文档库 最新最全的文档下载
当前位置:文档库 › 小区初始搜索&随机接入过程

小区初始搜索&随机接入过程

小区初始搜索&随机接入过程
小区初始搜索&随机接入过程

1.小区初始搜索(CSU)

小区初搜的主要功能是:搜索当前小区使用的SYNC_DL码,完成DwPTS同步;确认当前小区的扰码和基本Midamble码;根据DwPTS的相位调制序列完成控制多帧同步;读取BCH的信息。

考虑到终端与基站之间的载波存在频偏,在小区初搜过程中还要进行载波频偏调整,分为粗调和精调两个过程。

小区初搜为一物理层过程,由以下几个子过程构成:

DwPTS同步

载波频偏粗调

基本Midamble码确认

载波频偏精调

BCH交织帧确认—也就是MIB的确认

读取BCH信息

终端按上述顺序完成小区初搜过程。只有前一个子过程完成后才能进入下一个子过程。

图1 小区初搜功能模块结构

1.1小区搜索过程

1.1.1 小区搜索

在初始小区搜索中UE 搜索到一个小区建立DwPTS 同步获得扰码和基本midamble 码控制复帧同步,然后读取BCH 信息初始小区搜索利用DwPTS 和BCH 进行。

初始小区搜索按以下步骤进行:

第一步:搜索DwPTS

第一步:在TD-SCDMA系统中,利用SYNC_DL码来区分小区。SYNC_DL码共有32个,为码长64的伪随机序列(即PN码,PN码用于区分相邻小区, PN码集在蜂窝网络中可重复使用。PN码为扩频系统中特有,为码长64的伪随机序列。)。每个SYNC_DL码对应4个基本Midamble码、4个扰码和8个SYNC_DL码。SYNC_DL码在DwPTS上面向整个小区发送。终端利用SYNC_DL码搜索DwPTS,完成时隙同步。

UE 利用DwPTS 中SYNC_DL 得到与某一小区的DwPTS 同步,这一步通常是通过一个或多个匹配滤波器(或类似的装置)与接收到的从PN 序列中选出来的SYNC_DL 进行匹配实现。为实现这一步,可使用一个或多个匹配滤波器或类似装置。在这一步中,UE 必须要识别出在该小区可能要使用的32 个SYNC_DL 中的哪一个SYNC_DL 被使用.

UE通过检测DwPTS中的SYNC_DL码来实现DwPTS同步。UE需要采用相关或匹配滤波的方法确认当前小区使用的SYNC_DL码。

UE开机后,先设置接收机增益为最大(此时,如果在TD-SCDMA频段内无信号,则带有天线的接收机的ADC(模数转换器)输出的数据不饱和)。考虑到UE需要对多个频点进行搜索,首先测量各个频点在最大接收机增益下的一帧(5ms)的接收功率,并从大到小进行排序。然后按排列顺序设置频点,进行小区初搜。在设置接收机增益为最大并设置载频后,UE进入DwPTS同步过程。

DwPTS同步包含3个模块:

1)搜索DwPTS大致位置

2)找出当前小区使用的SYNC_DL码

3)SYNC_DL码的确认及其接收时刻

特征窗法搜寻DwPTS大致位置

基本原理是利用接收信号的功率形状来搜索DwPTS的大致位置。在TD-SCDMA的帧结构中,SYNC_DL的左边有32chips的GP(guard period ),右边有96chips的GP( guard period ),SYNC_DL本身为64chips。由于GP的功率很小,故从接收功率的时间分布上看,与GP相比SYNC_DL段的功率较大。当用SYNC_DL段功率和除以两边共64chips(两边各32chips)功率和时,得到的值应当比较大,用此方法就可以判断出DwPTS的大致位置。为此,建立功率“特征窗”来搜寻DwPTS的大致位置。“特征窗”长度为128chips。搜索范围为(6400+128)chips。一帧的长度为6400chips。“特征窗”在整个帧范围内移动,移动步长可以是逐chip, 逐2 chips或逐4chips等(建议移动步长取4个chip),得到N个“特征窗”。如何选取取决于运算量和系统要求。对每一个“特征窗”,计算其内部中间64chips对两边64chips功率比R i。在N个R i中找寻最大值,其对应的“特征窗”位置即为DwPTS的位置。

DwPTS同步算法采用“特征窗”的方法,要求信号功率必须大于噪声功率,才能利用“特征窗”找出DwPTS大致位置。在信噪比SNR=0dB且无强干扰的条件下,单次检

测概率接近80%。如果采用前述SYNC_DL 确认算法,则正确检测概率可达94%左右。 “特征窗”方法对载波频偏,是否多径,是否同步不敏感,检测性能基本不变或略有下降。但如果存在其它UE 的上行强干扰信号,当SNR < 4dB ,检测性能将会严重下降。

浮点算法实现如下: 先取一个子帧的数据1r ,其中第k 个元素表示为

6527,,0,,1 =k r k

计算接收信号的chip 功率:

()()6527,,0,)Im()Re(2

,12

,1 =+=k r r pow k k k

计算“特征窗”的比值:

i

i i i j j step i i j j step i i j j

step i i p p p R pow p pow p pow p ,21,,363

32

,331

096

,231

0,1+=

===∑∑∑=++?=++?=+?

式中:??16400,,0-=step i ,其中???为向0方向取整,step 为“特征窗”移动步长,建议取4=step 。

找出i R 的最大值,假设其标号为m i ,则相对初始帧定时的DwPTS 的大致位置Pos 为:

step i Pos m ?=

如果考虑到其它UE 发送的上行强干扰信号,在找到i R 的最大值后,还需要进一步判断是否真正的DwPTS 大致位置。检测算法如下: If 3>m i R m i 对应的“特征窗”为DwPTS 大致位置;

Else

If m m i i p p ,2,1> If

T i i V p p m m <,2,1

m i 对应的“特征窗”为DwPTS 大致位置;

Else

令“特征窗”比值????step i step i i R m m i 32,,32,0+-== ,然后重新

寻找i R 的最大值。

End Else

If T i i V p p m m <,1,2 m i 对应的“特征窗”为DwPTS 大致位置;

Else

令“特征窗”比值????step i step i i R m m i 32,,32,0+-== ,然后重新

寻找i R 的最大值。

End End

End

其中:T V 为门限值,建议取4=T V 。

整个检测过程最多重复5次。

第二步:载波频偏粗调

UE 在完成DwPTS 同步之后,知道了当前小区使用的SYNC_DL 码及其主径到达时刻。我们可以SYNC_DL 码对载波频偏进行测量估计。由于各种因素的影响,UE 与Node B 的载波之间会产生频偏,这样就会影响信号的解调。在DwPTS 同步之后,UE 将对载波频偏进行粗略估计,根据估计的频偏调整载波频率,使之与Node B 的载波频率尽量一致,减小载波频偏对信号解调的影响。为了保证精调频偏的正常进行,要求粗调后的载波频偏小于1kHz 。信噪比越高,频偏估计误差越小,调整后的频偏误差越小。

