文档库 最新最全的文档下载
当前位置:文档库 › 电子管基础知识

电子管基础知识

电子管基础知识
电子管基础知识

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。

一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。

这里的初学者指有一定的电路理论基础,最好有一定的实做基础

且对电子管工作原理有一定了解的

(1)整机及各单元级估算

1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W

左右输出功率。当然实际可以根据个人需求调整。

2,根据功率确定功放输出级电路程式。

对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。

3,根据音源和输出功率确定整机电压增益。

一般现代音源最大输出电压为2Vrms,而平均电压却只有左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记,则整机所需增益A=Uout/Uin=16倍

4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列)

目前常用功率三极管有2A3,300B,811,211,845,805

常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813

束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。

通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。

工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。

而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右

关于电子管特性曲线的知识可以参照

以下链接:/boardID=10&ID=15516&replyID=154656&skin=0

三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

链接如下:

/boardID=10&ID=8354&skin=0

在决定输出级用管和电路程式之后,根据输出级功率管满功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in(这里的U'in需要折算成峰峰值)确定电压放大级增益。Au=Up/U'in。例如2A3单管单端所需推动电压峰峰值为90 V,输入信号峰峰值为,则所需增益Au=90/=64倍,若为开环放大,则取倍余量,实际所需开环放大量Au'=70倍。对于多极管或者推挽功放,常施加整机环路负反馈,这时取2倍余量Au'=128倍,整机反馈量也可以控制在6db以内。

如所需增益小于50倍,可以采用三极管或者五极管做单级电压放大。如所需增益大于50倍,可以采用三极管的多级电压放大或者五极管做单级电压放大,这些将在下面的电压放大级设计里提到。

2,电压放大级设计概要

电子管电压放大级通常由单管共阴放大器组成,其基本电路如下图所示:

放大电路分为无信号输入时的静态工作情况和有信号输入后的动态工作情况。对放大电路工作情况分析有两种方法:图解分析法和等效电路分析法。作为简易设计,这里主要介绍图解分析法。对于电子管工作原理及特性曲线尚不了解的,\ 一、静态工作情况分析

分析静态工作情况,主要分析其屏极电压Ua,屏极电流Ia和栅极偏压Ug。下面采用图解分析法进行分析。简易分析参照链接如下:/

二、动态工作情况分析

静态工作情况选择是为了动态工作具备良好的条件。电压放大级工作于小信号,只要电路设计得当,非线性失真度较小,基本可以忽略不计。所以,对电压放大级动态情况分析主要有电压放大倍数,频率失真程度及输入、输出阻抗等。(一)电压放大倍数简易分析

根据图一所示,其交流等效负载R'L=Ra·RL/(Ra+RL)

其放大倍数(中频段)A=────────

1+ra/RL+ra/Ra

式中,u为电子管放大系数,ra为电子管内阻。

对于五极管,由于其内阻远大于R'L,所以其放大倍数可由下式计算:

A=gm·R'L

式中,gm为五极管跨导

(二)幅频响应简易定性分析

在其他参数一定的情况下,低频响应主要受到输出耦合电容C和阴极旁路电容C k的影响

输出耦合电容越大,阴极旁路电容越大,低频截至频率越低

高频响应主要受到信号源内阻,电子管极间电容(主要是Cga,屏栅间电容,由它产生密勒电容效应,粗略估算为u倍的Cga),本级输出阻抗和下一级输入对地电容的影响。

信号源内阻减小,电子管极间电容减小,本级输出阻抗减小以及下一级输入对地电容的减小都可以有效的提高高频上限截至频率。

(三)输入、输出阻抗简易分析

在一般情况下,输入阻抗主要由输入栅漏电阻Rg决定。高频段由于输入电容开始显现作用,逐渐成容性。

输出阻抗:在忽略分布电容的影响下,输出阻抗为电子管工作实际内阻和R'L

的并联值

因此尽量选择较小内阻的电子管以降低输出阻抗,避免分布电容对高频段的影响。

做放大倍数简易分析:

设6N1 u=35,ra=10k,图中RL=150K,Ra=75K

则放大倍数A=35/(1+10/150+10/75)=29倍

另外需要注意的地方是

1、电压放大级的最大输出电压能力要大于下一级需要的最大输入电压

2、实际电子管手册中往往给出电压放大管做共阴放大的各种工作条件和特性

给出的参数主要有电压放大倍数A,最大输出电压Eo

例如6SN7电子管手册中,所给出的条件如图所示:

可以方便的查阅,以供设计便利

电子五极管和电子三极管做RC耦合单级共阴放大的选择问题:

当输出信号幅值远小于可能输出最大电压幅值时,则选用五极管电路失真较小当输出信号幅值较大时,则选用三极管电路失真较小

但五极管电路增益较高,输出幅值较高u三极管来得大

由于五极管电路输出阻抗较大,不适于后级输入电容较大的电路,因此五极管更适宜做为小信号输入级,或者驱动输入电容较小的束射四极管、五极管标准接法电路。

电压放大级信号相位的判断:

对于电子管电压放大器,共有三种电路放大程式,共阴放大器、共栅放大器、阴极输出器

他们的特点一一对应晶体管电路中的共发射极电路、共基极电路、射极输出器(共集电极电路)。

在常见的电子管共阴放大器中,如果把栅极看作对地短路,没有信号输入,此时在阴极施加信号,则形成了共栅放大。

共阴放大中,栅极输入信号和屏极输出信号反相,此时阴极和栅极信号同相

共栅放大中,阴极输入信号和屏极输出信号同相

用(+)表示同相,(-)表示反相,则同时标注在图中如下:

图中黑色标号表示栅极做输入端,红色表示阴极做输入端

采用这种相位标注法可以为日后判断反馈相位提供一定的基础

倒相级简易介绍

倒相级也属于电压放大器的一种,它的分析计算方法原理同普通电压放大单元,

它负责产生一对幅值相等,相位相反的信号以提供推挽输出级使用。

常见的倒相电路如图所示:

相位已经标注在图上分析。这种倒相主要是从上管的输出信号Usc1中取出一部分信号Usr2供给下管进行放大,得到一对倒相信号Usc1和Usc2。

此种倒相形式较为简单,其原理是利用了电子管栅极输入信号时,屏极和阴极输出信号相反来达到目的的。

长尾倒相级是差分放大器的变形。相位已经标注在图上。

信号由V1管栅极输入,同时通过屏极和阴极输出一对相位相反的信号

V1管阴极输出阴极信号耦合到V2管阴极输入,V2管栅极交流信号对地通过电容C短路,是共栅放大器。由V2管屏极输出和V2管阴极相位相同的信号,可见是和V1阴极信号同相的,和V1屏极反相的,从而获得了一对倒相信号。由于电子管屏阴放大倍数不同,阴极耦合程度越高倒相对称度越好,因此可以增加阴极电位,即通过Rk2来抬高电位,增加耦合度,Rk1,Rg1,Rg2保证两管的正常静态工作点。较大的阴极电阻Rk2就是通常称作的”长尾巴“,在差分电路里常用恒流源替代,因为恒流源等效交流内阻趋向无穷大。Rg1和Rg2是和普通共阴放大器电路中Rg一样的栅漏电阻。

