工程主要由17幢18层号楼、2幢3层号楼及一座一层地下车库组成,基坑开挖面积60942平方米,周边延长3361m。 本工程1#、2#号楼±0.000=+4.900,3#~6#、12#~17#号楼及集中地下车库 ±0.000=+4.800,7#~11#号楼±0.000=+4.700,18#、19#号楼±0.000=+4.600。图中所注标高均为绝对标高,单位以米计,图中标注尺寸单位以毫米计。场地自然地面标高选取绝对标高+4.000,其中围护施工前,应将场地标高整平至不高于绝对标高+4.000m。 1#~17#号楼区域底板坑底开挖深度为2.8~3.0m;18#、19#号楼区域承台坑底开挖深度为 1.35m;集中地下车库区域底板坑底开挖深度为 4.7m,承台坑底开挖深度为 5.0m。1#~17#号楼区域局部深坑落深0.6m、1.5m,对应开挖深度为3.4~3.6m、4.3~4.5m;集中地下车库区域局部深坑落深0.8m、1.3m,对应开挖深度为5.5m、6.0m。 根据本工程周边环境、开挖深度及土层情况,本工程基坑围护采用双轴水泥搅拌桩坝体的型式。详见相关图纸。 本次基坑围护主要采用水泥土搅拌重力坝作为围护结构兼隔水帷幕,采用φ700mm双头搅拌桩,桩距1000,搭接200,内外插φ48×3.0的钢管,钢筋Ф12@1000应在桩后16h内施工。搅拌桩顶部设臵压顶,厚度200mm,采用200厚C20混凝土压顶,双向配φ8@200*200钢筋。

基坑支护结构设计(全套图纸CAD)

第一章设计方案综合说明 1.1 概述 1.1.1 工程概况 拟建南京新城科技园 B 地块深基坑位于河西香山路和嘉陵江东街交会处 东南隅,北侧为规四路(隔马路为A地块基坑),东侧为青石路。B地块±0. 00m 相当于绝对标高+7.40m。基坑挖深为 6.1 ~8.0m。拟建场地属Ⅱ级复杂场地。 2,包括 3 幢地上建筑和一层地下室。建筑物采用 该基坑用地面积约20000 m 框架结构,最大单柱荷载标准值为23000KN,拟采用钻孔灌注桩基础设计方案。 有关拟建物层数、结构型式、柱网和室内外地坪设计标高具体见表 1.1 。 表1.1 栋号建筑物层数 结构型 式 室内地坪 设计标高 (m) 室外地坪 设计标高 (m) 01 办公楼19 框架结 构 7.3 7.0-7.2 02 国家实验 室 1、10、11 框架结 构 7.3 7.0-7.2 03 会议楼、 商务楼 2、18 框架结 构 7.5 7.2 南、北地下 室 -1 框架~抗 震墙结 构 04 1.9 7.0-7.2 注:表 1.1 内建筑物室内外地坪设计标高系吴淞高程。 本工程重要性等级为二级,抗震设防类别为丙类。根据该工程重要性等级、场地复杂程度和地基复杂程度,按《岩土工程勘察规范》(GB50021-2001)3.1 节,划分该工程岩土工程勘察等级为乙级。 1.1.2 基坑周边环境条件 基坑四面均为马路,下设通讯电缆、煤气管线等设施。北侧隔马路为基坑(A地块)

