文档库 最新最全的文档下载
当前位置:文档库 › 江苏常州xxx有限公司50MWp光伏电站组件及箱变布置

江苏常州xxx有限公司50MWp光伏电站组件及箱变布置

江苏常州xxx有限公司50MWp光伏电站组件及箱变布置

江苏50MWp光伏电站组件及箱变布置

在光伏电站场内新建一座110KV升压站,由一回35KV线路接至110KV 主变。每个光伏方阵单元由箱式变压站升至35kv。通过4回集电线路接入光伏电站综合楼的35kv配电室。站用电源正常运行情况下取自站外10KV配电网,站用电主用电源故障时取自站内35KV母线。

本工程光伏组件50MWp全部采用固定式安装方案。

50MWP太阳能光伏方阵有32个1.6MWp多晶组件方阵组成。每个1.6MWp太阳能光伏方阵由太阳能光伏组串、组串式逆变器、交流汇流箱及升压设备构成。

太阳能电池组串联后的直流电采用电缆送至组串式逆变器,每6台逆变器接入一台交流汇流箱,汇流后采用电缆引致35KV箱变内的低压配电柜,箱变内设一台一台1600KVA38.5±2X2.5%kv/0.48KV变压器,电压由交流0.48KV升至35kv。

本工程采用每个1.6MWp太阳能光伏子方阵就地设置35KV箱变的布置方案,每1.6MWp太阳能光伏子方阵为一个发电子系统,每20块光伏组件为一串,每6串组件即设一台组串式逆变器。每个1.6MWp太阳能组件方阵设置升压变压器一台布置。

本工程32台升压变压器分为4组,每一组设8台升压变压器,采用35KV电缆组串后,分别接入35KV 母线。

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法 关键词: 光伏电站光伏发电光伏运维 第一章影响光伏电站发电量的因素 光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。 1.1、太阳辐射量 太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如 PV-SYS、RETScreen得到。 1.2、太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下: A、纬度0°~25°,倾斜角等于纬度 B、纬度26°~40°,倾角等于纬度加5°~10° C、纬度41°~55°,倾角等于纬度加10°~15° 1.3、系统损失 和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。 1.3.1组合损失

现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。 1.3.3温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。 1.3.4线路、变压器损失 系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。 1.3.5逆变器效率 逆变器由于有电感、变压器和IGBT、MOSFET 等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。 1.3.6阴影、积雪遮挡

光伏电站组件清洗方案

********业管理有限责任公司光伏电站组件清洗技术方案 清洗方案 ************新能源开发有限公司 *********物业管理有限责任公司 2017 年 01 月

目录 公司简介........................................................................................................................ 1 概述............................................................................................................................. 1.1 适用范围........................................................................................................... 1.2 编制依据........................................................................................................... 1.3 项目背景........................................................................................................... 1.4 项目基本情况................................................................................................... 1.5 地理位置........................................................................................................... 1.6 项目所在地自然环境概况............................................................................... 2 清洗方案..................................................................................................................... 2.1 组件污染物现状分析....................................................................................... 2.2 清洗的目标....................................................................................................... 2.3 清洗方案概述................................................................................................... 2.4 资料、图纸准备............................................................................................... 2.5 人员配备......................................................................................................... 2.6 工期预计......................................................................................................... 2.7 实施方案......................................................................................................... 2.8 清洗流程概述................................................................................................. 2.9 组件清洗注意事项......................................................................................... 3 清洗作业安全管理................................................................................................... 4 光伏电站清洗效益分析........................................................................................... 5 附件........................................................................................................................... 附件1光伏组件清洗验收单............................................................................. 附件2光伏组件价格核算.............................................................................

光伏电站电池板清洗合同-模板

光伏电站电池板清洗合同 合同编号: 签订地点: 发包方(甲方): 承包方(乙方): 第一条合同基本信息 第二条承包范围 1.清洗时间范围 2019年月日- 月日 2.清洗电池板范围 对XXX光伏电站电池板进行清洗,具体清洗数量以双方最终签字确定的验收证书为准。

