文档库 最新最全的文档下载
当前位置:文档库 › 1.5函数y=asin(wx+)的图象 教案

1.5函数y=asin(wx+)的图象 教案

1.5函数y=asin(wx+)的图象 教案
1.5函数y=asin(wx+)的图象 教案

1.5函数y=Asin(ωx+φ)的图象

一、教学分析

本节通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响,讨论函数y=Asin(ωx+φ)的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.这节是本章的一个难点.

如何经过变换由正弦函数y=sinx来获取函数y=Asin(ωx+φ)的图象呢?通过引导学生对函数y=sinx 到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系.

本节课建议充分利用多媒体,倡导学生自主探究,在教师的引导下,通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在.

二、教学目标:

1、知识与技能

借助计算机画出函数y=Asin(ωx+φ) 的图象,观察参数Φ,ω,A对函数图象变化的影响;引导学生认识y=Asin(ωx+φ) 的图象的五个关键点,学会用“五点法”画函数y=Asin(ωx+φ)的简图;用准确的数学语言描述不同的变换过程.

2、过程与方法

通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索, 让学生体会研究问题时由简单到复杂, 从具体到一般的思路, 一个问题中涉及几个参数时,一般采取先“各个击破”后“归纳整合”的方法.

3、情感态度与价值观

经历对函数y=sin x到 y=Asin(ωx+φ)的图象变换规律的探索过程,体会数形结合以及从特殊到一般的化归思想; 培养学生从不同角度分析问题,解决问题的能力.

三、教学重点、难点:

重点:将考察参数Α、ω、φ对函数y=Asin(ωx+φ)图象的影响的问题进行分解,找出函数y=sin x 到y=Asin(ωx+φ)的图象变换规律.学习如何将一个复杂问题分解为若干简单问题的方法.;会用五点作图法正确画函数y=Asin(ωx+φ)的简图.

难点:学生对周期变换、相位变换顺序不同,图象平移量也不同的理解.

四、教学设想:

函数y=Asin(ωx+φ)的图象(一)

(一)、导入新课

思路1.(情境导入)在物理和工程技术的许多问题中,都要遇到形如y=Asin(ωx+φ)的函数(其中A、ω、φ是常数).例如,物体做简谐振动时位移y与时间x的关系,交流电中电流强度y与时间x的关系等,都可用这类函数来表示.这些问题的实际意义往往可从其函数图象上直观地看出,因此,我们有必要画好这些函数的图象.揭示课题:函数y=Asin(ωx+φ)的图象.

思路2.(直接导入)从解析式来看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系?从图象上看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系?接下来,我们就分别探索φ、ω、A对y=Asin(ωx+φ)的图象的影响.

(二)、推进新课、新知探究、提出问题

①观察交流电电流随时间变化的图象,它与正弦曲线有何关系?你认为可以怎样讨论参数φ、ω、A对y=Asin(ωx+φ)的图象的影响?

②分别在y=sinx 和y=sin(x+

3

π

)的图象上各恰当地选取一个纵坐标相同的点,同时移动这两点并观察其横坐标的变化,你能否从中发现,φ对图象有怎样的影响?对φ任取不同的值,作出y=sin(x+φ)的图象,看看与y =sinx 的图象是否有类似的关系?

③你概括一下如何从正弦曲线出发,经过图象变换得到y=sin(x+φ)的图象.

④你能用上述研究问题的方法,讨论探究参数ω对y=sin(ωx+φ)的图象的影响吗?为了作图的方便,先不妨固定为φ=

3π,从而使y=sin(ωx+φ)在ω变化过程中的比较对象固定为y=sin(x+3

π). ⑤类似地,你能讨论一下参数A 对y=sin(2x+3π)的图象的影响吗?为了研究方便,不妨令ω=2,φ=3

π

.此

时,可以对A 任取不同的值,利用计算器或计算机作出这些函数在同一坐标系中的图象,观察它们与y=sin(2x+

3

π

)的图象之间的关系. ⑥可否先伸缩后平移?怎样先伸缩后平移的?

活动:问题①,教师先引导学生阅读课本开头一段,教师引导学生思考研究问题的方法.同时引导学生观察y=sin(x+

3

π

)图象上点的坐标和y=sinx 的图象上点的坐标的关系,获得φ对y=sin(x+φ)的图象的影响的具体认识.然后通过计算机作动态演示变换过程,引导学生观察变化过程中的不变量,得出它们的横坐标总是相差

3

π

的结论.并让学生讨论探究.最后共同总结出:先分别讨论参数φ、ω、A 对y=Asin(ωx+φ)的图象的影响,然后再整合.

图1

问题②,由学生作出φ取不同值时,函数y=sin(x+φ)的图象,并探究它与y=sinx 的图象的关系,看看是否仍有上述结论.教师引导学生获得更多的关于φ对y=sin(x+φ)的图象影响的经验.为了研究的方便,不妨先取φ=

3

π

,利用计算机作出在同一直角坐标系内的图象,如图1,分别在两条曲线上恰当地选取一个纵坐标相同的点A 、B,沿两条曲线同时移动这两点,并保持它们的纵坐标相等,观察它们横坐标的关系.可以发现,对于同一个y 值,y=sin(x+

3π)的图象上的点的横坐标总是等于y=sinx 的图象上对应点的横坐标减去3

π

.这样的过程可通过多媒体课件,使得图中A 、B 两点动起来(保持纵坐标相等),在变化过程中观察A 、B 的坐标、x B -x A 、

|AB|的变化情况,这说明y=sin(x+

3π)的图象,可以看作是把正弦曲线y=sinx 上所有的点向左平移3

π

个单位长度而得到的,同时多媒体动画演示y=sinx 的图象向左平移3π使之与y=sin(x+3

π

)的图象重合的过程,以加深

学生对该图象变换的直观理解.再取φ=4

π

-,用同样的方法可以得到y=sinx 的图象向右平移4π后与

y=sin(x 4

π

-)的图象重合.

如果再变换φ的值,类似的情况将不断出现,这时φ对y=sin(x+φ)的图象的影响的铺垫已经完成,学生关于φ对y=sin(x+φ)的图象的影响的一般结论已有了大致轮廓.

问题③,引导学生通过自己的研究认识φ对y=sin(x+φ)的图象的影响,并概括出一般结论:

y=sin(x+φ)(其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.