由于长尾电路V1管栅极需要高电位来确保”长尾巴“,所以常和前一级电路进行直耦,变形为我们熟悉的长尾电路,如图所示,其电路原理是相同的

由于长尾倒相的尾巴不可能无限长,故对称性始终受到限制,上管的放大倍数略大于下管

一般设计时,使下管的屏极电阻值为上管的倍,以平衡输出电压幅值。而差分放大则没有这个缺点。

3,功率放大级设计概要

功率放大级设置在放大通道的末级,工作于大信号状态,屏极接的是输出变压器、负载是具有电抗性质的扬声器,所以是非线性失真、频率失真的主要产生级。功率放大级着重考虑的问题是失真尽可能的小,在满足这点的情况下,输出信号功率尽可能的大,转换效率尽可能的高。

功率放大管主要有如下的重要定额和特性:

1,最大屏极耗散功率,最大屏极电流,最大屏极脉冲电流

多极管和工作于有栅流电路的功率管还有这些特性:最大帘栅极耗散功率,最大栅极耗散功率,最大栅极电流。

2,输出功率。所能输出功率的大小,主要决定于功率管的型号和功放级采用的电路程式。不同型号的功率管采用不同的电路程式。功率管栅极的推动信号电压或功率强度也有不同的要求,当推动信号强度达到要求后,功放级最大可能输出功率则与推动信号强度无关。

3,非线性失真。功放级工作于大信号状态,所以正常情况下整机的非线性失真主要主要产生于功率放大级。功放级的非线性失真程度除了与电路设计有关外,功放管本身产生的非线性失真常达5%左右,有的甚至达到10%左右。

静态情况分析:

功率放大级基本工作电路结构如图所示:

图中所示的是束射四极管,屏极直流回路是变压器初级绕组,绕组的直流电阻很小,所以屏极电压Ua近似等于供电电压Ea

分析功率放大级的静态工作情况,主要分析他的屏极功耗Pa,屏流Ia,静态屏压Ua,静态栅偏压Ug。其分析方法主要和电压放大级类似,但是直流负载线是过Ua的一条垂直于横坐标的直线。

动态情况分析和其他的简易分析参见如下链接:

/boardID=10&ID=5914&replyID=52873&skin=0

/boardID=10&ID=8874&replyID=85105&skin=0

功率放大级的放大类型与工作状态分析:

电压放大级和单管单端放大级为了减小非线性失真,静态工作点Q应该选择在负载直线的中央部分。如图所示:

图也表明了不同的负载线造成的不同工作情况带来的失真

然而,为了提高效率,只要配合一定的电路程式,静态工作点也可以工作于更低的偏置

为此,功率放大级分为A类(甲类)、B类(乙类),AB类(甲乙类)

仔细分,还可以分为A1类,A2类,B1类,B2类,AB1类,AB2类

这里的1类表示始终功率管工作于没有栅流的驱动状态,2类表示允许出现栅流

常见A类,AB1类的简易定性分析:

A类放大,在信号整个周期内屏极回路均有屏流,它屏流变化非常小,非线性失真小,屏极效率低,屏极回路直流分量大。

AB1类放大,静态工作点稍靠近屏流的截至点,整个信号周期内会有屏流截至状态出现,造成较大的非线性失真,但是屏极效率较高。为了解决非线性失真的问题,在电路程式上采用推挽放大,由两管轮流工作,弥补了屏流截至部分造成的失真,但是需要一对幅值相等,相位相反的推动信号来驱动。

AB1类推挽放大的设计通常可以查询所用功率电子管手册来完成,或者掌握原理,利用特性曲线求解。

例如EL34电子管手册上给出了多组AB1类推挽工作状态,如下图所示的是其中一组:

4,电源供给部分概要

负载特性可以看出,在大电流变化场合,电感输入式(Γ型滤波)滤波是最佳选择

但是对于电感参数选择有具体要求,其主要目的是保证电感的续流,故负载电流过小不适宜应用。

表中还可以看出,对于半波整流电路,电容输入式滤波,在接近空载的轻负载,小电流特性下,输出电压近似接近全波整流。

另外,桥式整流也是全波整流,输出特性是一致的,不应该特殊化

电子管整流由于和晶体管整流原理相同,不多做解释

5,整机设计及负反馈介绍

负反馈放大器介绍:

取放大器输出信号反馈到输入电路中,称为负反馈放大器,亦称闭环放大器。反馈信号强度与输出信号电压成正比的,称电压负反馈;反馈信号强度与输出信号电流成正比的,称电流负反馈。

负反馈除减小电路的放大倍数以外,也能在一定程度上改善放大器的性能。主要是:拓展了频率带宽,减小了失真,降低了噪声。

从反馈信号和输入信号的引入方式上,又可以将负反馈分为并联负反馈和串连负反馈两类。顾名思义,串连负反馈即反馈信号和输入信号呈串连关系。

综合起来,反馈可以细分成:电压串连负反馈,电流串连负反馈,电压并联负反馈,电流并联负反馈。他们除了具有负反馈的共同特点以外,还不同程度的影响了输入输出阻抗。

其中,电压反馈降低了输出阻抗,电流反馈增加了输出阻抗;并联反馈降低了输入阻抗,串连反馈增加了输入阻抗。例如,电压并联负反馈既降低了输入阻抗,又降低了输出阻抗;而电流串连负反馈则同时增加了输出,输入阻抗。

设反馈信号和输出信号的比值为β,称为反馈系数。对于电压反馈,反馈信号为Uf,输出信号为Uout,则反馈系数β=Uf/Uout

设系统开环放大倍数为Ko,则加入负反馈后的闭环放大倍数Kf可由以下简略公式计算得出:

Kf=Ko/(1+βKo)

若开环增益Ko足够大,且反馈深度较深的情况下,即βKo 》1时(通常当βK o>10时可以认为βKo》1),公式可以简化为Kf=1/β,即与开环放大倍数无关,这就是在晶体管运算放大器电路中常见的闭环情况。

典型的单级电压并联负反馈如图所示:

这里只作简易分析:放大系数Kf=Ko/(1+βKo)=Ko/(1+Ko·RF/Rs),

Rs为图中信号源内阻,由于栅漏电阻Rg往往远大于Rs,故此处忽略不计。

输入阻抗 Rif=Rg||[Rf/(1+Ko)]

而此时的电子管等效内阻 raf=ra/(1+uβ),等效放大系数u=u/(1+uβ)

