文档库 最新最全的文档下载
当前位置:文档库 › 吸收谱线的强度

吸收谱线的强度

吸收谱线的强度

吸收谱线的强度:单位时间,单位面积截面上,入射光束在给定频率上被吸收的能量。吸收光谱:基态原子吸收其共振辐射

发射光谱:院子中电子由于受到外界能量的影响可能吸收能量儿成为激发态,再由激发态向基态或较低能态激发态跃迁

弗兰克康盾原理:电子跃迁比分子振动快得多,电子的状态虽然有所改变,但分子中原子还来不及明显改变位置

生色团:分子中决定电子吸收谱带的原子团及其相关化学键,与生色团相连,使吸收波长移动吸收强度加大的基团为助色团

瑞利散射:单色光束照射,散射光与入射光频率相同

斯塔克:物质的光谱线在电场中发生移动的现象

核统计:分子的转动态要受到泡利原理的制约,满足泡利原理的转动态可以成立,不满足不成立

态叠加原理:不同本征值对应的本征函数之间的线性组合不再是此算符的本征函数,但他们仍是体系的一种可能状态。

不相交原理:两条原始能量曲线存在着相互排斥的原理,两条最终的曲线永不相交

分子体系和辐射发生:能量相近对称性匹配

实验6.3钼阳极X射线特征谱线的精细结构

实验6.3 钼阳极X 射线特征谱线的精细结构 一、实验目的 1. 通过Mo 阳极X 射线在单晶NaCl 上的第5级布拉格反射谱研究其特征谱线的精细 结构; 2. 测定钼元素特征谱K α、K β 及K γ谱线; 3. 解析K α谱线的双线结构,测定其双线结构的波长间隔; 二、实验原理 我们已经知道,Mo 阳极X 射线特征谱K α和K β线都是双线结构,可以通过其在NaCl 单晶上的高阶布拉格衍射谱观测出来,然而它们的物理本质是不一样的。 K β是由纯K β线——M 壳层到K 壳层的原子跃迁和K γ线——N 壳层到K 壳层的原子跃迁组成的,两条谱线的波长差为1.2 pm (见表1),所以只能在高阶衍射谱上分辨开来。 表1 钼特征谱K 、K 及K 线跃迁能量、波长和相对强度 K α的精细结构源于L 壳层的精细结构,即电子的自旋轨道特性。在X 射线谱上,L 壳层实际上是由三个子层L I 、L II 和L III 组成,这些子层向K 壳层的跃迁要遵从选择定则: ?l =±1,?j =0,±1 (1) ?l 为跃迁中轨道角动量l 的变化量,?j 为总角动量j 的变化量。这样一来,只有两种从L 壳层到K 壳层的跃迁:K α1 和K α2 (见图1)。表2中给出了钼元素这两条谱线的参考值,可以看出K α双线的波长间隔?λ=0.43 pm 。 表2 钼元素K 的波长及相对强度 本实验中,通过布拉格反射在NaCl 晶体上的高阶衍射解析出钼X 光谱的精细结构。 按照布拉格反射定理,入射光特征谱线的波长和掠射角存在下列关系时,接受到的反射光强度最大: n ?λ=2?d ?sin θ (2) n : 衍射阶数,d =282.01 pm :NaCl 晶面间距。 可以看出,双线的波长间距?λ 决定布拉格衍射时双线之间的角间距?θ 图1 特征谱K α的精细结构

谱线的识别

谱线的识别 我选做实验的名称是“氢光谱与类氢光谱”,就是测量氢与类氢元素的光谱并对光谱加以分析。在这个实验中我在谱线的识别方面进行了一些研究。 原理: 由于该实验要求我们计算钠原子光谱各个线系的量子缺损,因此首先我所要做的就是把各个线系的谱线分开来。我通过查找相关资料获得了钠原子光谱的详细信息(见附录1),这里面包括了多少纳米的波长(理论值)对应的哪一种跃迁也就是对应哪一个谱线系。因此我现在所要做的就是将实验所测得的波长与我所查找到的理论值一一对应起来。这里需要说明的是:对于查找到的理论值,我只承认它的准确性,但不承认它的完备性。也就是说可能理论值给出的钠原子谱线并不完全,但是只要理论值中出现的波长,我都认为它是正确的。 图1:钠灯的光谱图 (a)(b)