问题④,教师指导学生独立或小组合作进行探究,教师作适当指导.注意提醒学生按照从具体到一般的思路得出结论,具体过程是:(1)以y=sin(x+3π)为参照,把y=sin(2x+3π)的图象与y=sin(x+3

π

)的图象作比较,取点A 、B 观察.发现规律:

图2

如图2,对于同一个y 值,y=sin(2x+

3π)的图象上点的横坐标总是等于y=sin(x+3π)的图象上对应点的2

1

倍.教学中应当非常认真地对待这个过程,展示多媒体课件,体现伸缩变换过程,引导学生在自己独立思考的基础上

给出规律.(2)取ω=

21,让学生自己比较y=sin(2

1x+3π

)的图象与y=sin(x+3π)图象.教学中可以让学生通过作

图、观察和比较图象、讨论等活动,得出结论:把y=sin(x+3

π

)图象上所有点的横坐标伸长到原来的2倍(纵坐

标不变),就得到y=sin(2

1x+3π

)的图象.

当取ω为其他值时,观察相应的函数图象与y=sin(x+3

π

)的图象的关系,得出类似的结论.这时ω对

y=sin(ωx+φ)的图象的影响的铺垫已经完成,学生关于ω对y=sin(ωx+φ)的图象的影响的一般结论已有了大致轮廓.教师指导学生将上述结论一般化,归纳y=sin(ωx+φ)的图象与y=sin(x+φ)的图象之间的关系,得出结论:

函数y=sin(ωx+φ)的图象可以看作是把y=sin(x+φ)的图象上所有点的横坐标缩短(当

ω>1时)或伸长(当0<ω<1时)到原来的

ω

1

倍(纵坐标不变)而得到.

图3

问题⑤,教师点拨学生,探索A 对图象的影响的过程,与探索ω、φ对图象的影响完全一致,鼓励学生独立完成.学生观察y=3sin(2x+

3π)的图象和y=sin(2x+3

π

)的图象之间的关系.如图3,分别在两条曲线上各取一个横坐标相同的点A 、B,沿两条曲线同时移动这两点,并使它们的横坐标保持相同,观察它们纵坐标的关系.可

以发现,对于同一个x 值,函数y=3sin(2x+

3π)的图象上的点的纵坐标等于函数y=sin(2x+3

π

)的图象上点的纵坐标的3倍.这说明,y=3sin(2x+3π)的图象,可以看作是把y=sin(2x+3

π

)的图象上所有的点的纵坐标伸长到原

来的3倍(横坐标不变)而得到的.通过实验可以看到,A 取其他值时也有类似的情况.有了前面两个参数的探

究,学生得出一般结论:

函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作是把y=sin(ωx+φ)上所有点的纵坐

标伸长(当A>1时)或缩短(当0

由此我们得到了参数φ、ω、A 对函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象变化的影响情况. 一般地,函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作用下面的方法得到:

先画出函数y =sinx 的图象;再把正弦曲线向左(右)平移|φ|个单位长度,得到函数y=sin(x+

φ)的图象;然后使曲线上各点的横坐标变为原来的ω

1

倍,得到函数y=sin(ωx+φ)的图象;最

后把曲线上各点的纵坐标变为原来的A 倍,这时的曲线就是函数y=Asin(ωx+φ)的图象.

⑥引导学生类比得出.其顺序是:先伸缩横坐标(或纵坐标),再伸缩纵坐标(或横坐标),最后平移.但学生很容易在第三步出错,可在图象变换时,对比变换,以引起学生注意,并体会一些细节.

由此我们完成了参数φ、ω、A 对函数图象影响的探究.教师适时地引导学生回顾思考整个探究过程中体现的思想:由简单到复杂,由特殊到一般的化归思想.

(三)、讨论结果:

①把从函数y=sinx 的图象到函数y=Asin(ωx+φ)的图象的变换过程,分解为先分别考察参数φ、ω、A 对函数图象的影响,然后整合为对y=Asin(ωx+φ)的整体考察.

②略②略.

③图象左右平移,φ影响的是图象与x 轴交点的位置关系. ④纵坐标不变,横坐标伸缩,ω影响了图象的形状. ⑤横坐标不变,纵坐标伸缩,A 影响了图象的形状.

(四)、规律总结:

先平移后伸缩的步骤程序如下:

y=sinx 的图象

个单位长度

平移或向右向左||)

0()0(?????????→?<>得y=sin(x+φ)的图象

)

(1

)

1()10(纵坐标不变到原来或缩短横坐标伸长ω

ωω????????→?><<得y=sin(ωx+φ)的图象

)

()

10()1(横坐标不变倍为原来的或缩短纵坐标伸长A A A ????????→?<<>得y=Asin(ωx+φ)的图象.

先伸缩后平移(提醒学生尽量先平移),但要注意第三步的平移.

y=sinx 的图象

)

()

10()1(横坐标不变倍这原来的或缩短纵坐标伸长A A A ????????→?<<>得y=Asinx 的图象

)

(1

)

1()10(纵坐标不变到原来的或缩短横坐标伸长ω

ωω????????→

?><<得y=Asin(ωx)的图象

个单位

平移或缩短向左||)

1()0(ω

?

ω???????→

?>>得y=Asin(ωx+φ)的图象.

(五)、应用示例 例1 画出函数y=2sin(

31x-6

π

)的简图. 活动:本例训练学生的画图基本功及巩固本节所学知识方法.

(1)引导学生从图象变换的角度来探究,这里的φ=6

π

-,ω=31,A =2,鼓励学生根据本节所学内容自己

写出得到y=2sin(

31x-6π

)的图象的过程:只需把y =sinx 的曲线上所有点向右平行移动6

π

个单位长度,得到y=sin(x-6π)的图象;再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y=sin(31x-6

π

)的图象;再

把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到函数y=2sin(31x-6

π

)的图象,如图4所

.

图4

(2)学生完成以上变换后,为了进一步掌握图象的变换规律,教师可引导学生作换个顺序的图象变换,要让学生自己独立完成,仔细体会变化的实质.

(3)学生完成以上两种变换后,就得到了两种画函数y=2sin(31x-6

π

),简图的方法,教师再进一步的启发学生能否利用“五点法”作图画出函数y=2sin(31x-6

π

)的简图,并鼓励学生动手按“五点法”作图的要求完成这一画图过程.