这表明,u值很高的束射四极管和五极管,当β值较大的情况下,其等效内阻可以接近甚至小于三极管的内阻值。

典型的单级电流串连负反馈如图所示:

uR'L

放大倍数 Kf=────────

ra+R'L+(1+u)Rk

其输入阻抗Rif和原输入阻抗Ri的关系为 Rif=(1+βKo)Ri,是增大的

而此时电子管的等效内阻 raf=ra+(1+u)Rk,可见电流串连负反馈将开环时的管内阻增大了 (1+u)Rk 倍。

特殊的电压串连负反馈电路:阴极输出器,简易分析见下链接

/boardID=10&ID=12120&replyID=118458&skin=0

串连电压负反馈和并联电流负反馈多用于多级反馈电路,可以利用上述方法分析。

多种负反馈组合使用称为混合负反馈电路。

简易实例分析:

电路由三部分组成:共阴电压放大单元(V1,Ra,Rk组成),阴极输出单元(V 2及其周边元件组成),负反馈网络(Rf和Rs组成),另有120K电阻和33uF 电容组成了电源退耦部分。

共阴放大单元简易计算:

查表得12AX7特性如下,ra=50K,u=100

电路采用直耦,由于阴极输出器输入阻抗甚高,忽略不计,故交流等效阻抗R‘L =Ra=220K

可以看出,电压放大级是典型的电流串连负反馈电路,套用上述分析公式,得本级放大倍数 K1=100×220K/[50K+220K+(1+100)×2K]=倍

阴极输出器放大倍数小于且约等于1,设阴极输出器放大倍数 K2=

则,整机开环放大倍数 Ko=K1·K2=×=42倍

由于反馈信号由电阻Rf与信号源内阻Rs分压获得(电子管V1输入阻抗甚大,忽略不计),故反馈系数

β=Uf/Uo=Rf/Rs=100K/1M=

整机环路负反馈属于典型的电压并联负反馈,故闭环放大倍数套用上述公式,得

Kf=Ko/(1+βKo)=42/(1+×42)=8倍

实际实验结果证明,采用此线路程式,选用12AX7管,实测闭环放大倍数为倍选用放大系数u=70的6N9P管,实测闭环放大倍数为倍

可以认为计算结果合理,也可以看出,负反馈稳定了电路参数。

附,反馈深度对数计算方法:

反馈深度 Ku=20lg(Kf/Ko)

如果反馈后,放大倍数Kf=

则反馈深度 Ku==-6db,即反馈降低了6db电压增益

需要特别指出的是,深度负反馈电路在降低谐波失真的同时,却可能引入新的互调,瞬态互调失真,因此需要谨慎应用。

简易单管单端功放电路设计实例:

设计一输出功率为8W的功率放大器。要求谐波失真小于5%。

1、选用功率放大管。目前常用的功率放大管中,查手册可知EL34五极管做单端A1类放大,其输出功率可达11W,但实际电路中往往存在各类损耗和误差,但输出8W功率还是不成问题,所以选择EL34做输出管比较合适。同时由于功率输出级失真较大,需要引入负反馈。

2、确定电路程式。输出级已经确定采用A1类单端放大,为了稳定起见,采用阴极自给偏置提供栅极所需要的偏置电压。查手册可知EL34满功率输出需要推动电压,设输入音频信号为,则电压放大级需要倍放大量。由此可见采用三极管做一级共阴放大即可满足要求。由于满功率输出时EL34功率管失真达10%,需要施加一定量的负反馈,故设定电压放大级电压增益Au=32倍。满功率输出8W 在8欧姆负载上电压有效值Uo=8Vrms,输入电压,整机闭环增益Kf=16倍。

3、功率级电路具体结构依照手册中EL34功放管A1类放大应用值数据和要求安排。如图所示:

4、根据图示数据和要求,做出功率放大级单元电路,如图所示:

实际取Rk=200欧姆

由于流过Rk的电流包括帘栅极电流和屏极电流,Ik=83+13=96mA

保守计算设Ik=100mA,则Rk实际承受功率P=Ik·Ik·Rk=××200Ω=2W 为了长时间工作保证稳定,选取标称功率5W的电阻

阴极旁路电容耐压为了安全起见,选取两倍于阴极电阻两端的电压值。阴极电阻两端电压值Uk=Rk·Ik=96mA×200Ω=,取系列耐压值50V的电解电容

阴极旁路电容的容量依据功放工作最低截至频率而定,

设最低截至频率fL=20Hz,则Ck不应小于如下公式计算值:

Ck≥3/2π·fL·Rk=3/(2××20×200)==120uF

这里取Ck=330uF

功率输出级电压增益:Au1=1(计算略)

5、电压放大级计算。已经设定电压放大级增益Au≥32倍,通常选择电压放大管u=2·Au=64,查手册12AT7放大系数u=70,符合要求。故选择12AT7做电压

放大管。

常用负反馈引入方法如图所示:

电压串连负反馈,反馈回路由Rf和Rk2组成,反馈系数β=Rk2/Rf

同时注意到为了引入整机的电压串连负反馈,Rk2同时引入了电压放大级本级的电流串连负反馈,在计算电压放大级时要一并考虑。

电压放大级电路结构如图所示:

查手册得12AT7参数,内阻ra=10K,放大系数u=70

设定供电电压为Ea=250V,通常屏极电阻Ra为内阻得2-10倍,这里选取Ra =24K

功率放大级计算时已确定EL34栅漏电阻Rg=240K,10倍于Ra,可以忽略不计故电压放大级交流负载电阻R‘L=Ra=24K

利用手册上12AT7特性曲线图做静态分析(具体方法参见电压放大级分析,此处略),

得出12AT7静态工作点,栅偏压Ug=-1V,屏压Ua=124V,屏流Ia=5mA

作图中得出最大输出峰峰值电压Upp已远大于EL34满功率驱动电压峰峰值,故无需验证。

电压放大级增益计算,Au2=35倍,满足预先要求得32倍

整机开环增益,Ko=Au1·Au2=1×35=35倍

整机需要闭环增益根据前述,已经计算得Kf=16倍,反馈系数β=1/Kf-1/K o≈

反馈电阻Rf=Rk1/β=200/=,选取Rf=

耦合电容C应该满足系统低频下限

C≥3/2π·fL·Rg=1/(2××20×240K)=,取,耐压应大于本级直流供给电压,采用400V耐压系列。

电源部分设计各类资料介绍较多,不做详细计算。

整机电路如图所示:

各项验算工作从略。

推挽放大电路也有由各单元级组成,其工作原理是相同的,作为简易设计也比较容易,不再举例。

关于输出变压器的选择:输出变压器是为了电路服务的,只有针对某一电路设计的输出变压器,而没有什么输出变压器可以同时套用几个电路,即使它的初级阻抗一致。

在其他参数一定的情况下,输出变压器的分布电容基本和漏感成反比,是一对矛盾。

而不同的电路,不同的功率管所需的输出变压器初级电感量必然是不同的

常见的误区是:不结合电路和所用功率管,只讨论输出变压器是不合理的。

在相同的低频参数指标下,低内阻的300B只需要10-20H初级电感量就可以满足要求,而此时的6P3P却需要几十H的电感量,所以两者的分布参数也必然不

同。

对于低内阻管而言,所需初级电感量小,影响高频的主要因素是漏感

对于高内阻管而言,所需初级电感量大,影响高频的主要因素是分布电容。

这点在设计输出变压器的时候必须考虑,所以脱离电路谈输出变压器基本是没有意义的。

接下来请大家看电子管内部结构。这是颗用于高频放大的通用双三极管6N1。1是吸气剂;2是灯丝阴极和栅极的组合体;3就是阳极

现在打破玻壳,注意吸气剂颜色的变化,换句话说,一旦管子的吸气剂变成这种乳白色,不管玻壳破裂与否这颗管子都没用了。

瞧清楚!