(c)(d) (e)(f) 图2:钠灯光谱图的放大图 如图1所示是实验所测得的钠灯的光谱图。虽然谱线波长的数值都已经标在了坐标轴上,然而这些数据却是不能直接使用的。因为光谱仪在运转的过程中,由于电机运转不可避免的会产生误差,而且这种误差会随着电机运转距离的增长而变大。显然将实验值和理论值直接一一比对比较困难而且会产生较大误差的。因此我采用以下办法来查找与实验值对应的理论值。 首先我们先把钠灯所具有的谱线绘成一张表,见附录2的“谱线波长实验值”这一列。 另外由于理论值所测定的波长非常的详细,有的甚至能给出相邻仅仅0.00036nm的两根谱线,而我们实验室光谱仪所能测量的最小波长差为0.01nm,也就是说诸如上面相邻仅0.0036nm的两根谱线从实验测得的谱线上看来其实是一条,这还不包括出射缝的大小对于分辨能力的限制。因此为了便于与实验值更好的核对,我将理论值做了如下处理:将理论值中相邻波长小于0.01nm的两根(或更多)谱线用它们的平均值代替见附录2的“谱线波长理论值”这一列。 虽然经过以上处理,但是我们还是很难看出实验值与理论值有什么相似之处,这主要是由于上面所说的光谱仪运转误差较大的缘故。如实验测得的钠的黄双线的平均波长为592.55nm,而理论值给出的波长为589.294nm,可见光谱仪运转所造成的误差足有几个纳米

元素分析知识总结

元素分析知识总结 第一章.原子吸收光谱 1·共振线,第一共振线 共振吸收线:原子由基态跃迁到激发态所吸收的谱线。 第一共振线:由基态跃迁到能量最低的激发态所吸收的谱线。这条谱线强度最大, 灵敏度最高。 2·原子吸收谱线的自然宽度、中心频率、半峰宽 原子吸收线并非是一条严格的几何线,而是占据着极窄的频率范围,具有一定 的自然宽度。原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。 半宽度(Δv):是指在极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差。 海森堡测不准原理:当核外电子跃迁到激发态时,激发态的能级和电子在激发态 停留的时间是测不准的,具有不确定度。即: E1 :E1 ±ΔE t1 : t1 ±Δt ΔE·Δt≥h/2π 只有当Δt→∞,ΔE→0 ,此时激发态的能量E1 才有定值,但是电子在激发态的时间只有约10-8,所以激发态的能量E1 是测不准的,只能是一个范围。 而电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 , 基态能量E0具有定值。所以V= (E1 - E0)/h 是测不准的,中心频率具有不 确定度,所以原子吸收线具有自然宽度。自然宽度(ΔυN)一般为10-5nm数量 级。 中心频率半峰宽 3·为什么原子吸收线具有自然宽度? 根据海森堡测不准原理:ΔE·Δt≥h/2π 电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 , 基态能量E0具有定值。而电子在激发态的时间只有约10-8,所以激发态的能量 E1 是测不准的,只能是一个范围。所以谱线的频率V= (E1 - E0)/h 是测不准 的,中心频率具有不确定度,所以原子吸收线具有自然宽度。自然宽度(Δυ N)一般为10-5nm数量级。