解:方法一:画出函数y=2sin(

31x-6

π

)简图的方法为 y=sinx

????→?个单位

右移6

π

y=sin(x-6

π)

倍横坐标伸长到原来的纵坐标不变

3???→?y=sin(31x-6

π)倍纵坐标伸长到原来的横坐标不变

2???→

? y=2sin(31x-6

π).

方法二:画出函数y=2sin(31x-6

π

)简图的又一方法为

y=sinx

倍横坐标伸长到原来的纵坐标不变3???→

?y=sin

3

1

x 倍

纵坐标伸长到原来的横坐标不变

2???→

?y=2sin

3

1x ????→?个单位

右移2

π

y=2sin(3

1x-6

π)=2sin 3

1(x-2

π).

方法三:(利用“五点法”作图——作一个周期内的图象)

令X=

1x-π,则x=3(X+π

).列表:

图5

点评:学生独立完成以上探究后,对整个的图象变换及“五点法”作图会有一个新的认识.但教师要强调学生注意方法二中第三步的变换,左右平移变换只对“单个”x 而言,这点是个难点,学生极易出错.对于“五点法”作图,要强调这五个点应该是使函数取最大值、最小值以及曲线与x 轴相交的点.找出它们的方法是先作变量代换,设X=ωx+φ,再用方程思想由X 取0,

2π,π,2

3π,2π来确定对应的x 值.

(六)、课堂小结

1.由学生自己回顾总结本节课探究的知识与方法,以及对三角函数图象及三角函数解析式的新的认识,使本节的总结成为学生凝练提高的平台.

2.教师强调本节课借助于计算机讨论并画出y=Asin(ωx+

3

π

)的图象,并分别观察参数φ、ω、A 对函数图象变化的影响,同时通过具体函数的图象的变化,领会由简单到复杂、特殊到一般的化归思想.

(七)、作业

函数y=Asin(ωx+φ)的图象(二)

(一)、导入新课

思路1.(直接导入)上一节课中,我们分别探索了参数φ、ω、A 对函数y=Asin(ωx+φ)的图象的影响及“五点法”作图.现在我们进一步熟悉掌握函数y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的图象变换及其物理背景.由此展开新课.

思路2.(复习导入)请同学们分别用图象变换及“五点作图法”画出函数y=4sin(

21x-3

π

)的简图,学生动手画图,教师适时的点拨、纠正,并让学生回答有关的问题.在学生回顾与复习上节所学内容的基础上展开新课.

(二)、推进新课、新知探究、提出问题

①在上节课的学习中,用“五点作图法”画函数y=Asin(ωx+φ)的图象时,列表中最关键的步骤是什么?

②(1)把函数y =sin2x 的图象向_____平移_____个单位长度得到函数y =sin(2x -3π

)的图象; (2)把函数y =sin3x 的图象向_______平移_______个单位长度得到函数y =sin(3x +6

π

)的图象;

(3)如何由函数y =sinx 的图象通过变换得到函数y =sin(2x+3

π

)的图象?

③将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,再向左平移2

π

个单位长度,所得到的曲线是

y=

2

1

sinx 的图象,试求函数y=f(x)的解析式. 对这个问题的求解现给出以下三种解法,请说出甲、乙、丙各自解法的正误. 甲:所给问题即是将y=

21sinx 的图象先向右平移2π个单位长度,得到y=2

1

sin(x-2π)的图象,再将所得

的图象上所有点的横坐标缩短到原来的21,得到y=2

1

sin(2x-2π),即y=21-cos2x 的图象,∴f(x)=21-cos2x.

乙:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(

2

ω

x+φ)的图象,

再将所得的图象向左平移2π个单位长度,得到y=Asin(2ωx+2π+φ)=21sinx,∴A=21,2ω

=1,2π+φ=0,

即A=21,ω=2,φ=-2π.∴f(x)=2

1

sin(2x-2π)=21-cos2x.

丙:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(

x+φ)的图象,

再将所得的图象向左平移2π个单位长度,得到y=Asin[2ω(x+2π)+φ]=Asin(2

ωx+4ωπ+φ)= 21

sinx,

∴A=21,2ω=1,4

ωπ+φ=0.

解得A=2

1

,ω=2,φ=-2π,

∴f(x)=2

1

sin(2x-2π)=21-cos2x.

活动:问题①,复习巩固已学三种基本变换,同时为导入本节课重、难点创设情境.让学生回答并回忆A 、

ω、φ对函数y=Asin(ωx+φ)图象变化的影响.引导学生回顾“五点作图法”,既复习了旧知识,又为学生准

确使用本节课的工具提供必要的保障.

问题②,让学生通过实例综合以上两种变换,再次回顾比较两种方法平移量的区别和导致这一现象的根本原因,以此培养训练学生变换的逆向思维能力,训练学生对变换实质的理解及使用诱导公式的综合能力. 问题③,甲的解法是考虑以上变换的“逆变换”,即将以上变换倒过来,由y=

2

1

sinx 变换到y=f(x),解答正确.乙、丙都是采用代换法,即设y=Asin(ωx+φ),然后按题设中的变换得到两次变换后图象的函数解析式,这种思路清晰,但值得注意的是:乙生的解答过程中存在实质性的错误,就是将y=Asin(2

ω

x+φ)的图象向左平

2π个单位长度时,把y=Asin(2ωx+φ)函数中的自变量x 变成x+2π,应该变换成y=Asin[2

ω

(x+2π)+φ],而不是变换成y=Asin(2

ωx+2π

+φ),虽然结果一样,但这是巧合,丙的解答是正确的.

三角函数图象的“逆变换”一定要注意其顺序,比如甲生解题的过程中如果交换了顺序就会出错,故在

对这种方法不是很熟练的情况下,用丙同学的解法较合适(即待定系数法).平移变换是对自变量x 而言的,比如乙同学的变换就出现了这种错误.

讨论结果:①将ωx+φ看作一个整体,令其分别为0, 2π,π, 2

3π,2π. ②(1)右,

6π;(2)左, 18π;(3)先y =sinx 的图象左移3π,再把所有点的横坐标压缩到原来的2

1

倍(纵坐标不变). ③略.