1:阳极;2:栅极,栅极里白色部分是栅极和阴极的绝缘层;3 就是阴极,这是个扁型金属管,灯丝就包在里面啦。

MULLARD 的尸体

同样的,先贴上一些典型的线路,这里的单端线路主要以介绍一些大家能用的起,用的好的常用管为主,故300B,2A3这些贵族管不在介绍之列。

单端线路结构比较简洁

对于入门来说,我介绍一些比较简洁的线路,结构形式也大多一样。

由于是A类放大,工作点就要求比推挽放大严格一些。

这类线路元件对声音影响比较大,特别是开环的线路。

由于单端放大器由单个管子完成整个信号的放大,所以不存在推挽放大器那些失真,调试也较简单。可以说是投入少,效益高的一类放大器。通常说的胆味在这类放大器中比较容易体现。

单端放大器的末级可以由三极管组成(这里先讨论左特性三极管),也可以用多极管组成。三极管组成的放大器的开环失真比较小,内阻低,通常不加负反馈,声音比较通透温暖。但是功率三极管大多放大倍数低,要求推动电压较高,效率较低,同样的屏耗,输出功率较多极管来的小。

由多极管组成的放大器如果采用标准接法,失真较大,以奇次谐波失真为主,内阻较高对变压器制作和扬声器的控制都不利,通常需要加上负反馈,束射四极管声音浑厚而有力度,五极管声音清丽,他们的优点都是效率很高,推动要求不高,输出功率大。

多极管还可以接成三极管形式,这时的特性和三极管很想象,也不用加入负反馈。但是由于多极管设计的时候并未考虑这点,所以即使接成三极管,不少多极管线性仍不佳,又失去了多极管本身的特点,有时候得不偿失。

多极管的超线性接法是负反馈的一种,是三极管接法和标准接法的折中效果。但是多极管的超线性接法特性曲线一般手册里没有,又单端应用对工作点要求较高,所以一般比较难以获得良好的效果。需要小心应用。

线路虽然简洁了,但是微小的变化都会引起声音的灵敏变化这些线路的特点,所以即使相象的线路也会有不同的表现。

上面第一图采用的是高u管12AT7做放大,增益较大,但是没有像常规线路那样直接通过电容耦合推动输出级,而是直耦一级12AT7做阴极输出推动末级的6CA 7(EL34的束射管版本型号),这样的好处是第一级放大不受后一级栅漏电阻的影响而放大倍数下降,又阴极输出阻抗低,推动电流大,对声音的快速性有利,也解决了耦合电容充放电对声音的影响,由于第一第二级是直接耦合的,所以声音上来说没有什么不利影响。末级的EL34接成了三极管接法,帘栅极的100欧姆电阻为消振电阻,这个时候帘栅极是全反馈,交变电压较大,所以这个电阻的消振作用比保护限流来的大。这个线路最后加上了环路反馈,在开环失真不大的情况下加上少量反馈是可以接受的,如果不喜欢,在这个线路里完全可以不接。

第二图下面会单独解释

第三第四图是我们常见的单端线路结构,一级共阴推动功率输出级,容易制作,效果也不错,入门制作可以采用,即使是老鸟,也可以搭一个这种简单的线路配合不同的功率管试试不同功率管的音色。图三和图四不同的地方是,图三的功率

管加有阴极反馈,又是超线性接法,不仅效率高,失真也小,阻尼系数大,所以没有采用环路反馈也获得良好的放音效果。图四是典型的多极管标准接法+负反馈线路。

对第二个图的简单说明

第二个图是日本常见的超三极管接法,他的特点是多重反馈。

他利用12AT7中的一个三极管做第一级电压放大,另一个三极管的屏极和输出级功率管EL34屏极相接,利用三极管电流随屏压近似线性变化的特性引入反馈,由12AT7的输入管和反馈管的共用1K阴极电阻产生反馈作用。另一方面,反馈管的栅极又从EL34的栅极输入信号引入反馈,同样在阴极产生反馈作用,是一个双重反馈线路。100K的电位器VR可以调整反馈量并改变第一级增益。虽然是开环放大,但是整机在输出功率5W时,非线性失真仍然在1%以下,指标非常理想,日本的仿制者评论这线路的声音有一种特殊的魅力。不过我个人认为,这个线路采用6L6这些高内阻的管子效果较好,对于EL34来说,这线路反馈量较大,阻尼太高,声音比较直白,可能不是那么好听

看看网友们的作品你肯定也会动心

电子管,电子管基础知识大全(图) 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v;10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。

基础知识 音 响 技 术AVtechnology 因为要对一些管子变通使用,以获得好的应用效果,对于现在的发烧友来讲,也是为了追求音色而常采用的方法。常看到将五极管或束射功率管接成三极管使用的例子,这其中相当大部分是为了音色的缘故,因三极管状态的音色细腻而更富音乐性。同时的确有些电路需要将多极管变通使用以满足电路的要求。 对于束射功率管而言,接成三极管的方法通常是帘栅极通过一只小阻值的电阻(如100 Ω)接往屏极,这只小功率电阻的作用是抑制可能产生的自激。由于四极管的负阻效应,现在很少看到四极管在电路中应用的实例了。不过也有例外,如6S6,网上有人将它接成三极管用作耳机输出时有意想不到的音质表现,此接法是将第二栅极接往屏极作为公共屏极使用。甚至还有七极管接成三极管的实用例子,如1A2,在厂家对其作特性测试时就已经给出了接成三极管后的阳极特性曲线,其在接成三极管后有非常好的表现,表现出这类管子少见的大动态输入(虽然功率小,但它可承受高达12?V 的输入信号电压),其接成三极管后的阳极特性如图1所示。1A2接成三极管的方法是将除控 制栅和抑制栅(1A2的抑制栅已在管内连接到它的阴极)之外的所有栅极都接往它的屏极。 那么这些多极管在接成三极管时甚至二极管时有什么样的要求呢?会得到一只什么特性的三极管? 1 五极管接成三极管的接法 将五极管接成二极管使用时,它的所有栅极都同电子管的阳极相连(我想,现在大概没有发烧友将五极管接成二极管使用的,不过,据网上传说有个别特别高烧的朋友将300B 接成二极管进行整流,但这终属个别现象)。而将五极管接成三极管时,呈现的接法种类较多,大概分为如图2所示的3类。 图2(a)是用的最多的一类接法,a 1是一些五极管的抑制栅在管内已经接到电子管的阴极(如五极管6J1),在接成三极管时,将五极管的帘栅极接往电子管的屏极;a 2是一些电子管的抑制栅在管内没有接到阴极(如6J8P、6J4P、6J4等),在接成三极管时,将电子管的帘栅和抑制栅均接到电子管的阳极。在电子管手册中提供的将五极管接成三极管的曲线绝大部分都是按照图2中的a 1、 a 2类接法进行测试得到的结果。这类接法的效果是一个中放大系数的三极管。 多极管的特殊连接方式 电子管及胆机基础知识(三) 图1 三极管以后的阳极特性 图2 五极管接成三极管的接法 □田庆松