Hg原子塞曼谱线的相对强度及其对称性

Hg原子塞曼谱线的相对强度及其对称性 赵朝弘 (上海复旦大学物理系200433) 摘要 在原实验测量塞曼效应实验的基础上,测量塞曼各谱线的相对强度,并验证谱线的对称性。 关键词:塞曼谱线相对强度对称性 引言 十九世纪法拉第和麦克斯韦奠定了经典电磁理论的基础。达拉第除了研究电机原理、电磁感应以及电解定律外,还研究了点、磁场对光的影响。法拉第在发现了磁场能改变偏振光的偏振面的取向之后,继而研究磁场对谱线的影响,但没成功。1896年荷兰物理学家塞曼在洛仑兹学说的影响下,使用比法拉第实验中更强的磁场,研究磁场对谱线的影响,发现钠双线D1和D2都有增宽的现象,使用罗兰光栅光谱仪器观察钠火焰发出的光谱线发现每一条变宽的D线世纪上都是几条单独的谱线组成,这一现象称为塞曼效应。这一效应有力地支持了光的电磁理论,使得我们对物质的光谱、原子和分子的结构有了更多的了解。同时有力地证明了电子自旋假设是正确的,能级的分裂是由于电子的轨道磁与自旋磁矩相互作用的结果。塞曼效应谱线分裂反映了能级分裂量子化性质,各塞曼谱线相对强度反映各自能级跃迁相对概率的大小,说明原子中价电子激发时在各塞曼子能级上的分布,这对了解外场与于阿兹相互作用具有重要意义。 正文 一、原理: 在磁场中,原子的能级发生跃迁。设原子初态为∣a〉末态为∣b〉,跃迁概率为: dW=e2ω2/2πhc3︱﹤b︱e · r︱a>︱2dΩ 多电子原子中的能级跃迁要符合如下的像个选择定则:(1)、△J=J2–J1=0,±1,但J2与J1 不能同时等于零。 (2)、△M=M J1-M J2=0,±1。J1,J2和M J1, M J2分别为跃迁前后的总角动量量子数和次量子数。 M J1=M J2,时,谱线为π成分 根据Ornstein和Burger的谱线强度规则,有 1→1 I11=12B I=4B(J+ M J+1)(J- M J+1)0→0 I00=16B -1→-1 I-1-1=12B △M J=+1 时,谱线为σ+ 成分 1→2 I 12 = 12 B I= B(J+ M J+ 1)(J+ M J+2)0→1 I 01 = 6 B -1→0I- 10= 2 B △M J=-1 时,谱线为σ- 成分 1→0 I10= 2 B I= B(J- M J + 1)(J- M J + 2) 0→- 1 I0-1= 6 B -1→- 2 I= 12 B

元素常用光谱特征线解析

元素常用光谱特征线

377.764 206.170 Bi 223.061 222.825 Hg 184.957* 253.652 227.658 306.772 239.356 405.393 Ca 422.673 272.164 Ho 410.384 410.109 393.367 412.716 396.847 417.323 242.4.93 256.015 Co 240.7.25 304.4.00 In 303.936 325.609 352.6.85 410.476 252.1.36 451.132 359.349 263.942 Cr 357.869 360.533 Ir 263.971 266.479 425.437 284.972 427.480 237.277 894.350 404.414 Cs 852.110 455.536 K 766.491 404.720 459.316 769.898 216.509 357.443 Cu 324.754 217.894 La 550.134 392.756 218.172 407.918 327.396 494.977 419.485 Dy 421.172 404.599 Li 670.784 274.120 394.541 323.261 394.470 279.553 308.147 Mg 385.213 202.580 Lu 335.956 328.174

283.306 244.791 319.990 Pd 247.642 276.309 340.458 Ti 364.268 363.546 365.350 399.864 491.403 231.598 Pr 495.136 504.553 513.342 Tl 276.787 237.969 258.014 377.572 214.423 355.082 Pt 265.945 248.717 283.030 U 351.463 358.488 394.382 306.471 415.400 420.185 382.856 Rb 789.023 421.556 V 318.398 318.540 794.760 437.924 345.188 265.654 Re 346.046 242.836 W 255.135 268.141 346.473 294.740 339.685 410.238 Rh 343.489 350.252 369.236 370.091 Y 407.738 412.831 414.285 372.803 266.449 Ru 349.894 379.940 Yb 398.799 267.198 346.437 206.833 202.551 Sb 217.581 212.739 Zn 213.856 206.191 231.147 307.590

随机振动(振动频谱)计算(Random Vibration)