提出问题

①回忆物理中简谐运动的相关内容,并阅读本章开头的简谐运动的图象,你能说出简谐运动的函数关系吗?

②回忆物理中简谐运动的相关内容,回答:振幅、周期、频率、相位、初相等概念与A 、ω、φ有何关系.

活动:教师引导学生阅读并适时点拨.通过让学生回忆探究,建立与物理知识的联系,了解常数A 、ω、φ与简谐运动的某些物理量的关系,得出本章开头提到的“简谐运动的图象”所对应的函数解析式有如下形式:y=Asin(ωx+φ),x ∈[0,+∞),其中A>0,ω>0.物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:A 就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T=ω

π

2,这是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公

式f=

T 1=π

ω2给出,它是做简谐运动的物体在单位时间内往复运动的次数;ωx+φ称为相位;x=0时的相位φ称为初相.

讨论结果:①y=Asin(ωx+φ),x ∈[0,+∞),其中A>0,ω>0. ②略.

(三)、应用示例

例1 图7是某简谐运动的图象.试根据图象回答下列问题:

(1)这个简谐运动的振幅、周期和频率各是多少?

(2)从O 点算起,到曲线上的哪一点,表示完成了一次往复运动?如从A 点算起呢? (3)写出这个简谐运动的函数表达式.

图7

活动:本例是根据简谐运动的图象求解析式.教师可引导学生再次回忆物理学中学过的相关知识,并提醒学生注意本课开始时探讨的知识,思考y=Asin(ωx+φ)中的参数φ、ω、A 在图象上是怎样反映的,要解决这个问题,关键要抓住什么.关键是搞清φ、ω、A 等参数在图象上是如何得到反映的.让学生明确解题思路,是由形到数地解决问题,学会数形结合地处理问题.完成解题后,教师引导学生进行反思学习过程,概括出研究函数y=Asin(ωx+φ)的图象的思想方法,找两名学生阐述思想方法,教师作点评、补充.

解:(1)从图象上可以看到,这个简谐运动的振幅为2 cm;周期为0.8 s;频率为

4

5. (2)如果从O 点算起,到曲线上的D 点,表示完成了一次往复运动;如果从A 点算起,则到曲线上的E 点,表示完成了一次往复运动.

(3)设这个简谐运动的函数表达式为y=Asin(ωx+φ),x ∈[0,+∞),

那么A=2;由

ωπ

2=0.8,得ω=

2

;由图象知初相φ=0.

于是所求函数表达式是y=2sin 2

x,x ∈[0,+∞).

点评:本例的实质是由函数图象求函数解析式,要抓住关键点.应用数学中重要的思想方法——数形结合的思想方法,应让学生熟练地掌握这种方法. 变式训练 函数y=6sin(

41x-6

π

)的振幅是,周期是____________,频率是____________,初相是___________,图象最高点的坐标是_______________.

解:6 8π π81 6π- (8k π+3

8π,6)(k ∈Z )

例2 若函数y=Asin(ωx+φ)+B(其中A>0,ω>0)在其一个周期内的图象上有一个最高点(12

π

,3)和一个最低点(

12

π

,-5),求这个函数的解析式. 活动:让学生自主探究题目中给出的条件,本例中给出的实际上是一个图象,它的解析式为y=Asin(ωx+φ)+B(其中A>0,ω>0),这是学生未遇到过的.教师应引导学生思考它与y=Asin(ωx+φ)的图象的关系,它只是把y=Asin(ωx+φ)(其中A>0,ω>0)的图象向上(B>0)或向下(B<0)平移|B|个单位.由图象可知,取最大值与最小值时相应的x 的值之差的绝对值只是半个周期.这里φ的确定学生会感到困难,因为题目中毕竟没有直接给出图象,不像例1那样能明显地看出来,应告诉学生一般都会在条件中注明|φ|<π,如不注明,就取离y 轴最近的一个即可.

解:由已知条件,知y max =3,y min =-5,

则A=

21(y max -y min )=4,B=2

1

(y max +y min )=-1,2T =127π-12π=2π.

∴T=π,得ω=2.

故有y=4sin(2x+φ)-1. 由于点(

12π,3)在函数的图象上,故有3=4sin(2×12

π

+φ)-1,

即sin(

6π+φ)=1.一般要求|φ|<2π,故取6π+φ=2π.∴φ=3

π. 故所求函数的解析式为y=4sin(2x+3

π

)-1.

点拨:这是数形结合的又一典型应用,应让学生明了,题中无图但脑中应有图或根据题意画出草图,结合图象可直接求得A 、ω,进而求得初相φ,但要注意初相φ的确定.求初相也是这节课的一个难点. 变式训练

已知函数y=Asin(ωx+φ)(其中A>0,ω>0)一个周期的图象如图8所示,求函数的解析式.

解:根据“五点法”的作图规律,认清图象中的一些已知点属于五点法中的哪一点,而选择对应的方程ωx i +φ=0,

2π,π,2

3π,2π(i=1,2,3,4,5),得出φ的值. 方法一:由图知A=2,T=3π,

ωπ

2=3π,得ω=

32,∴y=2sin(3

2

x+φ).

由“五点法”知,第一个零点为(43π

,0),

∴32·4

+φ=0 φ=-2π,

故y=2sin(32x-2

π

).

方法二:得到y=2sin(3

2

x+φ)同方法一.

由图象并结合“五点法”可知,(43π,0)为第一个零点,(4

,0)为第二个零点.

∴32·49π+φ=π φ=2

π-. ∴y=2sin(32x-2

π

).

点评:要熟记判断“第一点”和“第二点”的方法,然后再利用ωx 1+φ=0或ωx 2+φ=π求出φ. 2.2007海南高考,3函数y=sin(2x-

3π)在区间[2

π

-,π]上的简图是( )

图9

答案:A

(四)、课堂小结

1.由学生自己回顾本节学习的数学知识:简谐运动的有关概念.本节学习的数学方法:由简单到复杂、特殊到一般、具体到抽象的化归思想,数形结合思想,待定系数法,数学的应用价值.