第一章设计方案综合说明 1.1.3 工程水文地质条件 拟建场地地形总体较为平坦,地面高程在 4.87~8.78m(吴淞高程系)之间。对照场地地形图看,场内原有沟塘已被填埋整平。场地地貌单元属长江 漫滩。 在基坑支护影响范围内,自上而下有下列土层: ①~1 杂填土:杂色,松散,由粉质粘土混碎砖、碎石和砼块等建筑垃圾 填积,其中2.7~4.5m 填料为粉细砂,填龄不足 2 年。层厚0.3~4.9m; ①~2 素填土:黄灰~灰色,可~软塑,由粉质粘土、粘土混少量碎砖石填积,含少量腐植物,填龄在10 年以上。埋深0.8~5.3m,层厚0.2~2.6m; ①~2a 淤泥、淤泥质填土:黑灰色,流塑,含腐植物,分布于暗塘底部, 填龄不足10年。埋深0.2~2.9m,层厚0.6~4.0m; ②~1 粉质粘土、粘土:灰黄色~灰色,软~可塑,切面有光泽,韧性、干 强度较高。埋深0.3~4.7m,层厚0.3~2.1m; ②~2 淤泥质粉质粘土:灰色,流塑,含腐植物,夹薄层粉土,切面稍有 光泽,韧性、干强度中等。埋深 1.1~6.2m,层厚11.2~12.4m; ②~2a 粉质粘土与粉土互层:灰色,粉质粘土为流塑,粉土呈稍密,局 部为流塑淤泥质粉质粘土,具水平层理。切面光泽反应弱,摇震反应中等, 韧性、干强度低。埋深 1.6~5.7m,层厚0.4~3.3m; ②~3粉质粘土、淤泥质粉质粘土:灰色,流塑,夹薄层(局部为层状) 粉土、粉砂,具水平层理。切面稍有光泽,有轻微摇震出水反应,韧性、干 强度中等偏低。埋深10.5~15.6m,层厚1.2~7.7m; ②~4粉质粘土、淤泥质粉质粘土夹粉土、粉砂:灰色,粉质粘土、淤泥 质粉质粘土为流塑,粉土、粉砂为稍~中密,局部为互层状,具水平层理。光泽反应弱,摇震反应中等,韧性、干强度较低。埋深14.2~21.5m,层厚1.2~8.8m; ②~5 粉细砂:青灰~灰色,中密,砂颗粒成分以石英质为主,含少量腐 植物及云母碎片。埋深20.0~25.6m,层厚10.3~12.3m; ②~5a 粉质粘土、淤泥质粉质粘土:灰色,流塑,切面稍有光泽,韧性、 干强度中等。呈透镜体状分布于②~5 层中。埋深23.6~25.0m,层厚0.4~0.5m; ②~6细砂:青灰色,密实,局部为粉砂,砂颗粒成分以石英质为主,含 云母碎片。层底部局部地段含少量卵砾石。埋深29.2~33.5m,层厚14.2~22.1m; ②~6a淤泥质粉质粘土、粉质粘土,灰色,流~ 软塑,切面稍有光泽,韧性、干强度中等。呈透镜体状分布于②~6 层中。埋深35.9~45.5m,层厚 0.3~1.4m。 ⑤~1 强风化泥岩、泥质粉砂岩:棕红~棕褐色,风化强烈,呈土状,遇水极易软化,属极软岩,岩体基质本量等级分类属Ⅴ级。埋深47.0~52.3m,层厚0.6~5.8m。 ⑤~2 中风化粉砂质泥岩、泥质粉砂岩:紫红~棕褐色,泥质胶结,夹层状泥岩,属极软岩~软岩,岩体较为完整,有少量裂隙发育,充填有石膏,遇水易软化,岩体基本质量等级分类属Ⅴ级。埋深48.0~57.9m,未钻穿。 ⑤~2a 中风化泥质粉砂岩、细砂岩:紫红~棕褐色,泥质胶结,属软岩~ 较软岩,岩体较为完整,有少量裂隙发育,基本质量等级分类属Ⅳ级。该层 呈透镜体状分布于⑤~2 层中。埋深52.5~59.5m,层厚0.3~0.4m。 2

深基坑支护结构设计与施工

深基坑支护结构设计与施工 本文结合某深基坑支护结构工程实例,简要地分析和探讨了深基坑支护结构的设计与施工措施。 标签深基坑;支护结构;设计;施工 一、工程概况 某商业综合用房工程位于该市南侧,地理位置优越,交通便利。基坑长77.85米,基坑宽度为38.74米,整个基坑落地面积为2700㎡左右,基坑形状基本规则,基坑开挖深度-6.250~-10.65米(坑中坑)。因此,如何加强该工程深基坑支护的设计与施工管理,并为今后我国深基坑工程提供借鉴与指导,是一项亟待研究解决的问题。 二、深基坑支护结构设计 2.1 基坑围护结构做法(SMW工法) 1)三轴水泥搅拌帷幕的止水性能是本基坑成败的关键,必须切实做好。本工程要求施工机具采用日本进口的搅拌头。 2)本工程止水帷幕采用Φ850@600三轴水泥搅拌桩,水泥搅拌桩采用全断面套打法施工。 3)水泥搅拌桩采用P42.5级硅酸盐水泥,水泥掺量为20%,水灰比1.5-1.8,水泥应干燥,无结块,水泥内掺1.5%生石膏和0.15%SN201-A型固化剂;拌制后的水泥浆液因故搁置2h以上的,应做废浆处理。 4)水泥搅拌桩28d无侧限抗压强度不低于0.8MPa,成桩过程中应控制钻具下沉及提升速度,并保持匀速下沉与匀速提升,避免形成孔内负压。一般下沉速度不大于1m/min,提升速度不大于1.5m/min;桩体施工应保持连续性,相邻桩施工间隔不得超过12h,如因特殊原因不能避免,应标记在案,并采取补强措施。施工过程中必须对基坑周边沉降及水平位移进行监测,根据监测资料合理控制搅拌头的压入阻力、注浆速度及注浆压力。 5)搅拌桩成桩应均匀、持续、无颈缩和断层,严禁在提升喷浆过程中断浆,特殊情况造成断浆应重新成桩施工。水泥搅拌桩和内插型钢垂直偏差不大于1/200,插入前须在型钢表面涂抹减摩剂,搅拌桩制作后应立即插入型钢,一般间隔不应超过1h,型钢定位误差不大于30㎜,底部标高误差不大于20㎝,垂直度偏差不大于1%。 6)内插型钢采用Q235B,采用整材,接头采用坡口焊接等强度焊接,焊缝