对于载波频偏粗调过程包括两个步骤:第一步是估计载波频偏;第二步是根据估计的载波频偏产生频偏调整值。

第三步:识别扰码和基本midamble 码

在初始小区搜索的第三步,UE 接收到P-CCPCH 上的midamble 码,DwPTS 紧随在P-CCPCH 之后。在现在的TD-SCDMA 系统中,每个DwPTS 对应一组4 个不同的基本midamble 码, 因此共有128 个midamble 码且互不重叠。基本midamble 码的序号除以4 就是SYNC_DL 码的序号。因此说32 个SYNC_ DL 和PCCPCH32 个midamble 码组一一对应,也就是说一旦SYNC_DL 确定之后UE 也就知道了该小区采用了哪4 个midamble 码,这时UE 可以采用试探法和错误排除法确定P-CCPCH 到底采用了哪个midamble 码。在确UE 完成DwPTS 同步之后,就可以找到TS0的Midamble 部分。在完成载波频偏粗调后,用SYNC_DL 码对应的4个Basic Midamble 码分别与接收到的TS0的Midamble 数据进行相关,

计算出相关功率,然后找出相关功率的最大值,其对应的Basic Midamble码即为当前小区使用的Basic Midamble码。在一帧中使用相同的基本midamble 码。由于每个基本midamble 码与扰码是相对应的,知道了midamble码也就知道了扰码。根据确认的结果,UE 可以进行下一步或返回到第一步。

第四步:载波频偏精调

在完成载波频偏粗调之后,调整后的载波频偏不能完全满足系统要求,还需进行载波频偏精调,使调整后的载波频偏小于200Hz,满足系统要求。由于SYNC_DL长度只有64chips,因此其两段相关数据的长度和间隔受到很大限制,只能实现载波频偏的粗估计。但是,在完成DwPTS同步并确认Basic Midamble码之后,UE就可以对TS0上的P-CCPCH进行解调,得到信息比特。如果能够保证解调出来的信息比特是正确的,就可以大大增加频偏估计中两个相关数据块的长度和间距,进而提高频偏估计的精度,实现频偏的精确估计。信噪比越高,频偏估计误差越小,调整后的频偏误差越小。

对于载波频偏精调过程也包括两个步骤:第一步是估计载波频偏;第二步是根据估计的载波频偏产生频偏调整值。

第五步:控制复帧同步(即BCH交织帧确认/MIB的确认)

在第五步中,为了正确解调BCH信息,UE必须先确定在P-CCPCH中BCH交织帧的MIB(Master Indication Block)。UE 搜索在P-CCPCH 里的BCH的复帧MIB(Master Indication Block),它由经过QPSK (四相相移键控)调制的DwPTS 的相位序列(相对于在P-CCPCH 上的midamble 码)来标识。控制复帧由调制在DwPTS 上的QPSK 符号序列来定位。[n]个连续的DwPTS 足以可以检测出目前MIB 在控制复帧中的位置。根据为了确定正确的midamble 码所进行的控制复帧同步的结果,UE 可决定是否执行下一步或回到第三步。

第六步:读B C H 信息

在第六步UE 读取被搜索到小区的一个或多个BCH 上的全广播信息根据读取的结果UE 可决定是回到以上的几步还是完成初始小区搜索。

2.随机接入过程

2.1 随机接入准备

当UE 处于空闲模式下,它将维持下行同步并读取小区广播信息。从该小区所用到的DwPTS UE 可以得到为随机接入而分配给UpPTS 物理信道的8 个SYNC_UL 码特征信号的码集,一共有256 个不同的SYNC_UL 码序列,其序号除以8 就是DwPTS 中的SYNC_DL 的序号。从小区广播信息中UE 可以知道码集中的哪个SYNC_UL 将被使用,并且还可以知道P-RACH信道的详细情况(采用的码扩频因子midamble码和时隙)及F-PACH 信道的详细信息采用的码扩频因子midamble 码和时隙和其它与随机接入有关

的信息。

在BCH所含的信息中还包括了SYNC_UL 与F-PACH资源、F-PACH 与P-RACH资源、P-RACH 资源与(P/S)-CCPCH (承载FACH逻辑信道)资源的相互关系。因此,当UE 发送SYNC_UL 序列时它就知道了接入时所使用的F-PACH 资源,P-RACH 资源和CCPCH 资源。

2.2 随机接入过程

在UpPTS 中紧随保护间隔之后的SYNC_UL 序列仅用于上行同步,UE 从它要接入的小区所采用的8 个可能的SYNC UL 码中随机选择一个,并在UpPTS 物理信道上将它发送到基站。然后UE 确定UpPTS 的发射时间和功率开环过程,以便在UpPTS 物理信道上发射选定的特征码。

一旦Node B 检测到来自UE 的UpPTS 信息,那么它到达的时间和接收功率也就知道了。Node B 确定发射功率更新和定时调整的指令并在以后的4 个子帧内通过F-RACH 在一个突发/子帧消息将它发送给UE。注意F-PACH 中也包含用于UE进行交叉检测的特征码信息和相对帧号接收到被确认的特征码之后的帧号。

一旦当UE 从选定的F-PACH 与所选特征码对应的F-PACH 中收到上述控制信息时,表明Node B 已经收到了UpPTS 序列。然后,UE 将调整发射时间和功率,并确保在接下来的两帧后,在对应于F-PACH 的P-PACH信道上发送RACH。在这一步,UE 发送到Node B 的RACH 将具有较高的同步精度。之后,UE 将会在对应于P-RACH 的CCPCH 的信道上接收到来自网络的响应,指示UE 发出的随机接入是否被接收,如果被接收,将在网络分配的UL 及DL 专用信道上通过FACH 建立起上下行链路。

在利用分配的资源发送信息之前UE 可以发送第二个UpPTS 并等待来自F-PACH 的响应,从而可得到下一步的发射功率和SS 的更新指令。

2.3 随机接入冲突处理

在有可能发生碰撞的情况下,或在较差的传播环境中,Node B 不发射F-PACH ,也不能接收SYNC_UL ,也就是说,在这种情况下UE 就得不到Node B 的任何响应。因此UE 必须通过新的测量,来调整发射时间和发射功率,并在经过一个随机延时后重新发射SYNC_UL。

注意:每次重发射,UE 都将重新随机地选择SYNC_UL 突发序列。这种两步方案使得碰撞最可能在UpPTS 上发生,即RACH 资源单元几乎不会发生碰撞这。也保证了在同一个UL 时隙中可同时对RACHs 和常规业务进行处理。