Random Vibration 1. 定义 1.1 功率谱密度 当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。 功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。 1.2 均方根 均方根(RMS)是指将N项的平方和除于N后,开平方的结果。均方根值也是有效值,如对于220交流电,示波器显示的有效值或均方根值为220V。 2. 加速度功率谱密度 2.1 单位 加速度单位:m/s^2或g 加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/Hz Hz单位为:1/s, 所以加速度功率谱密度单位也可写为:m^2/s^3 2.2功率谱密度函数 功率谱密度函数曲线的纵坐标是(g2/Hz)。功率谱曲线下的面积就是随机加速度的总方差(g2): σ2= ∫Φ(f)df 其中:Φ(f)........功率谱密度函数 σ ............. 均方根加速度 3. 计算示例 随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下: σ2=0.01*(2000-100)=19 σ=4.36g 峰值加速度不大于3倍均方根加速度:13.08g

4、SAE J 1455 随机振动要求 4.1功率谱图 4.1.1 Vertical axis 4.1.2 Transverse axis 4.1.3 Longitudinal axis

4.2 Vertical axis加速度计算 功率谱曲线下的面积:σ2=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g 峰值加速度不大于3倍均方根加速度:6.18g 5. FGE随机振动要求 5.1功率谱图

多普勒谱线展宽

多普勒谱线展宽 The Standardization Office was revised on the afternoon of December 13, 2020

2. 多普勒谱线展宽 谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich )在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。 假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为: ??? ? ?+≈-= c c x x υυυυυ1100 (14) 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x 分量在x v — x x dv v +的分子数比率为: ()x kT mv x x M dv e kT m dv v f x 2212 2-?? ? ??=π (15) 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有 ()()x x M dv v f d g =υυ ()υg 与辐射强度()υI 成正比。将c v x 00υυυ-=和υυd c dv x 0 =代入(15)式,可得 ()()()υπυυυυυυd e kT m c d g kT mc 20 20222--= 式中()υg 就是多普勒展宽的线型函数。 下面看一个例子。 例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。 解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ?=0ν,h 为普朗克常数。由于原子在运动,因而发射出来的光的频率

光谱分析知识点

原子发射光谱分析 1、原子发射光谱分析的基本原理(依据) 2、ICP光源形成的原理及特点(习题2) :ICP是利用高频加热原理。 当在感应线圈上施加高频电场时,由于某种原因(如电火花等)在等离子体工作气体中部分电离产生的带电粒子在高频交变电磁场的作用下做高速运动,碰撞气体原子,使之迅速、大量电离,形成雪崩式放电,电离的气体在垂直于磁场方向的截面上形成闭合环形的涡流,在感应线圈内形成相当于变压器的次级线圈并同相当于初级线圈的感应线圈耦合,这种高频感应电流产生的高温又将气体加热、电离,并在管口形成一个火炬状的稳定的等离子体焰矩。 其特点如下: 工作温度高、同时工作气体为惰性气体,因此原子化条件良好,有利于难熔化合物的分解及元素的激发,对大多数元素有很高的灵敏度。 (2)由于趋肤效应的存在,稳定性高,自吸现象小,测定的线性范围宽。(3)由于电子密度高,所以碱金属的电离引起的干扰较小。 (4)ICP属无极放电,不存在电极污染现象。 (5)ICP的载气流速较低,有利于试样在中央通道中充分激发,而且耗样量也较少。 (6)采用惰性气体作工作气体,因而光谱背景干扰少。 3、掌握特征谱线、共振线、灵敏线、最后线、分析线的含义及其它们之间的内 在联系。(习题3) 4、:由激发态向基态跃迁所发射的谱线称为共振线(resonance line)。共振线 具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。 5、灵敏线(sensitive line) 是元素激发电位低、强度较大的谱线,多是共振 线(resonance line)。 最后线(last line) 是指当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素的最灵敏线。 进行分析时所使用的谱线称为分析线(analytical line)。 由于共振线是最强的谱线,所以在没有其它谱线干扰的情况下,通常选择共振线作为分析线。 发射光谱定性分析的基本原理和常用方法。(习题5 由于各种元素的原子结构不同,在光源的激发下,可以产生各自的特征谱线,其波长是由每种元素的原子性质决定的,具有特征性和唯一性,因此可以通过检查谱片上有无特征谱线的出现来确定该元素是否存在,这就是光谱定性分析的基础。 进行光谱定性分析有以下三种方法: (1)比较法。将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。本方法简单易行,但只适用于试样中指定组分的定性。