第三条承包方清洗责任 1、安全总体要求 (1)检查上屋面爬梯、检修步道、围栏等安全设施情况,每次作业前要讲解登高作业注意事项、作业危险因素和防范措施,检查工作人员安全防护用品穿戴是否合规; (2)根据现场安全设施情况佩戴安全带、安全绳,防止高空坠落; (3)严禁风力大于4级、大雨、雷雨、大雪等恶劣天气状况下清洗组件,组件面板表温较高时不得用冷水冲洗; (4)清洗前,应通过监控后台检查各线路和电气元件电气参数是否正常,组件的连接线和相关元件有无破损和粘连,使用试电笔对铝框、支架和钢化玻璃表面进行测试,排除漏电隐患,确保人身、设备安全; (5)为确保安全,要根据天气情况及时调整工作进度,杜绝抢工期、违章指挥、违章作业导致不安全事件发生。 2、技术总体要求: 水源获取方式:运水车将水运至楼下或借用厂房内水源由管道从地面引水至屋面,并通过冲洗水泵加压处理;清洗步骤: (1)使用高压水枪冲洗,除去表面灰尘污渍, (2)软毛刷、拖布或软橡皮刮擦, (3)人工使用长柄无纺布或长绒布擦拭;

如现场条件允许,可采用专用的机洗工具清洗,但清洗前要将方案报发包方审批同意后方可实施。 3.清洗效果保证 清洗前、清洗后选择一天之中某一个时间段,记录光伏单元发电功率,对清洗效果进行对比。尤其记录同一个逆变器下电流偏小发电光伏组串,进行优先清理,并做对比;(现场值守人员提供) 清洗工程完工后,申请现场验收,对验收不合格部分重新清洗。 第四条清洗工期 自年月日至年月日。 第五条甲方责任: 1.保证在合同开工日期前,将清洗工程现场影响施工的障碍物加以保护或迁移。在工程现场提供符合清洗工程所需要的水源、电源或热源。 2.为乙方提供清洗工程使用材料、设备、运输工具及其它物品出入甲方单位及施工现场的通行证。 3.对工程范围内其它处于运行状态的设备采取安全有效的隔断措施,并负责指派专人进行现场监护。 4.按乙方要求提供工程范围内被清洗设备及相关环境条件有关资料。 5.如因上述各条或突然停电、停水等原因造成乙方窝工或材料损失,应给予乙方合理赔偿,并对由此引起的工程延期负责。 第六条乙方责任 1.严格遵守甲方单位的技术、安全、保密、保卫等工作制度,听从甲方监护人

分布式光伏电站火灾案例及故障分析

分布式光伏电站火灾案例及故障分析 近年来,太阳能发电的应用日趋广泛,发展迅速,而越来越多的问题也开始暴露在人们面前,其中 光伏发电系统的火灾问题,特别是与建筑结合的分布式发电系统的火灾,可能造成人身、财产的巨大损 失,尤其应引起业内重视。有国外的保险公司数据统计发现:光伏电站中火灾事故以32%的赔偿金额占比排名第一,雷击过电压事故以30%的赔偿金额占比紧随其后。但是火灾事故数量仅占比2%,排名最后,这也表明了火灾事故造成的损失远远高于其它事故。 光伏电站并非洪水猛兽,和家用电力体系一样,都是存在一定风险,但可以通过各种防护措施将事 故发生率降至无限趋近于零。研究整个光伏电站的建设,光伏电站火灾危险性较大的设备有汇流箱、逆 变器、连接器、配电柜及变压器。我们这里将重点针对分布式光伏电站的火灾源头、起因进行分析: 一、分布式电站设备问题 随着光伏电站在中国的快速发展,造成了光伏组件、逆变器等光伏设备的低价竞争,也就带来了部 件的质量问题,据有关研究表明,部件质量问题大约占据光伏电站整个故障的50%。据第三方检测认证机构北京鉴衡认证中心相关负责人透露,通过对400多个电站的测试发现,光伏组件主要存在热斑,本 身工艺隐裂或破损,直流电弧等质量问题。 1.光伏组件 1.1热斑效应 在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组 件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电 池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。以下三幅图都属于热斑效应。 图1-1 方阵之间遮挡图1-2 鸟粪遮挡图1-3 树荫遮挡 热斑效应的后果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升, 引起组件自燃。图1-4:当光伏组件产生热斑效应,发生的自燃现象。图1-5:德国某光伏电站因光伏组 件自燃而引起的火灾。为防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联 一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。