2.三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,这种题目的解题的思路是:如果函数同名则按两种变换方法的步骤进行即可;如果函数不同名,则将异名函数化为同名函数,且需x 的系数相同.左右平移时,如果x 前面的系数不是1,需将x 前面的系数提出,特别是给出图象确定解析式y=Asin(ωx+φ)的题型.有时从寻找“五点法”中的第一零点(ω

?

-,0)作为突破口,一定要从图象的升降情况找准第一零点的位置.

(五)、作业

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

分段函数及反函数教案

第 16次课 学生: 蒋昊秋 授课时间: 2012 年 7 月 28 日 10 : 00 --- 12 : 00 教师 唐文 审核教师 授课课题 解函数解析式 一、 授课目的与考点分析: 1. 会用待定系数法以及配凑法求函数解析式 2. 会求分段函数定义域及值域。 3. 掌握反函数的性质,会求反函数。 二、 授课内容: 一:函数解析式的常用方法: 1、直接法:由题给条件可以直接寻找或构造变量之间的联系。 例1. 已知函数y =f (x )满足xy <0,4x 2-9y 2=36,求该函数解析式。 说明:这是一个分段函数,必须分区间写解析式,不可以写成 229 3 x y -=± 的形式。 2、待定系数法:由题给条件可以明确函数的类型,从而可以设出该类型的函数的一般式,然后再求出各个参变量的值。 例2. 已知在一定条件下,某段河流的水流量y 与该段河流的平均深度x 成反比,又测得该段河流某段平均水深为2m 时,水流量为340m 3/s ,试求该段河流水流量与平均深度的函数关系式。 变式.已知()f x 为二次函数,过原点,且f(1)=3, f(3)=6,求()f x 的解析式 。 说明:二次函数的表达形式有三种:一般式:2 ()f x ax bx c =++;顶点式:2 ()()f x a x m n =-+;零点式: 12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式)。 3、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。 例3. 已知2211 ()x x x f x x +++= ,试求()f x 。 说明:要注意转换后变量范围的变化,必须确保等价变形。 变式:(1)已知,sin )cos 1(2 x x f =-求()2 x f 的解析式 起航学校个性化辅导教案提纲

一次函数的图象(一)教案设计-

一次函数的图象(一) 课时课题:第六章第三节一次函数的图像 授课人:滕州市北辛中学八年级数学杨伟栋 课型:新授课 授课时间:2012年12月06日星期四第五节 教学目标: 1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象. 2.经历函数图象的作图过程,初步了解作函数图象的一般步骤. 3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力. 教法与学法指导:在教学过程中,用比较的方法(正比例函数与一次函数进行比较),以学生主动探索为主.充分调动学生学习积极性和主动性突出学生的主体地位,通过自学、小组讨论、归纳、追问、辨析等方法对学生进行学法导,培养他们动手、动口、动脑的能力,达到“不但使学生学会,而且使学生会学”的目的. 课前准备 教具:教材、多媒体课件. 学具:教材、铅笔、直尺、练习本. 教学过程 第一环节:创设情境感悟导入 一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S(米)与小明父亲出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?=80t+400(t≥0) 下面的图象能表示上面问题中的与t的关系吗? 我们说,上面的图象是函数S=80t+400(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象. 设计意图:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲 望. 第二环节:自主探究画一次函数的图象 内容:那么什么是函数的图象? 把一个函数的自变量x与对应的因变量y的值分别作为点的 横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点 组成的图形叫做该函数的图象(graph). 例1请作出一次函数y=2x+1的图象. 出相应的点. 连线:把这些点依次连结起来,得到y=2x+1的图象. 由例1我们发现:作一个函数的图象需要三个步骤: ①列表②描点③连线. 设计意图:通过本环节的学习,让学生明确作函数图象的一般步骤,并能做出一个函数的图象,

函数图像平移公式

函数图像平移公式 设在直角坐标系xoy 中有一函数为)(x f y =则其图像平移公式有: 1. 把图像向右平移(X 轴正方向)m (m>0)个单位,再向上平移(Y 轴的正方向)n (n>0)个单位后所得的图像的解析式为)(m x f n y -=- 2. 把图像向右平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y -=+ 3. 把图像向左平移m (m>0)个单位,再向上平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=- 4. 把图像向左平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=+ 这些规律可总结为:左右平移“X 左加右减”上下平移“下加上减” 说明:利用这个规律写平移后函数图像的解析式只需要考查是用m x +还是用m x -替换)(x f y =中的x,是用n y +还是用n y -来替换)(x f y =中的y,使用起来很方便。 例一、 抛物线3422---=x x y 向左平移3个单位,再向下平移4个单位,求所得抛物线 的解析式。 解:根据左右平移“X 左加右减”上下平移“下加上减”的规律分别用3+x 、4+y 去替换抛物线3422 ---=x x y 中的x 、y 就可以得到平移后的抛物线的解析式,所以平移后的抛物线的解析式为3)3(4)3(242-+-+-=+x x y 即371622---=x x y 例二、 将一抛物线向左平移2个单位,再向上平移3个单位所得到抛物线的解析式为322+-=x x y 求此抛物线的解析式。 解:所求抛物线可以看成是将抛物线322 +-=x x y 向右平移2个单位,再向下平移3个单位所得。所以所求抛物线的解析式为3)2(2)2(32+---=+x x y 即862+-=x x y 例三、 求将直线15-=x y 向左平移3个单位,再向上平移5个单位所得到直线的解析式 解:所求直线的解析为1)3(55-+=-x y 即145+=x y

三角函数的图象

电教优质课教案 《三角函数图象》 舞钢市第二高级中学 李培林

《三角函数图象》教案 舞钢市第二高级中学 李培林 一、教材分析: 1、地位与作用 本节内容是《普通高中课程标准实验教科书〃数学必修4》(人教A 版)第一章第5节内容,是高一年级课程,三角函数的图象既是函数图象知识的延伸,也是物理简谐波和交流电的图象,还是自然界的生命线,广泛应用于医学领域的心电图,脑电图,多普勒,核磁共振等。同时三角函数的图象对于研究三角函数的性质起到了非常重要的作用,是历年来高考的热点和重点。 2、知识与技能 掌握由函数sin y x =的图象到函数sin()y A x ω?= +的图象的变换原理, 理解振幅变换、周期变换和平移变换,区分先周期后平移,先平移后周期两种变换的联系与区别,灵活应用三种变换解答三角函数的图象问题。 二、学情分析 对高一的学生来说,已经学习了函数图象的平移、伸缩、对称和翻折四种变换,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习自主性和主动性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想:

本节课采用自主学习的课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“三角函数的图象”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 四、教学目标: A.课堂目标 1、理解三角函数“几何”作图法 2、掌握三角函数“五点”作图法 3、掌握三角函数图像变换原理与方法 4、能用三种变换解答三角函数的图象问题 B.过程与方法 让学生从已有的知识出发,通过学生自主探索、合作交流,亲身体验数学规律的发现,由特殊到一般归纳出数学规律,并用规律解决数学问题,让学生掌握数形结合的思想方法。 C.情感态度与价值观 培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣,培养学生合情合理探索数学规律的数学思想方法,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

反函数怎么表示【整理反函数数学教案】

反函数怎么表示【整理反函数数学教案】 反函数数学教案数学教案【数学教案】教学目标1.使学生了解 反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生 用辩证的观点观察、分析解决问题的能力。 教学重点1.反函数的概念;2.反函数的求法。 教学难点反函数的概念。 教学方法师生共同讨论教具装备幻灯片2张第一张:反函数的定义、记法、习惯记法。(记作A);第二张:本课时作业中的预习 内容及提纲。 教学过程(I)讲授新课(检查预习情况)师:这节课我们来学 习反函数(板书课题)§2.4.1反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?生:(略)(学生回答 之后,打出幻灯片A)。 师:反函数的定义着重强调两点:(1)根据y=f(x)中x与y的 关系,用y把x表示出来,得到x=φ(y);(2)对于y在c中的 任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。 师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前 者中的x与后者中的x都属于同一个集合,y也是如此),但地位 不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,

即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是 后者中的y,前者中的y是后者中的x。)由此,请同学们谈一下, 函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在 什么关系呢?生:(学生作答,教师板书)函数的定义域,值域分 别是它的反函数的值域、定义域。 师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。 从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:(1)由y=f(x)解出x=f–1(y),即把x用y表示出;(2)将 x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。 (3)指出反函数的定义域。 下面请同学自看例1(II)课堂练习课本P68练习1、2、3、4。 (III)课时小结本节课我们学习了反函数的概念,从中知道了 怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤, 大家要熟练掌握。 (IV)课后作业一、课本P69习题2.41、2。 二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。 板书设计课题:求反函数的方法步骤:定义:(幻灯片)注意:小结一一映射确定的函数才有反函数函数与它的反函数定义域、值 域的关系。

八年级数学:一次函数的图象和性质 教案(沪科版)

八年级数学:一次函数的图象和性质教案(沪科版) 【教学目标】 知识与技能:会画一次函数的图象 过程与方法: 利用数形结合的思想,分析一次函数与正比例函数的联系及一次函数的性质情感态度与价值观: 感受事物之间普通性与特殊性的关系 【教学重难点】: 重点:一次函数图象的画法 难点:根据一次函数的图象特征理解一次函数的性质 【教学过程】 一.复习提问,引入新课 1.什么叫正比例函数、一次函数?他们之间有什么联系? 一般地,形如y=kx(k是常数,k≠0)的函数,叫正比例函数 一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫一次函数 当b=0时,y=kx+b就变成了y=kx,所有说正比例函数是特殊的一次函数 2.正比例函数的图象是 3.正比例函数y=kx(k是常数,k≠0)中,k的正负对函数图象有什么影响?

既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也是直线吗?他们图象间有什么联系?一次函数又有什么性质呢? 二.探究新知,合作学习 1.在同一坐标系中画出函数y=-6x与y=-6x+5的图象,比较两个函数的图象,探究他们的联系。 列表描点连线 X -2 -1 0 1 2 y=-6x y=-6x+5 x

结果:这两个函数的图象形状都是 ,并且倾斜程度 ,函数y=-6x 的图象经 过原点,函数y=-6x+5的图象与y 轴交于点 ,即它可以看作由直线y=-6x 向 平移 个单位长度而得到。 推广: (1) 所有一次函数y=kx+b 的图象都是 ; (2) 直线y=kx+b 与直线y=kx ; (3) 直线y=kx+b 可以看作由直线y=kx 得到, 当b>0时,向上平移b 个单位长度; 当b<0时,向下平移b 个单位长度。 2.用两点法在同一坐标系中画出y=2x-1与y=0.5x+1的图象。 总结:画一次函数的图像时,只要描出合适关系式的两点,再连接两点即可,我们通常选取(0, b )和(-k b ,0 )这两个点,也就是选取图像与x 轴和y 轴的交点坐标。 3.一次函数性质: 在同一坐标系中用两点法画出函数 y=x+1, y=-x+1, y=2x+1 y=-2x+1的图象 y=kx 中k 的正负对图象的影响,表 .

三角函数图像变换教学设计

§5 创新课堂教学设计模式 在情境教学设计中,创立了课堂教学八步骤: (1)创设情境(2)提出问题(3)学生探究(4)构建知识 (5)变式练习(6)归纳概括(7)能力训练(8)评估学习 数学情境设计实验案例 《函数y=Asin的图象》教学设计 模块名称:数学新课程必修4 (苏教版) 一课时 一、设计思想: 按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。 本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析 本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。 教学重点:掌握函数y=Asin的图像和变换 教学难点:学生能通过自主探究掌握对函数图象的影响。 三、教学目标分析 1认知目标: (1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确 对函数图象的影响。 (2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。 (3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 2 能力目标: (1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。 (2)在问题解决过程中,培养学生的自主学习能力。 (3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。 3 情感目标:

2021届高考数学复习教学案:反函数 (1)