线荧光光谱仪定量分析方法

X射线荧光光谱仪定量分析方法 利用X射线荧光光谱仪分析物质组分时,除了正确使用和操作X射线荧光光谱仪外,还需要研究制定合理、准确的定量分析方法。定量分析是要利用一定的实验或数学方法,准确获得未知样品中各元素的定量浓度数据。 定量分析的前提是要保证样品的代表性和均匀性。过度强调分析准确度,而忽视样品采集方法和采样理论的研究应用,是不科学、不合理的。只有采集具有代表性的特征样品,才具有科学价值和实际意义。目前关于采样理论的研究还有待于深入探讨。此处我们主要关注如何确保定量分析方法的准确。 要进行定量分析,需要完成三个步骤。首先要根据待测样品和元素及分析准确度要求,采用一定的制样方法,保证样品均匀和合适的粒度;并通过实验,选择合适的测量条件,对样品中的元素进行有效激发和实验测量;再运用一定的方法,获得净谱峰强度,并在此基础上,借助一定的数学方法,定量计算分析物浓度。这里主要讨论获取净强度的途径和定量分析方法。 一、获取谱峰净强度 要获得待测元素的浓度,首先要准确测量出待测元素的谱峰净强度。谱峰净强度等于谱峰强度减去背景。 尽管真实背景是指分析物为零时,在对应于分析元素能量或波长处测得的计数,但这样做并不实际,因为背景依赖于基体组分。因此,使用一种不含分析物的所谓“空白”样测量背景并用于背景校正是危险的、不正确的。 当峰背比大于10时,背景影响较小。这时,最佳计数方式是谱峰计数时间要长于背景计数时间。当峰背比小于10时,背景影响较大,需要准确扣除。 扣除背景方法主要有单点法和两点法,如图1—1所示。其净强度采用以下两式计算: I P I P I P I b θp θb θL θP θH θP (a)单点扣背景(b)两点扣背景(c)扣重叠干扰 图1—1 单点法和两点法扣除背景 单点法: I net = I P -I b 两点法: I net = I p -(I H +I L )/2 当谱峰两边的背景比较平滑时,可采用单点扣背景,多在分析线波长的长波一侧,例如高出1°(2θ),选择高度角也是因为在某些情况下要考虑卫星线,

元素常用光谱特征线(绝大部分元素)

原子吸收光谱各元素常用谱线 元素常用光谱特征线 元素灵敏线次灵敏线元素灵敏线次灵敏线 Ag328.068338.289Er400.797415.110 381.033 393.702 397.360 Al309.271308.216 309.284 394.403 396153 Eu459.403 311.143 321.057 462.722 466.188 As188.990193.696 197.197 Fe248.327 208.412 248.637 252.285 302.064 Au242.795267.595 274.826 312.278 Ga287.424 294.418 403.298 417.206 B249.678249.773Gd368.413371.357 371.748 378.305 407.870 Ba553.548270.263 307.158 350.111 388.933 Ge265.158 259.254 270.963 275.459 Be234.861313.042 313.107 Hf307.288 286.637 290.441 302.053 377.764 Bi223.061206.170 222.825 227.658 306.772 Hg184.957*253.652 Ca422.673239.356 272.164 393.367 396.847 Ho410.384 405.393 410.109 412.716 417.323

Co240.7.25242.4.93 304.4.00 352.6.85 252.1.36 In303.936 256.015 325.609 410.476 451.132 Cr357.869359.349 360.533 425.437 427.480 Ir263.971 263.942 266.479 284.972 237.277 Cs852.110894.350 455.536 459.316 K766.491 404.414 404.720 769.898 Cu324.754216.509 217.894 218.172 327.396 La550.134 357.443 392.756 407.918 494.977 Dy421.172419.485 404.599 394.541 394.470 Li670.784 274.120 323.261 Mg385.213279.553 202.580 230.270 Lu335.956 308.147 328.174 331.211 356.784 Mn279.482222.183 280.106 403.307 403.449 Se196.090 203.985 206.219 207.479 Mo313.259317.035 319.400 386.411 390.296 Si 251.612 250.690 251.433 252.412 252.852 Na588.995330.232 330.299 589.592 Sm429.674 476.027 520.059 528.291 Nb334.371334.906 358.027 407.973 412.381 Sn224.605 235.443 286.333 Nd463.424 468.35 489.693 492.453 562.054 Sr460.733 242.810 256.947 293.183 407.771 Ni232.003231.096Ta271.467255.943