一起来学习电子管基础知识(最适合初学者) 起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右输出功率。当然实际可以根据个人需求调整。2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;

10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P (807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。

常用国产电子管参数

常用国产电子管参数 参数 类别 典型特性参数极限运用参数 用途备注 参数名称 灯丝阳极 第一 (控 制) 栅压 帘栅 内 阻 互(跨) 导 放 大 系 数 灯丝 最高 阳极 电压 最大 阳极 功耗 帘栅电 压 电 流 电 压 电 流 第 二 栅 压 第 二 栅 流 电压 (大) 电压 (小) 最高 电压 最大 功耗 符号U f I f U a I a U g1U g2Ig 2R i Sμ U f max U f min U a max P a M U g2m ax P g2 max 单位V A V mA V V mA kΩmA — v —V V V W V W 型 号 二

5AR 4 5 1.9 2 × 55 14 8 极 管 ZB 2= 75 n R l =2 k Ω 5Z1P52± 0.2 2× 500 125—————— 5.5 4.51400 6 2—— 5Z2P52± 0.2 2× 400 125—————— 5.5 4.51400 5 0—— 负载 2.7k Ω 5Z3P52± 0.3 2× 500 230—————— 5.5 4.51500115—— 负载 2kΩ 5Z4P52± 0.2 2× 500 122—————— 5.5 4.51300 6 0—— 负载 4.7k Ω

5Z8P52± 0.7 2× 500 400—————— 5.5 4.51700200—— 负载 1kΩ 5Z9P52± 0.3 2× 500 190—————— 5.5 4.51700100—— 负载 2.2k Ω 6Z4 6.30.62× 350 72——————7 5.71000 2 5—— 负载 5.2k Ω 6Z5P6.30.62× 400 70—————— 6.9 5.71100 3 0—— 负载 5.7k Ω 6H Z 6.30.3 2× 150 17——————7 5.74503—— 负载 10k Ω 300 B-98 5 30 45 -60 56 三极 管 300 BC 5 1.2 30 60 -60 5.3

电子管介绍 基本电子管一般有三个极,一个阴极 (K) 用来发射电子,一个阳极(A)用来吸收阴极所发射的电子,一个栅极(G)用来控制流到阳极的电子流量。阴极发射电子的基本条件是:阴极本身必须具有相当的热量,阴极又分两种,一种是直热式,它是由电流直接通过阴极使阴极发热而发射电子;另一种称旁热式阴极,其结构一般是一个空心金属管,管内装有绕成螺线形的灯丝,加上灯丝电压使灯丝发热从而使阴极发热而发射电子,现在日常用的多半是这种电子管(如图所示)。由阴极发射出来的电子穿过栅极金属丝间的空隙而达到阳极,由于栅极比阳极离阴极近得多,因而改变栅极电位对阳极电流的影响比改变阳极电压时大得多,这就是三极管的放大作用。换句话说就是栅极电压对阳极电流的控制作用。我们用一个参数称跨导(S)来表示.另外还有一个参数μ来描述电子管的放大系数,它的意义是说明了栅极电压控制阳流的能力比阳极电压对阳流的作用大多少倍。 为了提高电子管的放大系数,在三极管的阳极和控制栅极之间另外加入一个栅极称之为帘栅极,而构成四极管,由于帘栅极具有比阴极高很多的正电压,因此也是一个能力很强的加速电极,它使得电子以更高的速度迅速到达阳极,这样控制栅极的控制作用变得更为显著。因此比三极管具有更大的放大系数。但是由于帘栅极对电子的加速作用,高速运动的电子打到阳极,这些高速电子的动能很大,将从阳极上打出所谓二次电子,这些二次电子有些将被帘栅吸收形成帘栅电流,使帘栅电流上升导致帘栅电压的下降,从而导致阳极电流的下降,为此四极管的放大系数受到一定而限制。 为了解决上述矛盾,在四极管帘栅极外的两侧再加入一对与阴极相连的集射极,由于集射极的电位与阴极相同,所以对电子有排斥作用,使得电子在通过帘栅极之后在集射极的作用下按一定方向前进并形成扁形射束,这扁形电子射束的电子密度很大,从而形成了一个低压区,从阳极上打出来的二次电子受到这个低压区的排斥作用而被推回到阳极,从而使帘栅电流大大减少,电子管的放大能力得而加强,这种电子管我们称为束射四极管。束射四极管不但放大系数较三极管为高,而且其阳极面积较大,允许通过较大的电流,因此现在的功放机常用到它作为功率放大。

常用电子管资料

常用电子管资料 12c 3p 三极管分米波振荡 12g 2p 复合管检波, 低频电压放大和自动音量控制 12h3p 二极管超高频检波及变频 12j1s 锐截止五极管小功率放大及高频振荡 12k3p 遥截止五极管高频电压放大 13p1p 输出五极管束射四极管低频功率放大1b2 复合管检波和低频电压放大 1k2 遥截止五极管高频电压放大 1z1 二极管电视行回扫回程脉冲电压整流 1z11 二极管电视行扫描回程脉冲电压整流 1z1b 二极管电视行扫描回程脉冲电压整流 1z7b 二极管高频脉冲整流 2d1p 二极管分米波波段作检波用 2j14b 锐截止五极管高频电压放大 2j27 锐截止五极管高频电压放大 2j27s 锐截止五极管小功率放大及高频振荡 2p19b 输出五极管束射四极管功率放大