LTE TDD随机接入过程(1) 目的和分类

1.随机接入的目的 随机接入是UE和网络之间建立无线链路的必经过程,只有在随机接入完成之后,eNB和UE之间才能正常进行数据互操作(Normal DL/UL transmission can take place after the random access procedure)。UE可以通过随机接入实现两个基本的功能: (1)取得与eNB之间的上行同步(TA)。一旦上行失步,UE只能在PRACH中传输数据。(as long as the L1is non-synchronised,uplink transmission can only take place on PRACH.) (2)申请上行资源(UL_GRANT)。 2.随机接入的种类 根据业务触发方式的不同,可以将随机接入分为基于竞争的随机接入(Contention based random access procedure)和基于非竞争的随机接入(Non-Contention based random access procedure)。所谓“竞争”,就是说可能存在这么一种情况,UE-A/B/C/D多个终端,在同个子帧、使用同样的PRACH资源,向eNB 发送了同样的前导码序列,希望得到eNB的资源授权,但此时eNB无法知道这个请求是哪个UE发出的,因此后续各UE需要通过发送一条只与自己本UE相关的、独一无二的消息(MSG3),以及eNB收到这条消息后的回传(MSG4)到UE,来确认当前接入成功的UE是哪一个。这种机制就是竞争解决机制。类似GSM系统的SABM/UA帧的握手机制。 2.1.竞争随机接入的场景 当eNB不知道UE的业务或者状态,而UE又必须申请上行资源或上行TA同步的时候,UE就需要发起竞争随机接入。这种情况下,eNB没有为UE分配专用的Preamble码,而是由UE在指定范围内(以后博文会具体介绍这个范围)随机选择Preamble码并发起随机接入过程。发生竞争接入的具体场景有(36300-10.1.5): (1)UE的初始接入(Initial access from RRC_IDLE)。此时RRC层的状态为RRC_IDLE,UE需要CONNECTION REQUEST,而eNB无法知道,因此需要UE执行竞争接入过程。 (2)UE的重建(RRC Connection Re-establishment procedure)。重建的原因有多种,比如UE侧的RLC上行重传达到最大次数,就会触发重建,此时eNB也不知道UE的重建状态,也需要UE执行竞争接入过程。

LTE随机接入过程情况总结(完美)

随机接入过程 一. PRACH 1. PRACH 的类型 从表1可以看出,Preamble 的类型一共有4种,而对于FDD 系统之支持0、1、2、3这4类Preamble 。对于Preamble format 0,在时间上占用一个完整的子帧;对于Preamble format 1和2,在时间上占用两个完整的子帧;对于Preamble format 3,在时间上占用三个完整的子帧。在频域上,Preamble format 0~3均占用一个PRB ,即180KHZ 的频带,区别是Preamble format 0~3的子载波间隔是1.25KHZ ,并占用864个子载波,由于ZC 序列的长度是839,因此Preamble format 0~3真正占用中间的839个子载波传输Preamble ,而剩余的25个子载波作为两边的保护带宽。 不同类型的Preamble 有长度不一样的CP 和保护间隔,小区的覆盖范围和保护间隔GT 有关,具体可参考如下公式: R = GT * C / 2 其中,R 为小区半径、GT 为保护间隔、C 表示光速。至于不同类型的Preamble 对应的小区半径可参考如下: Preamble 格式0:持续时间1ms ,可支持半径约14km ; Preamble 格式1:持续时间2ms ,可支持半径约77km ; Preamble 格式2:持续时间2ms ,可支持半径约29km ; Preamble 格式3:持续时间3ms ,可支持半径约107km ; 2. PRACH 的时频位置 首先给出PRACH 的时域位置,协议中由参数prach -ConfigIndex 给出,每个prach -ConfigIndex 给出了Preamble 的类型、System frame number(Even/Any)、Subframe number 。具体如表2所示: 而对于PRACH 的频域位置,协议中由参数RA PRBoffset n 确定,它的取值范围是60UL RB RA PRBoffset -≤≤N n 。

小区搜索及读取广播消息教案

7.2 小区搜索及读取广播消息 UE开机后需要做的第一件事就是小区PLMN的选择,在PLMN的选择之后,UE将进行小区搜索以及读取系统消息过程。 7.2.1小区搜索的含义 在LTE系统中,小区搜索就是UE和小区取得时间和频率同步,并检测小区ID的过程。 UE使用小区搜索过程来识别小区,并获得下行同步,进而UE可以读取小区广播信息并驻留、使用网络提供的各种服务。 小区搜索过程是LTE系统关键步骤。它是UE与eNodeB建立通信链路的前提。小区搜索过程在初始接入和切换中都会用到。 7.2.2小区搜索过程步骤 小区搜索过程主要包含四个步骤,如下图1所示: 图1 小区搜索过程步骤 首先,UE解调主同步信号PSS实现符号同步,并获得小区组内ID;UE解调次同步信号SSS完成帧定时,并获得小区组ID。 其次,UE接收下行参考信号RS,进行精确的时频同步。 然后,UE接收小区广播信息PBCH,得到下行系统带宽、天线配置和系统帧号。 最后,UE接收具体的系统消息,如PLMN ID、上下行子帧匹配。 1.时间同步 在LTE的小区搜索过程中,利用特别设计的两个同步信号,主同步信号和辅同步信号分别取得小区识别信息,从而得到目前终端所要接入的小区识别码。 时间同步检测是小区初搜中的第一步,其基本原理是使用本地同步序列和接收信号进行同步相关,进而获得期望的峰值,根据峰值判断出同步信号的位置。TDD-LTE系统中的时域同步检测分为两个步骤:第1个步骤是检测主同步信号,在检测出主同步信号后,根据主同步信号和辅同步信号之间的固定关系,进行第2步骤的检测,即检测辅同步信号。 当终端处于初始接入状态时,对接入小区的带宽是未知的,主同步信号和辅同步信号处于整个带宽的中央,并占用1.08MHz的带宽,因此,在初始接入时,UE首先在其支持的工作频段内以100KHz的间隔的频栅上进行扫描,并在每个频点上进行主同步信道的检测。在这一过程中,终端仅仅检测1.08MHz的频带上是否存在主同步信号。

LTE随机接入过程总结归纳(完美)

精心整理 随机接入过程 一.P RACH 1.PRACH的类型 表1:PRACH类型 0、1、 25 间隔GT有关,具体可参考如下公式: R=GT*C/2 其中,R为小区半径、GT为保护间隔、C表示光速。至于不同类型的Preamble 对应的小区半径可参考如下:

Preamble格式0:持续时间1ms,可支持半径约14km; Preamble格式1:持续时间2ms,可支持半径约77km; Preamble格式2:持续时间2ms,可支持半径约29km; Preamble格式3:持续时间3ms,可支持半径约107km; 2.PRACH的时频位置