光伏电站组件清洗与周边除草治理方案

光伏电站组件清洗及周边除草治理方案

目录 第一部分光伏组件清洗方案 (1) 一.组件清洗的目标 (2) 二.组件清洗方案概述 (2) 三.人员配备 (4) 四.工期预计 (4) 五.实施方案 (4) 六.组件清洗注意事项 (5) 七.清洗作业安全管理 (6) 第二部分光伏电站周边除草治理方案 (8) 一.除草治理的概述 (8) 二.质量目标 (8) 三.除草治理实施方案 (8) 四.质量保证措施、施工进度控制 (10)

第一部分光伏组件清洗方案 大型光伏电站的运维是其高效安全运行的基础,为了保证光伏电站的系统效率,提高电站发电量,应针对电站的环境和气候条件制定合理的运维方案。 在光伏电站的运营阶段,制定经济合理的的运维方案,保证电站安全可靠性,提高电站的发电量。首先应对电站设备的运行状态进行实时监控,进行日常的巡检,消除安全隐患,保证关键设备的正常高效运行;其次还应对光伏电站的发电数据进行统计分析,针对环境和气候条件,找到影响发电量的主要因素,制定合理的方案,减少损耗。对于太阳辐照资源和环境温度,没有办法进行改善提高,只能做好记录,用以对光伏电站的系统效率的分析验证。对于中国西北地区的光伏电站,灰尘遮蔽是影响发电量的重要因素,西北地区干旱缺水,风沙很大,组件受到灰尘遮蔽的情况严重。灰尘遮蔽会减少组件接收的光辐照量,影响系统效率,降低发电量;局部遮蔽会引起热斑效应,造成发电量损失,影响组件的寿命,同时造成安全隐患。 灰尘遮蔽会减弱组件接收的太阳辐照强度,同时会造成太阳辐照的不均匀,影响组件的输出功率,进而会减少电站的发电量。为了减少灰尘遮蔽的影响,应该对组件进行定期清洗。结合光伏电站的环境和气候特点、预测发电量和清洗费用,制定经济性最佳的清洗方案,达到清洗组件带来的发电量增益与清洗组件的费用相比收益最高。

光伏组件自动清洗系统的设计

光伏组件自动清洗系统的设计 针对现有清洗方式效率低、成本较高,不能满足大规模光伏阵列的清洗需求,导致光伏电站发电量损失严重。设计了一种高压水清洗系统,通过电磁阀将光伏阵列进行分组清洗,设计了雨水、污水收集系统,降低了用水成本,设计了光伏组件清洁度传感器,可以为科学安排清洗计划提供数据参考。该系统可以提高清洗效率,降低清洗成本,提高光伏电站的发电量和光伏组件的使用寿命,从而提高光伏电站的经济效益。 标签:光伏阵列;清洗;清洁度;发电量 Abstract:Because of the low efficiency and high cost,the existing cleaning methods can not meet the cleaning needs of large-scale photovoltaic arrays,resulting in a serious loss of power generation in photovoltaic power plants. A high pressure water cleaning system is designed,so that photovoltaic array is cleaned by solenoid valve. Rain water and sewage collection system is designed,so that water cost is reduced. And photovoltaic module cleanliness sensor is designed,so that it can provide data reference for scientific arrangement of cleaning plan. The system can improve the cleaning efficiency,reduce the cost of cleaning,increase the power generation of photovoltaic power station and the service life of photovoltaic module,thus improving the economic benefits of photovoltaic power station. Keywords:photovoltaic array;cleaning;cleanliness;electricity generation 引言 光伏发电作为一种清洁可再生能源,在国家政策的支持下,近年来得到了迅速的发展。据国家能源局统计,截止2016年底,我国光伏发电新增装机容量3454万千瓦,累计装机容量7742万千瓦,新增和累计装机容量均为全球第一。美国圣地亚哥市某光伏电站对灰尘导致的发电量损失率进行了研究,现有光伏电站运行情况显示,光伏组件积灰对光伏电站发电量存在着较大的影响,当光伏组件积灰严重时,发电量损失最大可以达到20%左右,现有清洗方式效率低、成本较高,不能满足大规模光伏阵列的清洗,导致光伏电站发电量损失严重。本文设计了一种大规模光伏阵列自动清洗系统,提高清洗效率,降低清洗成本,提高光伏电站的发电量和光伏组件的使用寿命,从而提高光伏电站的经济效益。 1 清洗系统设计 采用高压水清洗的方式,将清洗水管网分成一级水管、二级水管和三级水管。其中一级水管由高压水泵供水并且内部压力保持在设定的压力范围内;一级水管通过一级电磁阀向二级水管供水;二级水管通过二级电磁阀向三级水管供水;三级水管与清洗机构连接。清洗时通过一级电磁阀和二级电磁阀的控制就可以将整个光伏整列分成一定组别依次进行清洗。该方案的优点是,二级水管和三级水管