2p2 输出五极管束射四极管低频功率放大 2p29 输出五极管束射四极管小功率发射 2p29o 输出五极管束射四极管小功率发射 2p29s 输出五极管束射四极管功率放大及高频振荡 2p3 输出五极管束射四极管功率放大 2z2p 二极管高压整流 2z2p-t 二极管高压整流 4j1s 锐截止五极管小功率放大及高频振荡 4p1s 输出五极管束射四极管振荡及功率放大5z1p 二极管小功率全波整流 5z2p 二极管小功率全波整流 5z3p 二极管小功率全波整流 5z3pa 二极管专用设备整流 5z4p 二极管小功率全波整流 5z4pa 二极管小功率全波整流 5z8p 二极管全波整流 5z9p 二极管全波整流 6b8p 复合管高频和低频电压放大, 检波和自动音量控制 6c 1 三极管高频电压放大 6c 11 三极管超高频振荡

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为 核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一 定了解的 (1)整机及各单元级估算1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右 输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10- 20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有左右。由输出功率确定输出电压有效值:Uout="—(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W俞出功率的功放,额定负载8欧姆,则其Uout= 8V,输入电压Uin记, 则整机所需增益A= Uout/Uin = 16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不 在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%- 25%,这 里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%- 30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 以下链接:/boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 链接如下: /boardID=10&ID=8354&skin=0 在决定输出级用管和电路程式之后,根据输出级功率管满 功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in (这里的U'in需要折算成峰峰值)确定电压放大级增益。Au= Up/U'in。例如2A3单管单端所需推动电压峰峰

常用电子管资料 12c 3p 三极管分米波振荡 12g 2p 复合管检波, 低频电压放大和自动音量控制 12h3p 二极管超高频检波及变频 12j1s 锐截止五极管小功率放大及高频振荡 12k3p 遥截止五极管高频电压放大 13p1p 输出五极管束射四极管低频功率放大 1b2 复合管检波和低频电压放大 1k2 遥截止五极管高频电压放大 1z1 二极管电视行回扫回程脉冲电压整流 1z11 二极管电视行扫描回程脉冲电压整流 1z1b 二极管电视行扫描回程脉冲电压整流 1z7b 二极管高频脉冲整流 2d1p 二极管分米波波段作检波用 2j14b 锐截止五极管高频电压放大 2j27 锐截止五极管高频电压放大 2j27s 锐截止五极管小功率放大及高频振荡 2p19b 输出五极管束射四极管功率放大 2p2 输出五极管束射四极管低频功率放大 2p29 输出五极管束射四极管小功率发射 2p29o 输出五极管束射四极管小功率发射 2p29s 输出五极管束射四极管功率放大及高频振荡 2p3 输出五极管束射四极管功率放大 2z2p 二极管高压整流 2z2p-t 二极管高压整流 4j1s 锐截止五极管小功率放大及高频振荡 4p1s 输出五极管束射四极管振荡及功率放大

5z1p 二极管小功率全波整流 5z2p 二极管小功率全波整流 5z3p 二极管小功率全波整流 5z3pa 二极管专用设备整流 5z4p 二极管小功率全波整流 5z4pa 二极管小功率全波整流 5z8p 二极管全波整流 5z9p 二极管全波整流 6b8p 复合管高频和低频电压放大, 检波和自动音量控制6c 1 三极管高频电压放大 6c 11 三极管超高频振荡 6c 12 三极管栅地电路中作低噪声超高频放大 6c 16 三极管宽频带电压放大 6c 19 三极管稳压电路中作电压调整管 6c 1j 三极管超高频振荡 6c 3 三极管宽频带高频电压放大 6c 3-q 三极管宽频带高频电压放大 6c 31b-q 三极管电压放大 6c 32b-q 三极管电压放大 6c 4 三极管宽频带高频电压放大 6c 4-q 三极管宽频带高频电压放大 6c 5d 三极管分米和厘米波波段的小功率振荡 6c 5p 三极管检波和低频电压放大 6c 6b 三极管低频电压放大及高频振荡 6c 6b-m 三极管低频电压放大及高频振荡 6c 6b-q 三极管低频电压放大及高频振荡 6c 7b 三极管低频电压放大 6c 7b-q 三极管低频电压放大 6c 8p 三极管高频脉冲振荡 6d3d 二极管分米波和厘米波的上限作检波用

常用电压放大级即前级放大胆管代换表6N1ECC85,6AQ8,6H1л 6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12AT7 ECC81,CV4024,6201,B739,A2900,2025,ECC8015 6N9P 6SL7,5691,33S29,VT229 6F2ECF82,6U8 6N26H2л 电子管代换及说明 可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S,B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。 可以直接代用12AX7的管子有:ECC83,ECC803S,B339,E283CC,M8137,CV492,CV4004,CV8156,6057,7729。7025,5751,7058,6N4。 前级管的选择:12AX7:品牌一:AMPEREX 『橙字』『地球嘜』品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』SYLVANIA 5157。12AU7:品牌一:AMPEREX『地球嘜』品牌二:MULLARD ecc82 6922:品牌一:西门子CCA品牌二:AMPEREX 7308 PHILIPS电子管大家族 “买Philips电子管?不是真的吧,他们好像只是生产灯泡和光管,其音响用电子管的质素想必好不到哪里吧!”,“Philips电子管?他们根本没有生产音响用电子管,全部都是买别人家的出品回来印牌发售,又

夏日温度较高,请不要让胆机连续工作超过3小时,并做到人走灯灭,这样可以延长胆管和机器的寿命,并且节能环保。电子管是有寿命的,平均1000小时,长时间连续开机会缩短寿命。 电子管的安装顺序,正对着机器面板和电子管,从左到右,分别是: 5Z4PA,WY3P,6P3(EL34),6P3(EL34),6N9P(此管正常工作只有两个小亮点,且温度不高,特性如此,无需烦扰) --------------------------------------------------------------------- 1.机器最左边的开关是电源开关,右面的开关是音箱/耳机选择切换开关。当您使用耳机时,如果这时候同时接着音箱,为了使音箱不响而不至于干扰耳机的使用,请将开关打到Headphone档。 2.为保证胆机正常工作,请您保证开机前音箱或耳机连接可靠。如果您不用音箱,只想作为耳机放大器用也是可以的,但是要注意,如果不接音箱,那么第二个开关不能打到Speaker这个档上(必须一直打到Headphone档,耳机必须要插好),否则相当于输出变压器空载,有烧输出变压器的可能。如果您偶尔一次两次忘记了或者操作失误,也是没有关系的,这个就好比开车不系安全带一样,不是一定会出事,但是一次两次,十次八次不一定烧,但是经常这么搞,难免会出事。 3.电子管在使用中会很烫,因此机器在使用过程中要注意散热,不要在机器上面覆盖毛巾等,注意不要让小朋友用手去碰电子管以避免烫伤。机器应该放置在四周和上方有较大空间的地方,以方便机器散热。