基坑支护结构设计

设计原则 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 基坑支护结构极限状态可分为下列两类: 1 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; 2 正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 基坑支护结构设计应根据表选用相应的侧壁安全等级及重要性系数。 表基坑侧壁安全等级及重要性系数 安全等级破坏后 果Υ0一级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 结构施工影响很严重

二级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 结构施工影响一般 三级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下 结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行确定。 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 根据承载能力极限状态和正常使用极限状态的设计要求,基坑

支护应按下列规定进行计算和验算。 1 基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括: 1) 根据基坑支护形式及其受力特点进行土体稳定性计算; 2) 基坑支护结构的受压、受弯、受剪承载力计算; 3) 当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。 2 对于安全等级为一级及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 3 地下水控制验算: 1) 抗渗透稳定性验算; 2) 基坑底突涌稳定性验算; 3) 根据支护结构设计要求进行地下水位控制计算。 基坑支护设计内容应包括对支护结构质量检测及施工监控的要求。 当有条件时,基坑应采用局部或全部放坡开挖,放坡坡度应满足坡稳定性要求。

最新基坑支护工程三轴搅拌桩施工方案教学提纲

基坑围护工程 (三轴搅拌桩-止水帷幕) 施 工 方 案 项目名称: 施工单位: 编制时间:

目录 施工总说明............. - 2 - 三轴搅拌桩止水帷幕施工方案. - 4 - 1.工程概况................. - 4 - 2.工程地质及水文地质条件... - 5 - 3.三轴搅拌桩施工步骤...... - 14 - 4报表记录................. - 20 - 5.质量保证措施............ - 20 - 6.施工冷缝处理............ - 22 - 7.确保桩身强度和均匀性要求做到- 24 - 8.质量检验方法............ - 25 - 9.施工进度计划安排........ - 25 - 10.劳动力组织安排......... - 26 - 11.三轴搅拌桩止水帷幕施工工艺流程图............................ - 28 -

12.应急抢险措施 (15) 文明施工保证措施………………………………………………. .18 施工总说明 本工程基坑围护采用钻孔灌注桩支护加三轴搅拌桩止水帷幕,钻孔灌注桩:桩径为φ800@ 1100(桩长21m)及φ1000@ 1200(桩长21m);三轴搅拌止水帷幕桩:桩径为φ850@ 1200,(桩长为28m)。三轴搅拌止水帷幕桩采用42.5级普通硅酸盐水泥,水泥掺量为20%(土体重度19kN/m3)。

本工程三轴搅拌桩机设备:1套 三轴搅拌桩机用电要求:市供电系统400KW; 三轴搅拌桩机用水要求:三轴搅拌桩用水量较多,供水必须得到满足。

基坑支护结构设计

基坑土层力学参数 层号土层名称层厚(m)重度(kN/m3) 浮重度 (kN/m3)粘聚力 (kPa) 内摩擦角 (°) m值 1杂填土——2 粉质黏 土 ——3 粉质黏 土 ——4 粉质黏 土 ——5 粉质黏 土 ——6 粉质黏 土 7粉质黏

土 8中砂——9粗砂——10砾砂——11粗砂—— 基坑存在的超载表超载位 置类型 超载值 (kPa) 作用深 度(m) 作用宽 度(m) 距坑边 距(m) 形式 长度 (m) A-A’局部荷 载 条形—— 此深基坑工程需要基坑支护结构来保证基坑的安全稳定,各种支护 结构设计均遵循《建筑基坑支护技术规程》(JGJ 120-2012),《混凝 土结构设计规范》(GB 50010-2010),《钢结构设计规范》(GB 50017-2017)。因此,本文将设计3种支护结构,分别为锚杆支护体系+护坡

桩、地下连续墙、地下连续墙+锚杆支护体系。 由规程知,设计支护形式需考虑作用在结构上的水平荷载,影响基坑支护的水平荷载有土体、基坑周围的建筑、车辆、施工材料及设备、温度及水等因素。确定荷载需要确定基坑内外土压力,土体在重力作用下会对支护结构产生侧压力,基坑外侧土体作用在支护结构上的力为主动土压力,主动土压力使支护结构变形挤压基坑内侧土体,此时基坑内侧土体土体对支护结构作用的力为被动土压力。土压力计算方法为朗金土压力计算方法,即分别按下式计算: 2,tan 452i a i K ?? ? =?- ?? ? (3-1) ,2ak ak a i p K c σ=- (3-2) 2,tan 452i p i K ?? ? =?+ ?? ? (3-3) ,2pk pk p i p K c σ=+(3-4) 式中:,a i K 、,p i K ——分别表示第i 层土的主动土压力系数与被动土压力系数; i ?、i c ——分别表示第i 层土的内摩擦角(°)与黏聚力 (kPa ); ak σ、pk σ——分别表示支护结构外侧、内侧计算点的土中竖向