光伏电站组件清洗方案89134

福润太阳能电站组件清洗方案 2018年3月

一、组件清洗的必要性 光伏组件安装在户外,其表面附着的细小粉尘颗粒、积雪等会影响光线的透射率,进而影响组件表面接受到的辐射量,影响发电效率;表面泥土、鸟粪等局部遮挡的污浊会在光伏组件局部造成热斑效应,降低发电效率甚至烧毁组件。为了提高太阳能电池板发电效率,需要定期对太阳能电池板进行清洗。 二、电站简介 福润太阳能电站位于汝州市申坡村,厂址东侧紧邻G207 国道,厂区地貌主要是荒山。电站设计容量为50MWp,实际运行容量为41MWp,均采用多晶硅太阳能电池组件,共计组件160753块,每22个电池组件串为一个支路。安装方式为固定式31°倾角安装。太阳能电池板单体功率260W,组件尺寸: 1640x990x35mm。 三、清洗方案 1、清洗作范围 因自然环境及周围环境会对光伏组件表面造成污染,导致系统发电效率降低,需要不定期的对光伏区组件进行局部或全部清洗。 2、组件清洗条件 光伏组件清洗工作应选择在清晨、傍晚、夜间或阴雨天(辐照度低于200W/m2的情况下)进行,严禁选择中午前后或阳光比较强烈的时段进行清洗工作。在早晚清洗时,也要选择在阳光暗弱的时间段内进行。 3、组件清洗标准 组件清洗后,用白手套或白纱布擦拭组件表面,无灰尘覆盖现象。 4、清洗方式(由清洁公司选择) 1)全面型清洗 全面型清洗工作由三个步骤组成:首先用高压水枪对光伏组件表面浮灰进行冲洗;然后用无纺拖布或海绵刮板对组件表面进行擦洗,除去顽固污垢,必要时添加清洗剂擦洗;最后用高压水枪对组件表面擦洗掉的污垢进行冲洗,确保组件晾干后洁净如新。 2)清水冲洗型

光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析 网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高 温后出现膨胀造成隐裂现象 影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 2.在焊接过程中电池片要提前保温(手焊)烙铁温度要 符合要求. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm

硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.总装打胶严格要求操作手法,硅胶需要完全密封 5. 抬放组件时避免受外力碰撞 组件烧坏原因 1.汇流条与焊带接触面积较小或虚焊出现电阻加大发热造成组件烧毁 组件影响: 1.短时间内对组件无影响,组件在外界发电系统上长时间工作会被烧坏最终导致报废 预防措施: 1.在汇流条焊接和组件修复工序需要严格按照作业指导书要求进行焊接,避免在焊接过程中出现焊接面积过小. 2.焊接完成后需要目视一下是否焊接ok. 3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s

光伏电站组件清洗规范

光伏组件清洗工作规范 批准: 审阅: 编写: 年月日(一)、项目基本情况

太阳能电站装机容量为30MWp,共计122760片光伏组件。 (二)、工作范围 驼峰山太阳能电站内全部光伏组件。 (三)、工作要求 1、组件清洗要求 组件因污染导致系统发电效率降低2%时,需进行组件清洗。 2、组件清洗标准 组件清洗后,表面无灰尘、无附着物覆盖现象。 3、组件清洗时间 组件清洗时间周期为一周。 (四)、组件清洗具体要求 1、组件清洗条件 光伏发电系统的光伏组件清洗工作应尽量选择在清晨、傍晚、夜间或阴雨天(辐照度低于200W/m2的情况下)进行,严禁选择中午前后或阳光比较强烈的时段进行清洗工作。在早晚清洗时,也要选择在阳光暗弱的时间段内进行。 2、组件清洗设备 清除灰尘工具:毛掸子、毛刷子等。 清除紧密附着物的工具:塑料刮板。 清除染色物质及鸟粪残物工具:百洁布、抹布等。 3、组件清洗方法 用干燥的小扫把或抹布将组件表面的附着物如干燥浮灰、树叶等扫掉。对于紧附于玻璃上面的硬性异物如泥土、鸟粪、粘稠物体,则可用稍硬刮板或纱布进行刮擦处理,但需注意不能使用硬性材料来刮擦,防止破坏玻璃表面。对于紧密附着在玻璃上的有染色物质如鸟粪的残余物、植物汁液等或者湿土等无法清扫掉的物体时,则需要通过清洗来处理。清洗过程一般使用清水,配合柔性毛刷来进行清除。如遇到油性污物等,可用洗洁精或肥皂水等对污染区域进行单独清洗。 4、组件清洗工作安全管理