的,而参数CS N 是由协议参数zeroCorrelationZoneConfig 和High-Speed-flag 共同确定的,具体可参考协议。还有一些其它参数,按照下述的一些公式计算: 当ZC CS N d N u <≤,则: 当)(3CS ZC ZC N N d N u -≤≤,则:

5.Preambleresourcegroup 每个小区有64个可用的Preamble序列,UE会选择其中一个在PRACH上传输。 这些序列可以分成两部分,一部分用于基于竞争的随机接入,另一部分用于基于非竞争的随机接入。用于基于竞争的随机接入的Preamble又分为GroupA和GroupB,这些都是由SIB2中的Rach-ConfigCommon中下发的。具体可参考图 在 二. 1attach)2 3 。 4 5.RRC_CONNECTED态时,上行数据到达,但上行不同步或者在PUCCH上没有可用的SR资源。 6.RRC_CONNECTED态时,需要timeadvance。 随机接入又分为基于竞争的和基于非竞争的,基于竞争的应用于上述的前5类事件,而基于非竞争的用于第3、4、6类事件。

LTE中小区搜索过程

LTE中小区搜索过程图解 我们知道在LTE系统中,UE使用小区搜索过程来识别小区,并获得下行同步,进而UE可以读取小区广播信息并驻留、使用网络提供的各种服务。此过程在初始接入和切换中都会用到。 小区搜索的目的总结如下: 1)检测小区的物理层小区ID(Physical Cell-ID) 通过PSS和SSS检测获取小区ID 2)完成时间/频率同步 时间同步:获取10ms无线帧同步、40msPBCH TTI同步 频率同步:与eNodeB载波频率同步 3)下行CP模式检测:normal模式或者extended模式 4)检测eNodeB所用的发射天线端口数 5)读取PBCH(即MIB) 获取SFN、下行系统带宽、PHICH配置信息 6)根据不同场景,支持最强小区、多个小区和存储小区列表(Stored-InformationCell Search)等多种模式的小区搜索。 同步信号总是占用可用频谱的中间62个子载波(不考虑DC子载波)。不论小区分配了多大带宽,UE只需处理这62个子载波。同步信号具体来说,是由一个PSS信号和一个SSS信号组成。同步信号每个无线帧发送两次。

规范定义了3个PSS,使用长度为62的频域Zadoff-Chu(ZC)序列。每个PSS信号与物理层小区标识组内的一个物理层小区标识对应。SSS信号有168种,与168个物理层小区标识组对应。故UE在获得了PSS和SSS信号后即可确定当前小区标识(cell id)。 下行参考信号用于更精确的时间同步和频率同步。(注意,此步是辅助性的。CRS的目的主要还是测量和信道估计)。完成小区搜索后UE可获得时间/频率同步,小区ID识别,CP长度检测、FDD or TDD等。 1.UE上电之后,在可能存在LTE小区的中心频点上检测主同步信号PSS。UE以接收信号 强度(具体取决与终端芯片的实现)来判断这个频点周围是否可能存在小区。如果UE保存了上次关机时的频点和运营商信息,则开机后会先在上次驻留的小区上尝试搜索PSS; 如果没有,UE就要结合自己的频段支持能力,在划分给LTE系统的band上做全频段扫描,若发现信号较强的频点、就认为可能存在LTE小区、并去尝试匹配PSS; 2.在这个中心频点周围收PSS(主同步信号)并进行码域的匹配,因为PSS占用了中心频 带的6RB(12×6=72子载波),因此这种设计可以兼容所有的系统带宽。PSS信号以5ms 为周期重复,在子帧#0发送,并且是ZC序列,具有良好的相关性。因此,UE将第1步中接收到的6RB上的总能量,用ZC序列进行码域的匹配,据此可以得到小区组里的小区ID,同时确定5ms的时隙边界。另外,在后面检测出来SSS之后,还通过检测这个信号就可以知道循环前缀的长度以及采用的是FDD还是TDD。因为TDD的PSS是放在特殊子帧里面的,位置有所不同,由此可推断出是FDD还是TDD。但是,由于PSS

LTE随机接入过程总结完美

L T E随机接入过程总结完 美 The latest revision on November 22, 2020

随机接入过程 一. PRACH 1. PRACH 的类型 从表1可以看出,Preamble 的类型一共有4种,而对于FDD 系统之支持0、1、2、3这4类Preamble 。对于Preamble format 0,在时间上占用一个完整的子帧;对于Preamble format 1和2,在时间上占用两个完整的子帧;对于Preamble format 3,在时间上占用三个完整的子帧。在频域上,Preamble format 0~3均占用一个PRB ,即180KHZ 的频带,区别是Preamble format 0~3的子载波间隔是,并占用864个子载波,由于ZC 序列的长度是839,因此Preamble format 0~3真正占用中间的839个子载波传输Preamble ,而剩余的25个子载波作为两边的保护带宽。 不同类型的Preamble 有长度不一样的CP 和保护间隔,小区的覆盖范围和保护间隔GT 有关,具体可参考如下公式: R = GT * C / 2 其中,R 为小区半径、GT 为保护间隔、C 表示光速。至于不同类型的Preamble 对应的小区半径可参考如下: Preamble 格式0:持续时间1ms ,可支持半径约14km ; Preamble 格式1:持续时间2ms ,可支持半径约77km ; Preamble 格式2:持续时间2ms ,可支持半径约29km ; Preamble 格式3:持续时间3ms ,可支持半径约107km ; 2. PRACH 的时频位置 首先给出PRACH 的时域位置,协议中由参数prach-ConfigIndex 给出,每个prach-ConfigIndex 给出了Preamble 的类型、System frame number(Even/Any)、Subframe number 。具体如表2所示: 而对于PRACH 的频域位置,协议中由参数RA PRBoffset n 确定,它的取值范围是60UL RB RA PRBoffset -≤≤N n 。 表2:random access configuration for preamble formats 0~3

LTE随机接入详细说明

随机接入过程详解作者彭涛/00294921 部门GTAC WL LTE eNodeB 维护三组 版本Version 2.0 创建时间2014/10/30 修改记录2014/11/05

1.随机接入概述 1.1随机接入目的 随机接入(Random Access,简称RA)过程是UE向系统请求接入,收到系统的响应并分配接入信道的过程,一般的数据传输必须在随机接入成功之后进行。 除PRACH信道外,UE发送任何数据都需要网络预先分配上行传输资源,通过随机接入来获取。 数据通过空口传输需要一段时间。UE发送上行数据时必须提前一段时间发送,使数据在预定的时间点到达网络,即要保持上行同步。通过随机接入,UE获得上行发送时间提前量Time Alignment(简称TA)。 1.2随机接入分类 随机接入(Random Access)分为基于竞争的随机接入过程和基于非竞争的随机接入过程,相应的流程如图2.1和2.2所示。 图1. 1基于竞争的随机接入