深基坑支护设计与施工要点初探

深基坑支护设计与施工要点初探 摘要:众所周知,建筑工程深基坑支护施工是建设工程当中的重大危险源之一,因此,在建筑工程施工中,深基坑支护施工往往都被作为一项最为重要的安全控制点来进行重点关注,并在其施工全过程中都被予以重点监控。本文结合某深基坑支护结构工程实例,简要地分析和探讨了深基坑支护结构的设计与施工要点。关键词:深基坑;支护结构;设计;施工 一、工程概况 西文经济合作社商业综合用房工程位于杭州市下城区沈家路水印康庭小区南侧,地理位置优越,交通便利。工程结构形式为框架-剪力墙结构,抗震设防烈度为六度。基坑长77.85米,基坑宽度为38.74米,整个基坑落地面积为2700㎡左右,基坑形状基本规则,基坑开挖深度-6.250~-10.65米(坑中坑)。因此,如何加强该工程深基坑支护的设计与施工管理,并为今后我国深基坑工程提供借鉴与指导,是一项亟待研究解决的问题。 二、深基坑支护结构设计 2.1基坑围护结构做法(SMW工法) 1)三轴水泥搅拌帷幕的止水性能是本基坑成败的关键,必须切实做好。本工程要求施工机具采用日本进口的搅拌头。 2)本工程止水帷幕采用Φ850@600三轴水泥搅拌桩,水泥搅拌桩采用全断面套打法施工。 3)水泥搅拌桩采用P42.5级硅酸盐水泥,水泥掺量为20%,水灰比1.5-1.8,水泥应干燥,无结块,水泥内掺1.5%生石膏和0.15%SN201-A型固化剂;拌制后的水泥浆液因故搁置2h以上的,应做废浆处理。 4)水泥搅拌桩28d无侧限抗压强度不低于0.8MPa,成桩过程中应控制钻具下沉及提升速度,并保持匀速下沉与匀速提升,避免形成孔内负压。一般下沉速度不大于1m/min,提升速度不大于1.5m/min;桩体施工应保持连续性,相邻桩施工间隔不得超过12h,如因特殊原因不能避免,应标记在案,并采取补强措施。施工过程中必须对基坑周边沉降及水平位移进行监测,根据监测资料合理控制搅拌头的压入阻力、注浆速度及注浆压力。 5)搅拌桩成桩应均匀、持续、无颈缩和断层,严禁在提升喷浆过程中断浆,

关于深基坑支护结构设计技术探讨

关于深基坑支护结构设计技术探讨 本文首先阐述了基坑支护的设计内容,其次分析了基坑支护结构的设计原则与方法,同时对支护结构挡墙的选型、支撑体系的选型和支护结构的围护墙计算这三个方面对深基坑支护进行结构设计,具有一定的参考价值。 标签深基坑支护;结构设计;探讨 1 前言 高层建筑上部结构传到地基上的荷载很大,为此多建造补偿性基础。为了充分利用地下空间,有的设计有多层地下室,所以高层建筑的基础埋深较深,施工时基坑开挖深度较大,许多城市的高层建筑施工都需开挖深度较大的基坑,给施工带来很多困难,尤其在软土地区或城市建筑物密集地区。施工场地邻近的已有建筑物、道路、纵横交错的地下管线等对沉降和位移很敏感,不允许采用较经济的放坡开挖,而需在人工支护条件下进行基坑开挖。支护结构如何选型、进行合理的布置和设计计算,这些会直接影响如何组织施工,以及施工过程中的支护结构监测和环境保护等问题。 2 基坑支护的设计内容 基坑支护的设计内容一般包括:支护体系的方案比较和选型(挡墙和支撑体系);支护结构的强度和变形验算。进行设计时应考虑的荷载有:土压力、水压力、地面超载、影响范围内建(构)筑物产生的侧向荷载、施工荷载及邻近基础工程施工的影响。 3.基坑支护结构的设计原则与方法 基坑支护结构设计的原则为:安全可靠;经济合理;便于施工。根据现行国家行业标准《建筑基坑支护技术规程》,基坑支护结构应采用分项系数表示的极限状态设计表达式进行设计。基坑支护结构的极限状态,分为承载能力极限状态和正常使用极限状态两类。承载能力极限状态对应于支护结构达到最大承载能力或土体失稳、过大变形,导致支护结构或基坑周围环境破坏;正常使用极限状态对应于支护结构的变形已经妨碍地下结构施工或影响基坑周边环境的正常使用功能。基坑支护结构均应进行承载力极限状态的计算,计算内容包括:①根据基坑支护形式及其受理特点进行土体稳定性计算②基坑支护结构的受压、受弯、受剪承载力计算;③当有锚杆和支撑时,应对其进行承载力计算和稳定性验算。对于安全等级为一级和对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。 4 支护结构挡墙的选型 支护结构挡墙的选型,涉及技术因素和经济因素,要从满足施工要求、减少