课题:2.4.2 反函数(2) 教学目的: ⒈使学生了解互为反函数的函数图象间的关系的定理及其证明. ⒉会利用互为反函数的函数图象间的关系解决有关问题. 教学重点:互为反函数的函数图象间的关系定理及其证明,定理的应用; 教学难点:定理的证明(但教材不作要求). 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.反函数的定义; 2.互为反函数的两个函数) (x f y=与) (1x f y- =间的关系: ----定义域、值域相反,对应法则互逆; 3.反函数的求法:一解、二换、三注明 4. 在平面直角坐标系中,①点A(x,y)关于x轴的对称点'A(x,-y); ②点A(x,y)关于y轴的对称点'A(-x,y);③点A(x,y)关于原点的对称点'A(-x,-y);④点A(x,y)关于y=x轴 的对称点'A(?,?); 5.我们已经知道两个互为反函数的函数间有着必然的联系(在定义域、值域和对应法则方面). 函 数图象是从“形”的方面反映这个函数的自变量x与因变量y之间的关系.因此,互为反函数的函数图象间也必然有一定的关系,今天通过观察如下图像研究—互为反函数的函数图象间的关系. ①) ( 2 3R x x y∈ - =的反函数是) ( 3 2 R x x y∈ + = ②) ( 3R x x y∈ =的反函数是) ( 3R x x y∈ = ) (x f y=的图象和它的反函数) (1x f y- =的图象关于直线x y=对称. 2.证明结论(不要求掌握,根据实际情况处理) 证明:设M(a,b)是) (x f y= 则当x=a时,) (x f有唯一的值b a f= ) (.

一次函数的图像和性质教案

《一次函数的图像和性质》教案 一、课题:一次函数的图像和性质 二、课型:新授课 三、课时:第一课时(共两课时) 四、教学内容分析 在学习此节课之前,已经学习了平面直角坐标系/函数/正比例函数等等,这为一次函数的学习打下了很好的基础,让学生们对一次函数的学习流程也有了一定的认识。在明确一次函数的图像是一条直线后,进一步结合图像研究它的性质,是学生对一次函数有了从“数”到“形”,从“形”到“数”两方面的理解,这也为今后讨论二次函数,反比例函数打下牢固的基础。 五、学情分析 八年级学生刚学函数,但有了七年级“字母表示数”和“变量之间的关系”的铺垫,他们在学习一次函数时,知识结构中印象最深的是用关系式和表格表示,数型的对应关系与他们的学习经验有很大差距,也更复杂更抽象。 此阶段的学生有很强的好奇心,但动手能力较差,而此课时正需要他们动手去画一次函数的图像,从而得出它的性质。大部分学生也正刚刚由形象思维向抽象思维发展,所以此节课的学习有一定的难度。 六、教学目标 1、知识与技能目标:能熟练做出一次函数的图像,并能通过图像

归纳总结出一些简单的性质。

2、过程与方法目标: (1)经历一次函数的图像和性质探究后,能解决一些简单的问题。 (2)进一步培养数型结合及分类讨论的意识和思想。 (3)在思考活动中培养他们的探索和动手能力及合作交流意识。 3、情感态度与价值观目标:让学生全心投入到学习活动中,积 极参与讨论,发展探索能力和创新能力。 七、教学重点、难点 重点:1、能熟练做出一次函数的图像 2、能结合图像掌握一次函数的性质 难点:一次函数的性质及应用图像解决问题 八、教学策略与方法 根据教学内容,教学目标和学生的认知水平,主要采取教师启发式、探讨式、以及鼓励式的方法进行教学,培养他们的思考能力及动手能力。 由于此节课之前已学习了正比例函数,对函数的学习流程已有了初步的认识,通过对比与正比例函数的学习模式来进行一次函数的学习,即函数解析式函数的图像函数的性质。正比例函数是特殊的一次函数,用特殊到一般的教学方法启发学生们思考一次函数的图像和性质,进而渗透数型结合及分类讨论的思想方法。

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

反函数(教学设计)教学设计

3.7 反函数 【高教版中职(基础)数学第一册第三章3.7“反函数”第一节】 一、教材与学生的数学现实分析 1.现在的世界已进入信息时代,计算机和互联网迅速普及,计算机科学和信息科学蓬勃发展,由此促使了离散教学的地位日益上升,于是映射成了数学中最基本的概念之一。映射也是日常生活中许多现象的抽象,中学生学习映射的概念.有多方面的用处,本教材就是运用映射的观点阐述反函数的概念,给出了反函数的求法,与传统的方法不同,我们的创新,使得反函数概念的本质容易理解,反函数的求法严谨且易于掌握。所以,抓住反函数这一典型课题,通过科学的设计,使学生亲历将映射的观念惯穿始终的由特殊抽象到一般思维过程,感受知识的形成与发展规律是至关重要的。 2.此前学生已经学习了映射的基本概念,同时也学习了函数的基本性质,对于理论性的研究有了初步的尝试,有了一定得分析、对比、抽象概括的能力,但毕竟以前接触的函数等知识较为简单,而反函数的知识较为抽象,因此本节的设计更加具体、细致、突出学生的主动认知性。 3.考虑到中学生基础较差,辨析与理解力较低。所以本节应用两个较简单的例子引入,而且应用了“对应法则”这个很熟悉的词来寻找互为反函数的关系,又将其应用至求反函数的整个过程中,使学生原本厌学的情绪有所转化,激发他们的学习兴趣,进一步培养他们的学习能力。 通过以上分析,可得出: 1)学习重点和难点:重点是反函数概念的理解、应用和在代数中有着重要和广泛应用的由特殊到一般的化归思想;难点是反函数概念的理解。 2)教学方法:引导类比探索法,从具体到抽象,让学生充分感受和理解知识的发生、发展过程,展开学生的思维,培养学生抽象概括能力。 3)教学工具:多媒体教学 二、教学目标 知识目标:(1)对反函数概念的理解。 (2)给定函数的反函数的求法。 能力目标:让学生亲自体验知识的形成过程,加深对知识及其内在联系的理解,并进一步强化映射、函数知识的应用。培养学生的逻辑推理、逆向思维、 发散思维、综合归纳的能力。 情感目标:(1)培养学生对立统一的辩证唯物主义观点。 (2)在民主、和谐的教学气氛中,促进师生的情感交流。 三、教学过程

一次函数的图象(一)教学设计

第六章一次函数 3.一次函数的图象(一) 成都七中育才学校薛成权、陈开文 一、学生起点分析 八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系. 二、教学任务分析 《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识. 三、教学目标分析 知识与技能目标 1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象. 过程与方法目标 1.经历函数图象的作图过程,初步了解作函数图象的一般步骤. 2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力. 情感、态度与价值观目标 1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力. 2.在探究活动中发展学生的合作意识和探究能力. 教学重点 1.熟练地作一次函数的图象. 2.理解、归纳作函数图象的一般步骤:列表、描点、连线. 3.理解一次函数的代数表达式与图象之间的一一对应关系. 教学难点 理解一次函数的代数表达式与图象之间的一一对应关系. 四、教法学法 1、教学方法 讲、议、练相结合。 2、课前准备 教具:教材、多媒体课件。 学具:教材、铅笔、直尺、练习本。 五、教学过程 本节课设计了七个教学环节: 第一环节:创设情境引入课题; 第二环节:画一次函数的图象; 第三环节:动手操作,深化探索;