图1. 2基于非竞争的随机接入 与基于竞争的随机接入过程相比,基于非竞争的接入过程最大差别在于接入前导的分配是由网络侧分配的,而不是由UE侧产生的,这样也就减少了竞争和冲突解决过程。 1.3随机接入场景 1)初始接入场景,是基于竞争的随机入过程,由UE MAC Layer发起,多为终端初始入 网的时候。 2)RRC连接重建场景,是基于竞争的随机接入过程,由UE MAC Layer发起,多为信号 掉线重新进行建立连接。 3)切换场景,通常是非竞争的随机接入过程,但在eNodeB侧没有的专用前导可以分配时, 发起基于竞争的随机接入过程,由PDCCH order发起。 4)连接态时UE失去上行同步同时有上行数据到达的场景,是基于竞争的随机接入过程, 由UE MAC Layer发起。 5)连接态时UE失去上行同步同时有下行数据需要发送的场景,通常是非竞争的随机接入 过程,但在eNodeB侧没有的专用前导可以分配时,发起基于竞争的随机接入过程,由PDCCH order发起。 6)LCS(定位服务)触发非竞争的随机接入。(具体场景待确认) 1.4上下行失步的判断 失步分为上行失步和下行失步,在eNB侧检测到的失步称为上行失步;在UE可以同时检测到上行失步及下行失步。 eNB检测上行失步的方法有两种:1、eNB连续N次下发TA但是没有收到TA_ACK; 2、检测到ENB L1基带上行连续N次没有上报TA值到L2;两种条件中任意组合连续达到N次,就判断为上行失步。 UE的上行失步:是通过TA定时器维护的,当TA定时器超时后,终端还没有收到eNB 下发的TA调整的MCE,则判断为上行失步。 UE检测下行失步:UE DSP每200ms对时延谱滤波值(z注:相当于参考信号RSRP的检测)进行判断,如果满足某门限,则上报L3(z注:RRC层)失步;L3在同步状态连续

LTE的随机接入过程

LTE的随机接入过程 简介 UE通过随机接入过程(Random Access Procedure)与cell建立连接并取得上行同步。只有取得上行同步,UE才能进行上行传输。 随机接入的主要目的:1)获得上行同步;2)为UE分配一个唯一的标识C-RNTI。 随机接入过程通常由以下6类事件之一触发:(见36.300的10.1.5节) 1)初始接入时建立无线连接(UE从RRC_IDLE态到 RRC_CONNECTED态); 2) RRC连接重建过程(RRC Connection Re-establishment procedure); 3)切换(handover); 4) RRC_CONNECTED态下,下行数据到达(此时需要回复 ACK/NACK)时,上行处于“不同步”状态; 5) RRC_CONNECTED态下,上行数据到达(例:需要上报测量报告或发送用户数据)时,上行处于“不同步”状态或没有可用的PUCCH资源用于SR传输(此时允许上行同步的UE使用RACH来替代SR);

6) RRC_CONNECTED态下,为了定位UE,需要timing advance。 随机接入过程还有一个特殊的用途:如果PUCCH上没有配置专用的SR资源时,随机接入还可作为一个SR来使用。 随机接入过程有两种不同的方式: (1)基于竞争(Contention based):应用于之前介绍的前5种事件; (2)基于非竞争(Non-Contention based或Contention-Free based):只应用于之前介绍的(3)、(4)、(6)三种事件。 preamble介绍 随机接入过程的步骤一是传输random access preamble。Preamble的主要作用是告诉eNodeB有一个随机接入请求,并使得eNodeB能估计其与UE之间的传输时延,以便eNodeB校准uplink timing并将校准信息通过timing advance command告知UE。 Preamble在PRACH上传输。eNodeB会通过广播系统信息SIB-2来通知所有的UE,允许在哪些时频资源上传输preamble。(由 prach-ConfigIndex和prach-FreqOffset字段决定,详见36.211的5.7节)每个小区有64个可用的preamble序列,UE会选择其中一个(或由eNodeB指定)在PRACH上传输。这些序列可以分成两部分,一部分用于基于竞争的随机接入,另一部分用于基于非竞争的随机接入。用于基于

LTE-初始随机接入过程1

LTE 初始随机接入过程. UE选择合适的小区进行驻留以后, 就可以发起初始的随机接入过程了. LTE 中, 随机接入是一个基本的功能, UE只有通过随机接入过程, 与系统的上行同步以后, 才能够被系统调度来进行上行的传输.LTE中的随机接入分为基于竞争的随机接入和无竞争的随机接入两种形式. 初始的随机接入过程, 是一种基于竞争的接入过程, 可以分为四个步骤, 如下图所示: (1): MSG1:Random Access Preamble (2): MSG2:Random Access Response (3): MSG3 发送 (RRC Connection Request) (4): 冲突解决消息. 所谓MSG3, 其实就是第三条消息, 因为在随机接入的过程中,这些消息的内容不固定,有时候可能携带的是RRC连接请求,有时候可能会带一些控制消息甚至业务数据包,因此简称为MSG3. 第一步:随机接入前导序列传输. LTE中, 每个小区有64个随机接入的前导序列(Preamble), 分别被用于基于竞争的随机接入 (如初始接入)和非竞争的随机接入(如切换时的接入).其中, 用于竞争的随机接入的

前导序列的数目个数为numberofRA-Preambles,在SIB2系统消息中广播. sib2 : { radioResourceConfigCommon { rach-ConfigCommon { preambleInfo { numberOfRA-Preambles n52 }, powerRampingParameters { powerRampingStep dB4, preambleInitialReceivedTargetPower dBm-104 }, ra-SupervisionInfo { preambleTransMax n10, ra-ResponseWindowSize sf10, mac-ContentionResolutionTimer sf48 }, maxHARQ-Msg3Tx 4

LTE小区搜索流程

LTE PLMN和小区选择 LTE系统中,PLMN的选择可以分为自动和手动两种形式. 所谓自动,指的是UE根据事先设好的优先级准则,自主完成PLMN的搜索和选择. 所谓手动, 是指UE将满足条件的PLMN列表呈现给用户,由用户来作出选择. 无论是自动模式还是手动模式, UE AS层都需要能够将网络中现有的PLMN列表报告给UE NAS层, 为此, UE AS根据自身的能力和设置, 进行全频段的搜索, 在每一个频点上搜索信号最强的小区, 读取其系统信息, 报告给UE NAS层,由NAS层来决定PLMN搜索是否继续进行.对于EUTRAN的小区, RSRP >= -110 dBm的PLMN称之为高质量的PLMN (High Quality PLMN), 对于不满足高质量条件的PLMN, UE AS层在上报过程中需要同时报告PLMN ID和RSRP的值. 如果UE搜索到多个PLMN, 在自动模式下, PLMN选择的优先级可以为如下: (1):上一次开机或脱离服务区之前注册的PLMN (RPLMN) (2): HPLMN (可以由IMSI得到)或者EHPLMN 优先级列表 (3): 用户或者运营商定义的PLMN优先级列表 (4): 高质量的PLMN (5):按RSRP排序的非高质量PLMN列表. 如果UE存储有先验信息,如载波频率,小区参数等,则PLMN的搜索过程可以得到优化, NAS 层指示AS层按照先验信息的参数来进行PLMN搜索,并把结果上报给NAS层。一个简化的PLMN搜索选择的流程图如下所示:

UE在选择了PLMN以后, 要通过小区选择的过程, 选择适合的小区进行驻留. UE小区选择的过程, 可以分为如下两种情况: (1): 初始小区选择. UE中没有关于EUTRA 载波的先验信息, 此时UE需要根据自身的能力和设置进行进行全频段搜索,在每个频点上搜索最强的小区,当满足S-Criterion准则后,即可以选择该小区进行驻留。

LTE随机接入过程总结(完美)

随机接入过程 一. PRACH 1. PRACH 的类型 从表1可以看出,Preamble 的类型一共有4种,而对于FDD 系统之支持0、1、2、3这4类Preamble 。对于Preamble format 0,在时间上占用一个完整的子帧;对于Preamble format 1和2,在时间上占用两个完整的子帧;对于Preamble format 3,在时间上占用三个完整的子帧。在频域上,Preamble format 0~3均占用一个PRB ,即180KHZ 的频带,区别是Preamble format 0~3的子载波间隔是1.25KHZ ,并占用864个子载波,由于ZC 序列的长度是839,因此Preamble format 0~3真正占用中间的839个子载波传输Preamble ,而剩余的25个子载波作为两边的保护带宽。 不同类型的Preamble 有长度不一样的CP 和保护间隔,小区的覆盖围和保护间隔GT 有关,具体可参考如下公式: R = GT * C / 2 其中,R 为小区半径、GT 为保护间隔、C 表示光速。至于不同类型的Preamble 对应的小区半径可参考如下: Preamble 格式0:持续时间1ms ,可支持半径约14km ; Preamble 格式1:持续时间2ms ,可支持半径约77km ; Preamble 格式2:持续时间2ms ,可支持半径约29km ; Preamble 格式3:持续时间3ms ,可支持半径约107km ; 2. PRACH 的时频位置 首先给出PRACH 的时域位置,协议中由参数prach-ConfigIndex 给出,每个prach-ConfigIndex 给出了Preamble 的类型、System frame number(Even/Any)、Subframe number 。具体如表2所示: 而对于PRACH 的频域位置,协议中由参数RA PRBoffset n 确定,它的取值围是 60UL RB RA PRBoffset -≤≤N n 。

LTE随机接入过程概述

LTE随机接入过程概述 一、随机接入的作用 LTE随机接入的作用是实现UE和网络的同步,解决冲突,分配资源(RNTI)和上行通信资源的分配。 二、随机接入触发条件 1、在RRC_IDLE初始接入; 2、在无线链路断开时初始接入; 3、切换时需要随机接入; 4、RRC_CONNECTED状态下需要随机接入过程时,收到下行数据,如上行同步状态为“非 同步”时; 5、RRC_CONNECTED状态下需要随机接入过程时,收到上行数据,如上行同步状态为“非 同步”或者没有PUCCH资源可用于调度时。 三、随机接入过程 随机接入过程分为竞争模式随机接入和非竞争模式随机接入两种。竞争模式随机接入是使用所有UE都可在任何时间可以使用的随机接入序列接入,它每种触发条件都可以触发接入;非竞争模式随机接入是使用在一段时间内仅有一个UE使用的序列接入,它只发生在切换和收到下行数据的触发条件下。 随机接入过程之后,开始正常的上下行传输。 四、竞争模式随机接入过程 在随机接入过程开始之前需要对接入参数进行初始化,它是由UE MAC层发起或者由PDCCH触发。 初始化的参数包括: ?PRACH的资源和相应的RA-RNTI ?随机接入前导的分组和每组可用的前导 ?选择两组随机接入前导中的那一组的门限 ?RACH响应的接收窗 ?功率攀升步长POWER_RAMP_STEP

?前导重传最大次数 ?前导初始功率PREAMBLE_INITIAL_POWER 初始化的时候置PREAMBLE_TRANSMISSION_COUNTER为1。 竞争模式随机接入过程如下图所示: UE eNB 1、随机接入前导发送 a)前导资源选择 块,选择RRC 前导, b)设置发射功率 [-设置PREAMBLE_TRANSMISSION_POWER 为PREAMBLE_INITIAL_POWER + (PREAMBLE_TRANSMISSION_COUNTER-1) * POWER_RAMP_STEP]; [-如果PREAMBLE_TRANSMISSION_POWER 小于最小功率水平,则设置PREAMBLE_TRANSMISSION_POWER为最小功率水平]; [-如果PREAMBLE_TRANSMISSION_POWER 大于最大功率水平,则设置PREAMBLE_TRANSMISSION_POWER为最大功率水平]; 如果PREAMBLE TRANMISSION COUNTER = 1, 则决定下一个有效的随机接入机会。如果PREAMBLE TRANSMISSION COUNTER > 1, 则随机接入机会通过back-off进程决定。

LTE小区搜索过程(详解)