随机振动功率谱密度

701z 0102030 4050607080 0.002 0.0040.0060.0080.01 0.0120.014 0.016频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -65-60-55-50-45-40-35-30 -25-20 -15频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.1378m/s2(70km/h,z 方向,第一次试验,前排) 0.1378 0102030 4050607080 0.5 1 1.5 2 2.5 -3 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701y 0102030 4050607080 1 2 3 4 5 6 7 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -70-65-60-55-50-45-40-35 -30 -25-20频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.0164m/s2(70km/h,y 方向,第一次试验,前排) 0102030 4050607080 0.5 1 1.5 2 2.5 3 -5 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701x 0102030 4050607080 0.20.40.60.811.2 1.41.61.8 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 0102030 4050607080 -70 -65-60-55-50-45-40 -35-30 -25频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

多普勒谱线展宽.

2. 多普勒谱线展宽 谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich)在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。 假设发出激光的原子静止时其发光频率为,当原子以vx的速度沿x轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为: (14) c 由于不同原子的vx不同,所以“接受器”收到的是不同频率的光,使得激光谱线以为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x分量在vx—的分子数比率为: (15) 令代表其辐射频率落在附近单位频率间隔内的发光原子数比率,则有 与辐射强度成正比。将和代入(15)式,可得 式中就是多普勒展宽的线型函数。 下面看一个例子。 例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。 解:静止原子由激发态回到基态发出的光波的频率决定于两个态的能级差:为普朗克常数。由于原子在运动,因而发射出来的光的频率不再是而是一个分布,也就是谱线增宽了。一个以速度v运动的原子,沿x轴发射的光的频率与及vx的关系为 , 式中c为光速。横向产生的多普勒效应比纵向小得多而可以忽略。由于在 之间的光强与速度分量在之间的原子数目dNX 成正比,即 dNx 由麦氏分布律 因而

上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示, 图1 原子光谱中谱线的多普勒加宽 它是对v0的一个对称分布曲线。物理上定义与谱线极大值I0的一半相对应的两个频率v2与v1之差称为谱线的宽度这里也称为多普勒线宽。由 解得 所以 2ln2kT)1/2 2mc 由上式可知,多普勒宽度与原子的质量m及原子所处系统的温度T有关。若由实验测得了来自星体原子光谱的多普勒宽度及原子的质量m就可知道星体的温度T:

最常用的表面分析技术-电子能谱思考题

《电子能谱思考题》 1. 最常用的表面分析技术有哪些? 它们各自可测的元素有哪些?它们可获得哪些表面信息?它们各有何优点? XPS、AES和SIMS是目前广泛使用的三种最常用的表面分析技术。XPS和AES 可检测原子序数>2的所有元素;而SIMS可检测所有的元素。XPS主要获取表面元素和化学键信息,此外还可得到元素深度分布和价带结构等信息;AES主要获取表面元素信息,此外还可得到元素深度分布和表面成像以及化学键等信息;SIMS主要获取表面元素和同位素信息,此外还可得到元素深度分布和表面成像以及化合物等信息。XPS的最大特色在于能获取丰富的化学信息,定量分析好,对样品表面的损伤最轻微;AES的最大特色是空间分辨力非常好,具有很高的微区分析能力,可进行表面分布成像。SIMS的最大特色是检测灵敏度非常高,并可分析H和He以及同位素,可作微区、微量分析以及有机化学分析。 2. 用电子能谱进行表面分析对样品有何一般要求?有哪些清洁表面的常用制备方法? 由于电子能谱测量要在超高真空中进行,测量从样品表面出射的光电子或俄歇电子。所以对检测的试样有一定的要求:即样品在超高真空下必须稳定,无腐蚀性,无磁性,无挥发性。另外在样品的保存和传送过程中应尽量避免样品表面被污染。在任何时候,对被分析样品的表面都应尽量少地接触和处理。 常用清洁表面的制备方法有:真空解理、断裂,稀有气体离子溅射,真空刮削,高温蒸发,真空制备薄膜等。 3. 什么是化学位移和终态效应?它们有何实际应用? 原子因所处化学环境不同而引起的内壳层电子结合能变化,在谱图上表现为谱峰的位移,这种现象称为化学位移。所谓某原子所处化学环境不同有两方面的含义:一是指与它相结合的元素种类和数量不同;二是指原子具有不同的价态。 电子的结合能与体系的终态密切相关。由电离过程中引起的各种激发产生的不同体系终态对电子结合能的影响称为终态效应。电离过程中除了驰豫现象外,还会出现诸如多重分裂,电子的震激(Shake up)和震离(Shake off)等激发状态。这些复杂现象的出现同体系的电子结构密切相关,它们在XPS谱图上表现为除正常光电子主峰外,还会出现若干伴峰。 化学位移和终态效应常用来作元素化学态的识别,并可以推知原子结合状态和电子分布状态。此外它们还可以给出某些体系的结构信息。它们可提供材料表面丰富的物理和化学信息。 4. 在XPS谱图中可观察到几种类型的峰?从XPS谱图中可得到哪些表面有关的物理和化学信息?

吸收光谱测量基本原理

吸收光谱简介 纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。吸收光谱 处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。 吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。这个光谱背景是明亮的连续光谱。而在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结出一条规律,即每一种元素的吸收光谱里暗线的位置跟他们明线光谱的位置是互相重合的。也就是每种元素所发射的光的频率跟它所吸收的光频率是相同的。 太阳光谱是一种吸收光谱,是因为太阳发出的光穿过温度比太阳本身低得多的太阳大气层,而在这大气层里存在着从太阳里蒸发出来的许多元素的气体,太阳光穿过它们的时候跟这些元素的标识谱线相同的光都被这些气体吸收掉了。因此我们看到的太阳光谱是在连续光谱的背景上分布着许多条暗线。这些暗线是德国物理学家夫琅和费首先发现的称为夫琅和费线。 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少 光谱分析 光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分

仪器分析总习题及参考答案

1、试述“仪器分析”是怎样的一类分析方法?有何特点?大致分哪几类?具体应用最广的 是哪两类? 2、光谱法的仪器通常由哪几部分组成?它们的作用是什么? 光谱法的仪器由光源、单色器、样品容器、检测器和读出器件五部分组成。作用略。 3、请按照能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外线,无线电波,可 见光,紫外光,X射线,微波。 能量递增顺序:无线电波、微波、红外线、可见光、紫外光、X射线。 波长递增顺序:X射线、紫外光、可见光、红外线、微波、无线电波。 4、解释名词电磁辐射电磁波谱发射光谱吸收光谱荧光光谱原子光谱 分子光谱特征谱线 电磁辐射――电磁辐射是一种以巨大速度通过空间传播的光量子流,它即有波动性,又具有粒子性. 电磁波谱――将电磁辐射按波长顺序排列,便得到电子波谱.电子波谱无确定的上下限,实际上它包括了波长或能量的无限范围. 发射光谱――原来处于激发态的粒子回到低能级或基态时,往往会发射电磁辐射,这样产生的光谱为发射光谱. 吸收光谱――物质对辐射选择性吸收而得到的原子或分子光谱称为吸收光谱. 荧光光谱――在某些情形下,激发态原子或分子可能先通过无辐射跃迁过渡到较低激发态,然后再以辐射跃迁的形式过渡到基态,或者直接以辐射跃迁的形式过渡到基态。通过这种方式获得的光谱,称为荧光光谱. 原子光谱――由原子能级之间跃迁产生的光谱称为原子光谱. 分子光谱――由分子能级跃迁产生的光谱称为分子光谱. 特征谱线――由于不同元素的原子结构不同(核外电子能级不同),其共振线也因此各有其特征。元素的共振线,亦称为特征谱线。 5、解释名词:灵敏线共振线第一共振线 共振线――由任何激发态跃迁到基态的谱线称为共振线. 主共振线――由第一激发态回到基态所产生的谱线;通常是最灵敏线、最后线 灵敏线――元素的灵敏线一般是指强度较大的谱线,通常具有较低的激发电位和较大的跃迁几率。 AAS 解释下列名词:多普勒变宽、谱线轮廓、光谱通带、释放剂、峰值吸收积分吸收锐线光源多普勒变宽――又称为热变宽,它是发射原子热运动的结果,主要是发射体朝向或背向观察器运动时,观测器所接收到的频率变高或变低,于是出现谱线变宽。 谱线轮廓――是谱线强度随波长(或频率)分布的曲线。 光谱通带――仪器出射狭缝所能通过的谱线宽度。 释放剂――当欲测元素和干扰元素在火焰中形成稳定的化合物时,加入另一种物质,使与干扰元素化合,生成更稳定或更难挥发的化合物,从而使待测元素从干扰元素的化合物中释放出来,这种加入的物质称为释放剂。