(完整版)基坑支护结构的计算

第二部分 基坑支护结构的计算 支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。 一、支护结构承受的荷载 支护结构承受的荷载一般包括 –土压力 –水压力 –墙后地面荷载引起的附加荷载。 1 土压力 ⑴主动土压力: 若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。 ⑵静止土压力: 若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。以E0表示。

(3)被动土压力: 若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。 主动土压力计算 ?主动土压力强度

?无粘性土 粘性土 土压力分布 对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即

表明出现拉力区,这在实际上是不可能发生的。只计算临界高度以下的主动土压力。 土压力分布 可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。

被动土压力计算 被动土压力强度?无粘性土粘性土

计算土压力时应注意 ?不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。 ?、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高, 对、C值产生影响。另外,降低地下水位也会使、C值产生变化。 水压力 作用于支护结构上的水压力一般按静水压力考虑。有稳态渗流时按三角形分布计算。 在有残余水压力时, 水压力按梯形分布。

基坑支护结构设计

基坑土层力学参数 层号 土层名称 层厚(m) 重度(kN/m 3) 浮重度(kN/m 3) 粘聚力(kPa) 内摩擦角(°) m 值 1 杂填土 3.0 15.0 —— 15.00 12.00 3.18 2 粉质黏土 2.0 19.6 —— 46.60 18.70 9.78 3 粉质黏土 3.5 19.2 —— 37.70 25.80 14.50 4 粉质黏土 3.0 19.2 —— 51.90 20.70 11.69 5 粉质黏土 5.0 19.6 —— 39.60 20.10 10.03 6 粉质黏土 3.0 19.4 9.4 38.60 26.80 15.54 7 粉质黏土 3.5 19.4 9.4 44.30 23.00 12.71 8 中砂 2.0 19.5 9.5 —— 38.00 25.08 9 粗砂 7.0 21.0 11.0 —— 39.00 26.52 10 砾砂 4.0 21.5 11.5 —— 35.00 21.60 11 粗砂 7.0 20.0 10.0 —— 40.00 28.00 基坑存在的超载表 超载位置 类型 超载值(kPa) 作用深度(m) 作用宽度(m) 距坑边距(m) 形式 长度(m) A-A’ 局部荷载 105.0 2.0 12.0 4.0 条形 —— 此深基坑工程需要基坑支护结构来保证基坑的安全稳定,各种支护结构设计均 遵循《建筑基坑支护技术规程》(JGJ 120-2012),《混凝土结构设计规范》(GB 50010-2010),《钢结构设计规范》(GB 50017-2017)。因此,本文将设计3种支护结构,分别为锚杆支护体系+护坡桩、地下连续墙、地下连续墙+锚杆支护体系。 由规程知,设计支护形式需考虑作用在结构上的水平荷载,影响基坑支护的水平荷载有土体、基坑周围的建筑、车辆、施工材料及设备、温度及水等因素。确定荷载需要确定基坑内外土压力,土体在重力作用下会对支护结构产生侧压力,基坑外侧土体作用在支护结构上的力为主动土压力,主动土压力使支护结构变形挤压基坑内侧土体,此时基坑内侧土体土体对支护结构作用的力为被动土压力。土压力计算方法为朗金土压力计算方法,即分别按下式计算: 2,tan 452i a i K ?? ? =?- ?? ? (3-1) ,2ak ak a i p K c σ=- (3-2) 2,tan 452i p i K ?? ? =?+ ?? ? (3-3)