4.更换电子管,要用手捏住管腰的部分(下图中金属管腰或者黑色/红色的管腰部分),边向上拔,边左右摇动这样比较容易拔出来。禁止手握住玻璃部分向上拔,这样会造成电子管玻壳和管腰的松动。另外换管子要等机器关机冷却后再拔,避免烫伤。 5.EL34型机器可以使用6P3P/5881/6L6GC型电子管和KT66型电子管。6P3型机器只能使用6P3P/5881/6L6GC型电子管,不能使用EL34/KT66型电子管。两款机器都不能使用KT88型电子管。 6.喇叭接线,如下图所示 如果音箱是8欧的,就接0和8,如果音箱是4欧的就接0和4。6欧的接0和4或者0和8都可以

电子管电路基础知识大全 (第1页) (一)二极管的结构及其工作原理 电子管是利用电子在真空中受电场力的吸引或排斥作用,进行工作的电子器件。 最简单的电子管是二极管,它是在高度真空的密封容器内装有两个金属电极,一个是阴极,呈细长管状丝外面,另一个是阳极,呈圆筒状,套在阴极外面。当灯丝通电点燃,间接将阴极加热到1000~C以上时,量电子获得能量从金属中逸出,逸出的热电子在阴极金属表面附近堆积,成为空间电荷。 我们知道,电子是带负电荷的,此时如果在另一金属板(阳极)加上一个直流正电压并与阴极构成闭合回电子在正电压(电场)的吸引下将从阴极经过空间到达阳极,形成电流,如图1。 反之,如果在阳极加上直流负电压(电场),它将排斥从阴极发射出来的热电子,回路就没有电流。只有电位高于阴极电位时。闭合回路才有电流流过,因此二极管具有单向导电性。利用二极管的单向导电性,就能 电变为直流电。 (二)三极管的结构及其工作原理 1.结构 在二极管的两个电极之间插入一个栅栏状的电极就构成三极管(如图2所示)。这个栅栏状的电极叫做控极,简称栅极,用符号G(grid)表示。结构一般是用镍锰合金丝在支撑物上绕成螺旋形,每圈之间有一定的便从阴极发射出来的电子能通过这些空隙流到屏极。 从三极管各个电极的相对位置来看。栅极与阴极之间的距离较屏极与阴极之间的距离近得多,这使栅极对射的电子的作用力也比屏极大得多,因而三极管具有放大作用。 2.三极管的基本电路 要使任何电路工作,都必须是一个闭合的回路。三极管在电路中,有3个基本回路:一是屏极回路,二是

路,三是灯丝回路,如图3所示。 在电子管电路中,各极电压都是以阴极为公共端的。屏极与阴极之间的电路是屏极回路。 它们之间的电压叫做屏压,以u。表示,一般屏压总是正的,即屏极电位比阴极电位高,因此屏极回路经流ia流动。屏极回路的正电源叫做屏极电源。用Ea表示。 3.三极管的放大作用 将三极管按图3连接好工作电源。这时在电子管阴极附近将产生两个电场,一个是屏极吸引电子的正电场个是栅极排斥电子的负电场。因此电子管屏流i。的大小不仅与屏压有关,并且也与栅负压大小有关。 如果设定屏压固定不变,则栅压越负。对电子的排斥力越大,则屏流越小。反之,如果把栅极负电压减小对值减小),则栅极对电子的排斥力将减小,屏流ia将随之增加。这个现象说明,在栅极上加入大小不同的负就能控制由阴极流向屏极的电子数量,即栅极有控制屏极电流ia大小的作用。而且由于栅极与阴极的距离比屏极的距离近,根据电场力和电场强度原理。 栅极控制电子的能力比屏极大得多,即栅压ug有微小的变化,就能引起屏流ia发生较大的变化,这就是具有放大作用的原因。 图4是一个简单的三极管放大电路。栅极回路叫输入回路,屏极回路叫输出回路。当在栅极回路接入一个交流电源ex时,就会使栅压ug发生变化,如果在屏极回路中接人一个电阻Ra,ia流过Ra时在Ra两端的压比ug的变化大得多,因此就具有电压放大作用,电阻Ra我们叫它负载电阻。

电子管的调整 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。 工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。 胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。 调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。 降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。 一、栅负压电路 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。 自给式栅负压产生的过程:电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流

常用电子管代换 (一)二极管部分: 5Z3P 直热式双阳极二极管 小功率全波整流 5T4、5×4G、5U4G*、5ц3C、U52 氧化物阴极 5Z4P 旁热式双阳极二极管 小功率全波整流 *5B×1、*5ц4C,GZ30、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管 小功率全波整流 氧化物阴极 5Z2P 直热式双阳极二极管 小功率全波整流 5W4、5Y3G、 80、 U50 氧化物阴极 5Z8P 旁热式双阳极二极管 全波整流 *5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管 全波整流 *5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管 全波整流 *6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管 小功率全波整流 *6ц5C

共阴极 6H2 旁热式双阳极二极管 检波、整流 *6×2П、6AL5、C 氧化物阴极 (二)三极管部分: 6C1 旁热式三极管 *6C1П、CV664、9002 氧化物阴极 6C3 旁热式三极管 *6C3П 阴地三极管 6C4 旁热式三极管 *6C4П 栅地三极管 6C5P 旁热式三极管 6C5GT、*6C5C、6C5 氧化物阴极 6C6B 旁热式三极管 5703、CV3917、*6C6Ь 氧化物阴极 6C7B 旁热式三极管 *6C7Ь 氧化物阴极 6C12 旁热式三极管 EC88、5842 高S、低N 6C22D 旁热式三极管 5876 金属陶瓷管

6C31B-Q 旁热式三极管 *6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管 *6C32Ь-B 遥截止三极管 6N1 旁热式双三双极管 *6H1П、6AQ8、AA61、ECC40/82 氧化物阴极 6N2 旁热式双三双极管 *6H2П、6AX7、6AV7、ECC41 氧化物阴极 6N3 旁热式双三双极管 *6H3П、6A8Q、2C51、ECC42 氧化物阴极 6N4 旁热式双三双极管 低噪声电压放大 ECC83、12A×7 高μ、低N 6N5P 旁热式双三双极管 低频功率放大 *6H13C、6AS7、CV2523、6NS7G/GT 低Ri 6N6(T) 旁热式双三双极管 *6H6П、E182CC、12BH7 氧化物阴极 6N7P 旁热式双三极管 6H7、*H7C、6N7/G/GT 共阴极 6N8P

胆机常用的几种胆管 李平川 胆机以其卓越的重放音质,深受发烧友的青睐。市售成品胆机动辄数千元,乃至上万元,进口的洋机器名牌的要十几万甚至几十万,如此高价是多数爱好者无法企及的。其实,只要有一定的电子知识和一定的动手能力,多数烧友自制一台物美价廉的胆机并非难事。胆机较石机看似庞大复杂,但当了解了电子管电路的工作方式后就会发现,胆机电路较之晶体管分立元件电路相对简洁,所用元件也少得多。除输出变压器自制有一定难度外,其他元器件只要选配得当,电路调试有方,一台靓声的胆机放就会诞生在自己的手中。 这里对市场上常见的一些电子管作一简要介绍。目前市场有些电子管是专门为音频电路而设计的,如KT88 2A3等,还有一些型号的电子管并不是在音响器材中使用的,如ECC88(6N11J),原来是低噪声低频管;FU—7( 807)原来是作为发射管使用的,但是经过发烧友的不断实验,使其在音频电路中大放异彩。那么该怎样使用电子管呢?首先要知道,电子管和晶体管一样也有三极管,电子三极管的特点是失真小、噪声低,特性稳定,外围电路简单,但增益稍低(卩值在5—100之间)。常用于电子