光谱线展宽的物理机制

光谱线展宽的物理机制 摘要 本文首先介绍了原子光谱的形成和原子谱线的轮廓,以及用来定量描述谱线轮廓的三个物理量——谱线强度、中心频率和谱线半高宽。 接下来对光谱线展宽的各种物理机制作了定性或定量地分析。详细地推导了谱线的自然展宽、多普勒展宽(高斯展宽)和洛伦兹展宽的半高宽公式。并推导出了佛克脱半高宽、多普勒半高宽和洛伦兹半高宽之间的关系式。给出了赫鲁兹马克展宽(共振展宽)的半高宽公式。定性地分析了谱线的自吸展宽。以类氢离子为例说明了同位素效应引起的同位素展宽。定性地分析了原子的核自旋对谱线宽度的影响。说明了在有外电场或内部不均匀强电场存在的情况下谱线会产生斯塔克变宽,在有外磁场存在的情况下谱线会产生塞曼变宽。 最后对光谱线展宽的各种物理机制做了一个简单的总结,指出光谱线展宽的实质是光的频率发生了变化,各种新频率光的叠加导致了光谱线的展宽。并说明了对光谱线展宽的物理机制的研究,在提高光的单色性和物理量测量等方面具有重要的意义。 关键词:谱线展宽;物理机制;谱线轮廓;半高宽

THE PHYSICAL MECHANISM OF SPECTRAL LINE BROADENING ABSTRACT Firstly, we introduce the formation of atomic spectrum and the outline of atomic spectral line in this paper, as well as three physical quantities—intensity of spectral line, center frequency and half width of spectral line profile which are used to describe spectral line profile quantitatively. Next we analyze various physical mechanism of spectral line broadening qualitatively or quantitatively. The natural half width of spectral line, half width of Doppler spectral line profile (Gaussian spectral line profile) and half width of Lorentz spectral line profile are derived detailedly. And the relationship of half width of Voigt spectral line profile, half width of Doppler spectral line profile and half width of Lorentz spectral line profile is also derived detailedly. We introduce Holtsmark broadening (resonance broadening) and give half width of Holtsmark spectral line profile. It is introduced qualitatively how the Self-absorption broadening affects spectral line profile. Taking Hydrogenic ions for an example, we explain isotope broadening caused by Isotope effect. Spectral line broadening caused by nuclear spin is analyzed qualitatively. Stark effect can cause Stark broadening when there is external electric field or internal non-uniform strong electric field, and Zeeman effect can cause Zeeman broadening when there is external magnetic field. Finally, we make a summary on the physilcal mechanism of spectral line broadening, pointing out spectral line broadening is essentially a change in the frequency of spectral lines, and superposition of various spectral lines having a new frequency component leads to spectral line broadening. The study on the physilcal mechanism of spectral line broadening has very important significance in many aspects, for example, the improving of spectral line's monochromaticity,

相关文档