深层搅拌桩在深基坑支护中的应用

深层搅拌桩在深基坑支护中的应用 发表时间:2019-10-09T15:49:07.767Z 来源:《基层建设》2019年第21期作者:刘洋张仁森刘博[导读] 摘要:深层搅拌桩常用于水利工程中,以提高地基承载力和围堰工程。 河南省商丘市 476000 中国建筑第五工程局有限公司摘要:深层搅拌桩常用于水利工程中,以提高地基承载力和围堰工程。其主要作用是提高地基承载力,防止周围土体和周边水进入建筑物基坑。这些特点在民用建筑深基坑支护中得到了应用,取得了良好的效果。土层复杂多变。在淤泥、流线型粉质土和饱和水土层中,地下开挖容易引起砂土和土壤侵蚀,破坏相邻建筑物和地下管线。采用该施工方法,工期快,造价低,无噪声,安全可靠,最大支护深度 可达10m左右,完全满足民用建筑深基坑支护的要求。本文结合实际工程简要论述了深搅拌在深基坑支护中的应用。 关键词:深层搅拌桩;深基坑支护工程;基坑围护 1深层搅拌桩的支护原理 深层搅拌桩支护采用水泥作为固化剂,搅拌时机械搅拌、下沉或抬升,在设计桩长范围内,将水泥浆与软土就地强制混合,在水泥与土之间产生水泥。一系列的物理化学反应逐渐硬化,形成了以完整性、稳定性和强度为支撑结构的水泥土桩。搅拌桩一般适用于粉土、粉质土、平填土、粉质土、粉质土、粘土等土层。在砂层中,搅拌桩支护也非常合适,特别是多排搅拌桩组成的支护挡土墙具有良好的止水效果。同时,在砂中,由于砂与水泥之间的混合。在形成较高强度固结体后,搅拌桩的强度相对较高。 2深层搅拌桩的技术要点 2.1搅拌桩的布置和连接形式 搅拌桩挡土墙一般设计成网格状,桩与桩相互重叠10-20 cm,形成一个整体。特别注意格栅内的土壤面积不宜过大,因为格栅内的土壤也会对格栅产生土压力。特别是对于临近基坑的排桩,当网内土压力较大时,很容易引起桩与桩墙之间产生裂缝,甚至产生分离和倒塌。当雨水进入时,雨水会渗透并大量增加。侧压力容易导致事故。因此,在设计时,要注意网格的大小。如果它很大,它将是不安全的。如果规模小,就会增加成本。 2.2搅拌桩的施工工艺 搅拌件工程一般按照桩机便位→预搅之下沉→喷浆提高→复搅下沉→喷浆提高的工序施工。作为确保桩身皆匀性与连续性,提高时建议喷淋不停歇,提升速度不超过0.5m/s。如果对于搅拌桩的均匀性与连续性存在疑问时,应有针对性地展开复联喷气混凝土。 2.4基坑开挖顺序 基坑开挖应遵从“分层、分段、对称、均衡、立即”的原则,由于基坑开凿时,基坑内壁与基坑顶部皆处在卸载状态,而且作为搅拌桩支护结构本身。这是一个加载过程。恰当的开挖原则可避免挡土墙受力不均,减少应力集中。所以,基坑开挖过程的质量把直接冲击基坑以及支护结构的安全性。对淤泥,提议每层开挖厚度大约1.5m。假如卸载速渡过快,容易成承台桩加载速度过快因而导致毁坏。除此之外,对于基坑开挖过程以及周边建筑物展开监测。 3实例应用 3.1工程的概况 商丘市高铁新城尚居书苑(C-02号地块)、全胜明都(C-04号地块)、安置房建设项目位于河南省商丘市凯旋路与田园路交叉口。总建筑面积约548808.86平方米。工期720天,建设单位:商丘市铁路投资有限公司。本工程共20栋楼,两所幼儿园。地下三层,地上二十七层,地下部分为车库与储藏室,地上部分一二层为商业服务点,其它均为住宅。结构形式为框架剪力墙结构,基础形式为螺杆桩加筏板基础。 3.2基坑岩土条件 分布的地层基坑面积是根据深度从上到下:1)耕种土壤:土壤是粘土土壤,灰色红棕色,灰色的黄色,很湿,柔软结实,主要由粘土,包括少量的根和少量的人工填在上面。2)海洋冲积层:主要由淤泥混合砂(污泥)、粘土、粘土细砂等组成。根据力学性能的差异,将其划分为三个子层:粉砂:灰黑色、饱和、流塑,以粘土为主,粉砂和壳体数量较少,最厚部分为8m;粘土层:黄色,非常潮湿,软塑料,主要为粘土,平均层厚1.5m;粘土细砂:黄色、饱和、疏松的中细砂颗粒和粘性土颗粒主要由少量卵石和碎块组成,分选性能较差,平均层厚1.9 m。 3.3支护桩设计 3.3.1设计系数 根据土体开挖深度H和基坑开挖深度D,首先确定打入基坑的搅拌桩深度D。据当地施工经验,D / H≥1.1 ~ 1.2通常是必需的,它应该插入到不透水层,防止地下水的渗流。墙体厚度B一般为B/H = 0.8 ~ 1.0,不应小于0.6。该工程3.2m厚壁采用三排窑双头钻机相互啮合而成。 3.3.2抗滑移验算 土压力按朗肯土压力理论计算,分别求出主动土压力Ea和被动土压力Ep。 抗滑移验算要求满足: EA,EP———主动和被动土压力,kN/m; W———水泥土挡墙自重,kN/m; μ———挡墙与地基土的摩擦系数,本工程取0.3; K———被动土压力折减系数,为防止墙顶位移过大,本工程取0.8; Kh———抗滑移安全系数。 3.3.3抗倾覆验算 抗倾覆验算要求满足: 式中:B———墙厚; HP,HA———对墙趾A的力臂,m; Kq———抗倾覆安全系数。其余符号同上。