byx LTE小区搜索过程 a) UE一开机,就会在可能存在LTE小区的几个中心频点上接收数据并计算带宽RSSI,以接收信号强度来判断这个频点周围是否可能存在小区(应该说只是可能),如果UE能保存上次关机时的频点和运营商信息,则开机后可能会先在上次驻留的小区上尝试驻留;如果没有先验信息,则很可能要全频段搜索,发现信号较强的频点,再去尝试驻留。 b) 然后在这个中心频点周围收PSS(primary synchronization signal)和SSS(secondary synchronization signal),这两个信号和系统带宽没有限制,配置是固定的,而且信号本身以5ms为周期重复,并且是ZC序列,具有很强的相关性,因此可以直接检测并接收到,据此可以得到小区ID,同时得到小区定时的5ms边界;这里5ms的意思是说:当获得同步的时候,我们可以根据辅同步信号往前推一个时隙左右,得到5ms的边界,也就是得到Subframe#0或者Subframe#5,但是UE尚无法准确区分。 c)5ms边界得到后,根据PBCH的时频位置,使用滑窗方法盲检测,一旦发现CRC校验结果正确,则说明当前滑动窗就是10ms的帧边界,可以接收PBCH了,因为PBCH信号是存在于每个slot#1中,而且是以10ms为周期;如果UE以上面提到的5ms边界来向后推算一个Slot,很可能接收到slot#6,所以就必须使用滑动窗的方法,在多个可能存在PBCH的位置上接收并作译码,只有接收数据块的crc校验结果正确,才基本可以确认这次试探的滑窗落到了10ms边界上,也就是无线帧的帧头找到了。也就是说同步信号是5ms周期的,而PBCH和无线帧是10ms周期的,因此从同步信号到帧头映射有一个试探的过程。接着可以根据PBCH的内容得到系统帧号和带宽信息,以及PHICH的配置;一旦UE可读取PBCH,并且接收机预先保留了整个子帧的数据,则UE同时可读取获得固定位置的PHICH及PCIFICH信息,否则一般来说至少要等到下一个下行子帧才可以解析PCFICH和PHICH,因为PBCH存在于slot#1上,本子帧的PHICH和PCFICH的接收时间点已经错过了。 d)至此,UE实现了和eNB的定时同步; 要完成小区搜索,仅仅接收PBCH是不够的,还需要接收SIB,即UE接收承载在PDSCH 上的BCCH信息。为此必须进行如下操作: a) 接收PCFICH,此时该信道的时频资源就是固定已知的了,可以接收并解析得到PDCCH 的symbol数目; b) 接收PHICH,根据PBCH中指示的配置信息接收PHICH; c) 在控制区域内,除去PCFICH和PHICH的其他CCE上,搜索PDCCH并做译码; d) 检测PDCCH的CRC中的RNTI,如果为SI-RNTI,则说明后面的PDSCH是一个SIB,于是接收PDSCH,译码后将SIB上报给高层协议栈; e)不断接收SIB,HLS会判断接收的系统消息是否足够,如果足够则停止接收SIB 至此,小区搜索过程才差不多结束。 2 在数据接收过程中,UE还要根据接收信号测量频偏并进行纠正,实现和eNB的频率同步; 对于PHY来说,一般不作SIB的解析,只是接收SIB并上报。只要高层协议栈没有下发命令停止接收,则PHY要持续检测PDCCH的SI-RNTI,并接收后面的PDSCH。 DRX在MAC层的概念,应该是说对PDCCH的监视是否是持续的还是周期性的,DRX功能的启用与否只在RRC connect状态下才有意义。 BCCH映射到DLSCH上的PDU是通过SI-RNTI在物理层CRC之后在PDSCH上发送的,这其中包含SIB1和SIB2的内容,PBCH上发送的MIB只包含三个内容:系统带宽,系统

LTE D随机接入过程 RAR以及MSG 的重传

本文涉及到的内容有: (1)UE在什么时候开始接收RAR (2)怎么确定RA-RNTI (3)UE没有收到RAR后的处理 (4)RAR的格式 监测RAR 文章《》已经详细说明了UE发送Preamble前导码的时频位置。当UE发出Preamble后,并不是立即准备接收RAR(Random Access Response),而是在发送前导码之后的第3个子帧之后才开始准备接收RAR。当然,UE也不可能一直等待RAR,如果UE连续检测了ra-ResponseWindowSize个子帧仍然没有收到RAR,则不再继续监测RAR信息。 即UE最多连续监测RAR的时长是10ms。

的计算 eNB加扰RAR、UE解扰RAR的RA-RNTI并不在空口中传输,但UE和eNB都需要唯一确定RA-RNTI 的值,否则UE就无法解码RAR,因此RA-RNTI就必须通过收发双方都明确的Preamble的时频位置来计算RA-RNTI的值。 协议规定了RA-RNTI的计算公式为:RA-RNTI= 1 + t_id+10*f_id。 其中,t_id表示发送Preamble的起始位置的子帧ID号(范围是0-9),f_id表示四元素组中的f_RA值(范围是0-5),之前的文章《》已经详细描述了这两个值的具体含义。 eNB只要能解码出Preamble前导码,就能唯一确定t_id和f_id参数,也就能唯一确定RA-RNTI值。 没有收到RAR的处理 UE有可能在RAR的监测窗口内没有解码到RAR消息,这有可能是eNB侧没有检测到PRACH中的Preamble信息,有可能是没有调度RAR信息,也有可能是下行无线链路有干扰导致UE解码RAR失败,无论是哪种原因,UE没有收到RAR是有可能发生的。 如果在RAR响应窗口内没有收到RAR,或者收到的RAR中携带的Preamble并不是本UE之前发送的Preamble,那么表示UE本次接收RAR失败,UE将执行如下操作:

wcdma网络搜索流程

一般, 移动终端的网络搜索过程是很短暂的, 在终端开机后 几秒钟内即可完成。终端的网络搜索能力能够作为评价终端质量的一项重要指标。网络搜索能力强的终端在信号质量较差的区域依然能够接入网络, 并能够获得好的服务; 相反, 网络搜索能力较弱的终端则可能表现为经常性脱网, 从而影响用户正常使用。因此, 本文打算从技术实现的角度来剖析终端的网络搜索过程, 使大家对该过程有一定的了解。 终端的网络搜索技术与其使用的无线网络制式有关, 也就是说, cdma2000终端、GSM终端、WCDMA终端的网络搜索过程是不一样的。限于篇幅, 本文只介绍WCDMA终端的网络搜索过程。

WCDMA终端的网络搜索过程实际上能够分解为公众陆地移动网( PLMN) 选择与小区搜索两个子过程, 这两个子过程密切相关如图1所示。 图1 PLMN选择与小区选择 PLMN由移动国家代码( MCC) 和移动网络代码( MNC) 共同惟一确定, 其中, 移动国家代码为3位数字, 移动网络代码为2位数字。 PLMN一般由很多个小区组成。小区是移动通信网络中的最小覆盖单元, 是由其使用的主扰码( primaryscramblingcode) 惟一标识的, 该主扰码在网络规划时即已分配给小区。小区所属的PLMN的信息包含在其下发的系统消息中。 终端在开机或脱网时, 首先由PLMN选择过程经过自动或手动方式选择一个PLMN, 然后搜索属于该PLMN的小区, 如果在该PLMN下无法捕捉到合适的小区, 则将在小区搜索过

程中得到的可捕获PLMN列表报告给PLMN选择过程, 由其重新选择PLMN, 启动新一轮小区捕获过程。 一、 PLMN 选择 1.PLMN的分类 对于一个特定的终端来说, 一般需要维护几种不同类型的PLMN列表, 每个列表中会有多个PLMN。 已登记PLMN( RPLMN) 是终端在上次关机或脱网前登记上的PLMN。在3GPP2003年第TSGTP-21次会议上决定, 将该参数从USIM卡上删掉, 而将其保存在终端的内存中。 等效PLMN( EPLMN) 为与终端当前所选择的PLMN处于同等地位的PLMN, 其优先级相同。 归属PLMN( HPLMN) 为终端用户归属的PLMN。也就是说, 终端USIM卡上的IMSI号中包含的MCC和MNC与HPLMN上的MCC和MNC是一致的, 对于某一用户来说, 其归属的PLMN只有一个。 用户控制PLMN( UPLMN) 是储存在USIM卡上的一个与PLMN选择有关的参数。