管的前置放大器及功放的电压与倒相级。通常在一只玻壳内封装两个特性相等的三极管,成为双三极管。国产的双三极管命名为6NX X(6表示灯丝电压为6.3伏),欧洲型号为ECC XX(E表示灯丝电压为6.3伏,若第一个字母为P,则表示灯丝为串联恒流供电,灯丝电流为

0.3A),前苏联型号为6HX X (6表示灯丝电压为6.3 伏)。 6N4J是高放大率、低噪声双三极管。国外型号为 12AX7 ECC83这只管子的特性参数与大量应用的6N2 几乎相同,但6N4J采用了降低噪声的设计工艺,其噪声电平低于一60dBo每只三极管及两管之间均加有屏蔽层,灯丝带中心抽头可平衡供电,因此大大降低了噪声。因此,6N4J常被用于小信号放大与倒相级,6N4J 单管电压放大电路及工作状态见图一和表一,做倒相电路见图二。 6N10J(进口管ECC82,12AU7是中等放大率的 低噪声双三极管,由于其阳极容许电流较大(约为 105mA,所以较适合作功率推动及倒相级。其单管电 压放大时的典型数据见表二,电路同6N4J (图一), 用作倒相电路见图三。

电子元件基础知识考试试题 部门:姓名:分数: 一、单项选择题:(每题2分,共30分) 1、二极管在电路板上用( B ) 表示。 A、C B、D C、R 2.、一色环电阻颜色为:红-黑-黑-橙-棕其阻值为( C)。 A、200Ω B、20K C、200K 3、47KΩ±1%电阻的色环为( C )。 A、黄-紫-橙-金 B、黄-紫-黑-橙-棕 C、黄-紫-黑-红-棕 4、电感线圈的单位符号是( B )。 A.L B.H C.R 5、下图所示的二极管,描述正确的是( B )图。 A、黑色端代表正极 B、黑色端代表负极 C、以上描述都不对 6、电容量的基本单位是( C ) A.欧姆 B.亨利 C.法拉 7、电容器上面标示为107,容量应该是( B ) A.10μF B.100μF C.1000μF 8、4环色环电阻第四环颜色是银色,对应的误差多少?( B ) A.5% B.10% C.15% 9、前四环为棕黑黑红的五环电阻标值为多少?( B ) A.100欧姆 B.10K欧姆 C.1K欧姆 10、贴片电阻的阻值为5.1K,那么上面的标号应该为( B ) A.511 B.512 C.513 11 、电容的单位换算正确的是( C ) A.1F=1000000μF B. 1μF =1000000pF C.以上都是 12、电阻按照封装来分非为:( A ) A.贴片电阻,插件电阻 B.水泥电阻,功率电阻 C.色环电阻,标码电阻 13、电感的单位换算正确的是( A ) A.1H=1000,000uH B.1H=1000,000,000uH C.1mH=1000,000uH 14、如何判断发光二极管的管脚极性?( A ) A.发光二极管的长脚为正极 B.发光二极管的长脚为负极 C.有的二极管有环状标志的一端是正极 15、贴片电阻的封装是:( A ) A.0805 B.SOT-23 C.TO-92 二、填空题:(每空1分,共30分) 1. 电阻用字母 R 表示,电阻的基本单位是Ω或者(欧姆),电容用字母 C 表示。 2. 电容的基本单位是 F 或者(法拉) ,二极管用字母 D 表示,IC用字母U 表示。 3. 为保护静电敏感元件,在人接触静电敏感元件时要:穿防静电衣,戴防静电帽,戴防静电手环。 4、配戴静电环时必须戴紧。对静电敏感元件有IC ,,晶体管等。(至少写一种) 5、电阻换算:1MΩ= 103KΩ= 106Ω。

电子管的基础知识 [B] 在80mm的谆谆指导下,准备着手"造"一个电子管的耳放,对于没有接触过电路,所以用"造" 比较贴切 看了80mm的管子选购篇,受益匪浅。 现贴出我找到的电子管资料,与大家分享,以此感谢帮助过我的朋友,勉励同我一样刚入 门的朋友。[/B] 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7. 阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v; 10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导 S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的 变化。 内阻 Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的 变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。

最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅 极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路 电流。 把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属, 陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。 接下来说三极管: 二极管的结构决定了它的单向导电的性质,当在阴极与阳极之间再加上一个带适当电压的极点,这个电压就会改变阴极的表面电位,从而影响了阴极热电子飞向阳极的数量,这就是调制极,一般是用金属丝做成螺旋状的栅网,所以又把它称为栅极。这就是四季青朋友所说的阀门功能了。由此可以知道,当作为被放大的信号电压加在栅极----阴极之间时,由于它的变化必然会使阳极电流发生相应的变化,又由于阳极电压远高于阴极,因此栅阴极间微小的电压变化同样能使阳极产生相应的几十至上百倍的电压变化,这就是三极管放大电压信号的原理。 电子管的基础知识 这是颗用于高频放大的通用双三极管6N1。1是吸气剂;2是灯丝阴极和栅极的组合体;3就是阳极。

电子管的基础知识 80mm的谆谆指导下,准备着手"造"一个电子管的耳放,对于没有接触过电路,所以用"造"比较贴切:) 看了80mm的管子选购篇,受益匪浅。 现贴出我找到的电子管资料,与大家分享,以此感谢帮助过我的朋友,勉励同我一样刚入门的朋友。 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v; 10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导 S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻 Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。

不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。 把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。 接下来说三极管: 二极管的结构决定了它的单向导电的性质,当在阴极与阳极之间再加上一个带适当电压的极点,这个电压就会改变阴极的表面电位,从而影响了阴极热电子飞向阳极的数量,这就是调制极,一般是用金属丝做成螺旋状的栅网,所以又把它称为栅极。这就是四季青朋友所说的阀门功能了。由此可以知道,当作为被放大的信号电压加在栅极----阴极之间时,由于它的变化必然会使阳极电流发生相应的变化,又由于阳极电压远高于阴极,因此栅阴极间微小的电压变化同样能使阳极产生相应的几十至上百倍的电压变化,这就是三极管放大电压信号的原理。 这是颗用于高频放大的通用双三极管6N1。1是吸气剂;2是灯丝阴极和栅极的组合体;3就是阳极

相关文档
相关文档 最新文档