水泥搅拌桩施工方案72617

滁河汊河船闸重建工程01标水泥搅拌桩施工方案 中建筑港集团有限公司 滁河汊河船闸重建工程01标项目经理部 二0一七年七月

目录 一、编制依据 (1) 二、工程概况 (1) 三、施工部署 (2) 四、施工进度计划 (3) 五、施工前期准备 (4) 六、施工工艺及施工方法 (4) 6.1钉形水泥搅拌桩施工 (4) 6.1.1试桩 (5) 6.1.2现场施工方法 (6) 6.1.3水泥搅拌桩施工要点 (8) 6.2水泥搅拌桩施工 (9) 6.2.1水泥搅拌桩施工工艺流程 (9) 6.2.2施工方法 (10) 七、质量保证措施 (11) 7.1质量控制措施 (11) 7.2质量检验 (14) 7.3技术措施 (14) 7.4冬季施工保证措施 (14) 八、安全保证措施 (15) 九、环境保护措施 (16) 十、附件 (16)

滁河汊河船闸重建工程01标 水泥搅拌桩施工方案 一、编制依据 1、《滁河汊河船闸重建工程施工招标文件》; 2、《滁河汊河船闸重建工程》施工图设计第一册、第二册; 3、《水运工程质量检验标准》(JTS257-2008); 4、《水泥土配合比设计规程》(JGJ/T 233-2011); 5、《钉形水泥土双向搅拌桩复合地基技术规程》(苏JG/T024-2007) 6、《建筑地基处理技术规范》(JGJ 79-2012) 二、工程概况 汊河集枢纽位于滁河、清流河、来安河三河交汇河段,由节制闸和船闸组成,汊河船闸与节制闸分开布置,节制闸布置在清流河和滁河连接河段上,船闸布置在滁河的老河道上,在老船闸位置拆除重建,节制闸与船闸轴线交角约50?。 本工程水泥搅拌桩分为临时支护工程和永久工程。 临时工程主要布置在两排支护桩之间采用3排直径0.6m水泥土双向搅拌桩进行桩间土加固及堵漏,基坑边坡坡面上采用3~6排直径0.6m水泥土双向搅拌桩进行加固。 永久工程主要布置至结构物以下,船闸主体、导航墙及导航段护底部分,底板标高处所对应的地层为淤泥粉质粘土,厚度大,强度低,粉土、粉砂薄层,工程性质差,无法满足主体结构物对荷重及变形要求,不宜直接作为持力层,采用水泥搅拌桩进行地基处理。 ①上闸首、下闸首、上游导航墙、下游导航墙钉型水泥土搅拌桩的布置:桩径 0.6m,扩大头部分桩径1.2m,平均桩长12m,其中扩大头部位桩长8.0m,桩距 1.6m,正方形布置。上闸首布置756根,下闸首布置756根,两闸首总进尺18144 m。上游导航墙布置总桩数1440根,总进尺17280m ,下游导航墙布置桩总数769根,总进尺 9228m。 ②闸室钉型水泥土搅拌桩布置:桩径0.6m,扩大头部分桩径 1.2m,平均桩长

基坑支护结构设计(全套图纸CAD)

第一章设计方案综合说明 概述 1.1.1 工程概况 拟建南京新城科技园B地块深基坑位于河西香山路和嘉陵江东街交会处东南隅,北侧为规四路(隔马路为A地块基坑),东侧为青石路。B地块±0.00m 相当于绝对标高+7.40m。基坑挖深为~8.0m。拟建场地属Ⅱ级复杂场地。该基坑用地面积约20000 m2,包括3幢地上建筑和一层地下室。建筑物采用框架结构,最大单柱荷载标准值为23000KN,拟采用钻孔灌注桩基础设计方案。 有关拟建物层数、结构型式、柱网和室内外地坪设计标高具体见表。 | 本工程重要性等级为二级,抗震设防类别为丙类。根据该工程重要性等级、场地复杂程度和地基复杂程度,按《岩土工程勘察规范》(GB50021-2001)节,划分该工程岩土工程勘察等级为乙级。 #