LTE随机接入流程

PRACH结构 PRACH格式

对于格式1到3,频域间隔1.25k,占用864个子载波(ZC序列长度839,剩余25个子载波两边保护)。格式4,频域讲7.5k,占用144个子载波(ZC序列139,剩余5个两边保护)。

时频位置 对于TDD ,格式有4种,和TDD 上下行帧划分和prach-ConfigIndex 有关,见211表Table 5.7.1-3。 prach-ConfigIndex 确定了四元结构体),,,(21 0RA RA RA RA t t t f , 决定了prach 发送的时频位置。在211表Table 5.7.1-4中配置。其中RA f 是频率资源索引。2,1,00=RA t 分别表示资源是否在 所有的无线帧,所有的偶数无线帧,所有的奇数无线帧上重现。1,01 =RA t 表示随机接入资源 是否位于一个无线帧的前半帧或者后半帧。2RA t 表示前导码开始的上行子帧号,其计数方式 为在连续两个下行到上行的转换点间的第一个上行子帧作为0进行计数。但对于前导码格式4,2RA t 表示为(*)。 序列组产生 每个基站下有64个preamble 序列,怎么产生呢? 1、 由逻辑根序列号RACH_ROOT_SEQUENCE 查表Table 5.7.2-4得到物理根序列号。 2、 用zeroCorrelationZoneConfig 以及highSpeedFlag (如果为高速,则是限制级)查211

表格Table 5.7.2-2得到循环位移N CS ; 3、 用循环位移N CS 与根序列,得到64个preamble 序列。1个根序列可能无法生产64 个preamle 序列,则取下一个根序列继续生成,直到得到64个preamble 。 普通速度模式下(非限制集),preamble 的循环位移时等间隔的,一个根序列能生成 ZC CS N N ????,ZC N 是长度序列长度为839(格式4为139) 。高速模式下(限制集)循环位移非等间隔。高速模式下,原根序列和生成好的序列相关,峰值会出现三个,同步时 需要合并三个窗口能量做估计。 MAC 层处理 流程 触发条件 1、 RRC 信令触发。包括切换,初始入网,idle 醒来需要做随机接入。此时没有C-RNTI,msg3 在CCCH 中发送,在msg4中回携带msg3的内容作为UE 标识让UE 知道是否该msg4是 针对自己的。 2、 UE MAC 层触发:此时已经有了C-RNTI ,不是为了入网而是为了2种情况:a 、UE 自己 发现好久没有调整ul timing 了需要重新调整;b 、没有SR 资源但需要BSR 3、 PDCCH DCI formart 1A 触发:基站发现UE 的ul timing 老不对了,可能是“Timing Advance Command MAC Control Element ”老调整不好了(该方式时相对值调整),基站复位一下 UE 的timing 调整参数(随机接入的timing 调整时绝对值调整,做完后应当复位一下相

GSM小区搜索过程

GSM小区初搜 在移动通信系统应用中,MS开机后必须尽快搜索到一个合适的小区(如从射频连接器端测得的功率最大的小区),然后与这个小区达到时隙和频率上的同步,才能获取本小区的详细信息。终端只有在登录到小区后才能使用网络的服务。通常把从开机搜索到登录到合适小区的过程定义为小区初始搜索(initial cell search)过程,简称小区初搜。同步是小区初搜中的一个关键步骤,指的是从开机到与小区达到时频同步的过程。 GSM系统的基站通过BCH(Broadcast Channel,广播信道)传输信令信息,它包括三种数据内容:FB(Frequency Burst,频率矫正突发),SB(Synchronization Burst,同步突发)和BCCH(Broadcast Control Channel,广播控制信道)。小区初搜的目的就是解读这些突发中的信息来驻留小区。由于MS的开机时间是不定的,再加上本地晶振的老化或者温度等原因,MS开机时与BCH的时隙和频率都可能存在偏差,导致读取小区信息错误。只有在定时和调整频偏之后,才能对BCH进行解读。 CCH(Control Channel,控制信道)包括BCH和CCCH(Common Control Channel,公共控制信道)和一个空闲(Idle)帧,它的帧结构为51复帧,它由51个TDMA帧组成,每帧分为8个时隙(0-7),每个时隙的持续时间约为576.9 μs (15/26 ms),其中携带的物理内容叫做突发(Burst),在每帧的时隙0中发送广播信息,其结构如图1所示,此结构必须安排在C0载频的第0号时隙。 图1 CCH的51复帧的帧结构 图中的FB不携带信息,由148个全“0”比特组成。SB包含一个长的训练序列并携带有BSIC(base station identity code,基站识别码)和19比特的缩减TDMA帧号(RFN)。BCCH广播基站的一般信息,MS解读其上的信息,在确认为合法后可以选择相应小区,完成整个小区驻留过程。 1 GSM系统中FCCH与SCH的结构特点 FCCH对应着一个频率校正突发脉冲序列(FB),它结构简单,便于检测,在GSM公共信道的每518个时隙中,FCCH仅占5个时隙,给用户传送校正MS(移动台)频率的信息。FB的所有148比特全部是“0”。结构如图2所示。 图2 FCCH的结构示意图 GSM系统采用GMSK调制方式,FCCH经调制后,是一个纯正弦波,频率比载波中心频率高67.5kHz。

LTE随机接入过程

LTE随机接入过程 preamble传输达到最大传输次数的处理 从UE的角度上看,随机接入过程可能遇到以下问题而导致随机接入失败:UE没有收到其发送的preamble对应的RAR(没有收到RAR,或收到的RAR MAC PUD中没有对应该preamble的RAR);UE发送了Msg3,但没有收到Msg4;UE收到了Msg4,但该UE不是冲突解决的胜利者。 如果某次随机接入失败了,UE会重新发起随机接入。在36.321中,介绍到一个字段preambleTransMax,该字段指定了preamble的最大传输次数。当UE发送的preamble数超过preambleTransMax时,协议要求MAC层发送一个random access problem indication到上层(通常是RRC 层),但MAC层并不会停止发送preamble。也就是说,MAC层被设计成“无休止”地发送preamble,而出现“UE发送的preamble数超过preambleTransMax”时如何处理是由上层(RRC层)决定的。 也就是说,无论是发生上面介绍的哪种情况,MAC层都会“无休止”地发送preamble以期望能成功接入小区。 在收到MAC层的random access problem indication后,RRC层的行为取决于触发随机接入的场景: 场景一:RRC连接建立。此时UE通过RRC timer T300来控制,当该timer 超时(即RRC连接建立失败)时,UE的RRC层会停止随机接入过程(此时会重置MAC,释放MAC配置。而从36.321的5.9节可知,重置MAC 会停止正在进行的随机接入过程),并通知上层RRC连接建立失败。(见

相关文档