三角函数图象的平移和伸缩

3 得 y =A sin( x + )的图象? 向 ?上平 ( ? 移 k k ? 个 )或 单 向? 位 下长 ? (k 度 ?) → 得 y = A sin(x + )+k 的图象. y = sin x 纵坐标不变 横坐标向左平移 π/3 个单位 纵 坐标不变 横坐标缩短 为原来的1/2 y = sin(x + ) y = sin(2 x + ) 横坐标不变 纵坐标伸长为原 来的3倍 先伸缩后平移 纵坐标伸长(A 1)或缩短(0A 1) y =sin x 的图象 ??? ??????→ y = 3sin(2x + 三角函数图象的平移和伸缩 函数y = A sin(x + ) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A , , ,k 来相互转 化. A ,影响图象的形状, ,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 引起的变 换称周期变 换,它们都是伸缩变换;由 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左( >0)或向右( 0) y = sin x 的图象 ??平 ? 移 ? 个单 ? 位长 ? 度 ?→ 得 y = sin(x +)的图象 横坐标伸长(0<<1)或缩短 (>1) 到原来的1(纵坐标不变) 得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0

横坐标伸长(0 1)或缩短(1) ????????→ 到原来的 1 (纵坐标不变) 向左( 0)或向右( 0) 得 y = A sin(x ) 的图象 ???平移 ?个 ? 单位 ??→ 得 y = A sin x ( x + )的图象??平 ?移 k ?个单 ?位长 ?度 ?→得 y = A sin( x +)+k 的图象. 纵坐标不变 y = sin x 横坐标缩短 为原来的1/2 纵坐标不变 横坐标 向左平移 π/6 个单位 横坐标不变 y = 3sin(2x + ) 纵坐标伸长为原 3 来的3倍 例1 将y = sin x 的图象怎样变换得到函数y = 2sin 2x + π +1的图象. 解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π 的图象;②将所得 图象的 横坐标缩小到原来的1,得y =sin 2x +π 的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin 2x + π 的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐 标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2 x + π 的 2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 得 y = A sin x 的图象 y = sin2 x y = sin(2x + )

三角函数图像变换.docx

龙文教育一对一个性化辅导教案

三角函数图象变换 考点分析:三角函数图象及性质是高考必考内容,主要是函数图像变换及函数性质。重点:①熟练地对y=simr进行振幅和周期变换;②会用相位变换画函数图彖; ③“五点法”画尸力sin(Gx+?)的图象、图象变换过程的理解; 难点:①理解振幅变换和周期变换的规律;②理解并利用相位变换画图象;③多种变换的顺序 一、教学衔接: 1、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 2、检查学生的作业,及时指点; 3、59错题讲解 1)错题重现及讲解: 2)讲透考点: 3)相似题练习: 4、课前热身练习: 二、本次课主要内容 知识点一振幅变换 例1画出函数y=2sinx XG R; y=gsinx xwR的图象(简图). 解:画简图,我们用“五点法” ???这两个函数都是周期函数,且周期为2〃 ???我们先画它们在[0, 2刀]上的简图?列表: 作图: 知识点二周期变换 例2 iUlj出函数y=sin2x XG R; y=sin*x xwR的图象(简图)? TT 解:函数y=sin2%, xGR的周期T=——=JI 2 我们先画在[0,兀]上的简图,在[0,兀]上作图,列表: 作图:

知识点三图像平移 例画出函数 yr yr * * y=sin(x+—), xWRy=sin(x ——), xGR 的简图. 3 4 解:列表 描点画图: 【同步训练】 1、(l)y=sin(x+—y=sinx 向平移个单位得到的. (2) y=sin(x ——)是由y=siwc 向平移个单位得到的? ? 4 (3) y=sin(x —兰)是由y=sin(x+— )|nj 平移个单位得到的. 4 4 2?若将某函数的图彖向右平移兰以后所得到的图彖的函数式是y=sm(x+-)f 则原来的 2 41 函数表达式为( ) SIT 7T TT . 77 A ?y=sin(x+ —) B ?y=sin(x+ — )Cj=sin(x — —) D ?y=sin(x+ —— 「 4 ° 2 4 4 4 3、 将函数y=/(x)的图彖沿兀轴向右平移彳,再保持图象上的纵坐标不变,而横坐标变为原 来的2倍, 得到的曲线与y=siwc 的图象相同,贝ijy=/(x)是() 7T TT . 2TT 2TT A.j=sin(2x+y) B.j=sin(2x — y ) C.>j =sin(2x+ —) D ?y=sin(2x ——) 4、 把函数y=cos(3尢+ ◎的图象适当变动就可以得到y=sin(-3x)的图彖,这种变动可以是 4 ( ) A ?向右平移仝 B ?向左平移仝 C ?向右平移三 4 4 12 5、 若函数y=f{x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将 整个图象 沿%轴向左平移兰个单位,沿y 轴向下平移1个单位,得到函数y=-sin^的图彖, 2 2 3 -1 6 4 2 3 D ?向左平移醫

高中一年级数学反函数教学设计

高中一年级数学反函数教学设计 一、教材分析: 1、教材的地位与作用 “反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。 2、重点与难点:反函数的定义和求法 二、教学目标分析: (1)知识与技能:使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系; (2)能力与方法:培养学生发现问题、观察问题、解决问题的能力; (3)情感与态度:使学生树立对立统一的辩证思维观点。 三、学情分析: 学生已经学习了函数的基本概念和表示法,掌握了函数的基本知识,理解反函数的概念及互为反函数的两个函数的性质和特征,更有助于学生将函数的思想理解得更透彻。 四、教学过程设计 1、创设问题情境: 导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢? 首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。 设计意图:这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。 2、知识建构: 给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还

相关文档
相关文档 最新文档