1.1.2 基坑周边环境条件 基坑四面均为马路,下设通讯电缆、煤气管线等设施。北侧隔马路为基坑(A地块) 1.1.3 工程水文地质条件 拟建场地地形总体较为平坦,地面高程在~8.78m(吴淞高程系)之间。对照场地地形图看,场内原有沟塘已被填埋整平。场地地貌单元属长江漫滩。 在基坑支护影响范围内,自上而下有下列土层: ①~1杂填土:杂色,松散,由粉质粘土混碎砖、碎石和砼块等建筑垃圾填积,其中~4.5m填料为粉细砂,填龄不足2年。层厚~4.9m; ①~2素填土:黄灰~灰色,可~软塑,由粉质粘土、粘土混少量碎砖石填积,含少量腐植物,填龄在10年以上。埋深~5.3m,层厚~2.6m; ①~2a淤泥、淤泥质填土:黑灰色,流塑,含腐植物,分布于暗塘底部,填龄不足10年。埋深~2.9m,层厚~4.0m; \ ②~1粉质粘土、粘土:灰黄色~灰色,软~可塑,切面有光泽,韧性、干强度较高。埋深~4.7m,层厚~2.1m; ②~2淤泥质粉质粘土:灰色,流塑,含腐植物,夹薄层粉土,切面稍有光泽,韧性、干强度中等。埋深~6.2m,层厚~12.4m; ②~2a粉质粘土与粉土互层:灰色,粉质粘土为流塑,粉土呈稍密,局部为流塑淤泥质粉质粘土,具水平层理。切面光泽反应弱,摇震反应中等,韧性、干强度低。埋深~5.7m,层厚~3.3m; ②~3粉质粘土、淤泥质粉质粘土:灰色,流塑,夹薄层(局部为层状)粉土、粉砂,具水平层理。切面稍有光泽,有轻微摇震出水反应,韧性、干强度中等偏低。埋深~15.6m,层厚~7.7m; ②~4粉质粘土、淤泥质粉质粘土夹粉土、粉砂:灰色,粉质粘土、淤泥质粉质粘土为流塑,粉土、粉砂为稍~中密,局部为互层状,具水平层理。光泽反应弱,摇震反应中等,韧性、干强度较低。埋深~21.5m,层厚~8.8m; ②~5粉细砂:青灰~灰色,中密,砂颗粒成分以石英质为主,含少量腐植物及云母碎片。埋深~25.6m,层厚~12.3m; ②~5a粉质粘土、淤泥质粉质粘土:灰色,流塑,切面稍有光泽,韧性、干强度中等。呈透镜体状分布于②~5层中。埋深~25.0m,层厚~0.5m; ②~6细砂:青灰色,密实,局部为粉砂,砂颗粒成分以石英质为主,含云母碎片。层底部局部地段含少量卵砾石。埋深~33.5m,层厚~22.1m; · ②~6a淤泥质粉质粘土、粉质粘土,灰色,流~ 软塑,切面稍有光泽,韧性、干强度中等。呈透镜体状分布于②~6层中。埋深~45.5m,层厚~1.4m。 ⑤~1强风化泥岩、泥质粉砂岩:棕红~棕褐色,风化强烈,呈土状,遇水极易软化,属极软岩,岩体基质本量等级分类属Ⅴ级。埋深~52.3m,层厚~5.8m。 ⑤~2中风化粉砂质泥岩、泥质粉砂岩:紫红~棕褐色,泥质胶结,夹层状泥岩,属极软岩~软岩,岩体较为完整,有少量裂隙发育,充填有石膏,遇

深基坑支护结构设计分析

深基坑支护结构设计分析 近年来建设行业发展的速度较快,建筑施工技术也得以较快的发展起来,深基坑施工作为建筑施工中非常重要的一项工作,其不仅具有复杂性,而且对技术要求也较高。所以需要对深基坑支护结构进行合理设计,确保其工程进度、质量和造价都能达到预期的标准。文中从深基坑支护方案设计要点入手,对深基坑支护结构类型进行了分析,并进一步对深基坑支护结构中技术难点进行了具体阐述。 标签:深基坑支护;设计要点;结构类型;技术难点 1 深基坑支护方案设计要点 在深基坑支护施工中,由于对其影响因素较多,所以需要在设计方案上要进行详细的设计,明确的确定围护结构形式、支撑和锚固系统、地下水控制及深基坑检测等多方面的问题,确保深基坑支护方案的合理性。 1.1 影响深基坑支护方案确定的主要因素 在进行深基坑支护结构设计时,对其方案带来影响的因素较多,不仅需要受到深基坑所处场地的土层及土质物理学性质的影响,同时还会受到周边管线及临近建筑物的影响,地下水的分布及水位的高也会对深基坑支护方案的设计带来一定的影响,另外还要在方案设计时充分的考虑到深基坑的形状、主建筑物的位置、基坑深度、造价、工期及施工难度等多方面的因素,一旦在方案设计时考虑不周全,则极易给工程施工带来较大的影响。 1.2 深基坑工程总体方案主要有顺作法、逆作法、顺逆结合法 在深基坑工程施工中,顺作法是较为传统的施工方法,而且其施工工艺也较为成熟,支护结构和主体结构也较为独立,施工具有较好的便捷性。而逆作法是近几年才开始应用的施工方法,其主要以地下室楼层梁板作为支撑,其支护结构和主体结构处于结合的状态,施工难度较大,但经济性较好。目前在一些施工中,通常会将顺作法和逆作法有效的结合起来,利用中心位置顺作,而周边逆作的方式,充分的发挥这两种施工方法的优点,对推动深基坑支护技术的发展起到了积极的作用。 目前在深基坑工程施工时,通常利用排桩和地下连续墙来作为围护结构,这两种围护结构都处具自身的优势。排桩多以混凝土灌注桩为主,不仅施工简单,而且能够灵活进行布置,成本较低。地下连续墙具有较好的整体性,防水性能也较好,但由于其工艺复杂,入岩难度较大,工程造价一直居高不下。 另外就是深基坑的锚固系统,经常使用内支撑和锚杆来进行施工,内支撑虽然能够起到有效抑制变形的作用,而且也不需要侵入周边的地下空间,但在施工

相关文档
相关文档 最新文档