光伏组件清洗工作应由清洗专业人员担任,并经招标方安规考试合格。 中标方必须遵守招标方的相关安全管理制度。 中标方应按招标方的要求提交组件清洗工作方案和作业风险管控表单,并经招标方审批合格。组件清洗工作方案包括但不限于以下内容:工作人员职责及分工、安全保障措施、质量保证措施、工作进度计划等。 组件清洗工作开始前,由招标方组织中标方清洗工作人员进行现场安全交底和安全检查,具体内容包括:正常作业通道、设备带电部分、屋面禁止踩踏部分、围栏以及其他安全注意事项。 组件清洗正确穿戴安全帽、安全带、塑胶手套、绝缘胶鞋等安全防护用具,防止高空坠落及触电。 禁止踩踏光伏组件、导轨支架、电缆桥架等光伏系统设备或其它方式借力于组件板和支架。禁止将清洗水喷射到组件接线盒、逆变器、汇流箱等光伏系统等设备。 应使用干燥或潮湿的柔软洁净的布料擦拭光伏组件,严禁使用腐蚀性溶剂或用硬物擦拭光伏组件,清洗时严禁手接触组件,防止触电。 注意清洁设备对组件安全的影响:电池片薄而脆,不适当受力极易引起隐裂,降低发电效率。清洁设备对组件的冲击压力必须控制在一定范围内。 应在辐照度低于200W/m2的情况下清洁光伏组件,不宜使用与组件温差较大的液体清洗组件。 严禁在风力大于4级、大雨或大雪的气象条件下清洗光伏组件。 5、组件清洗人员要求 组件清洗工作负责人和安全员必须熟悉电气专业相关知识,并具有组件清洗的相关工作经验,持有电工证。 组件清洗工作人员必须掌握与之相关的安全知识和应急措施。 组件清洗人员必须身体健康,严禁身体不适、酒后或恐高者参加清洗工作。 投标人投标时应出具组件清洗工作负责人及安全员名单和工作证,以备查验资格。 组件清洗工作人员开始工作前必须参加招标方的岗前培训,经培训合格才可以上岗工作6、组件清洗相关要求

光伏组件故障分析

精心整理 一.接线盒 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电 流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料 应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部 分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒 制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全 的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限 公司(简称“华阳检测”,于2009年12月获得了CNAS实验室认可,认可范围包括光伏组) 件、光伏材料共119项检测能力。公司自2008年开始进行接线盒检测(依据标准:VDE 0126-5:2008),讫今共完成30家接线盒供应商、50多款接线盒的检测和质量分析,获得了 大量的检测数据。

结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65 防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼 热丝试验。 接线盒测试常见失败项目统计图: 一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁 接线盒烧毁 引起组件背板烧焦 组件碎裂 二、接线盒在认证测试中常见失败项目及原因分析 1.接线盒IP65防冲水测试 防水性能是接线盒性能的重要指标。认证测试中,先进行老化预处理测试,然后进行防 冲水测试,再通过外观结构检查和工频耐压测试进行评判。测试能否顺利通过,取决于接线 盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等 级。就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。图1IP65防冲水测试测试图片 接线盒防冲水测试失败的主要现象大致分为以下几种: ⑴、接线盒密封盒体内大量积水;

光伏电站组件清洗方案计划

\\ ********业管理有限责任公司光伏电站组件清洗技术方案 清洗方案 ************新能源开发有限公司 *********物业管理有限责任公司 2017 年 01 月

目录 公司简介........................................................................................................................ 1 概述............................................................................................................................. 1.1 适用范围........................................................................................................... 1.2 编制依据........................................................................................................... 1.3 项目背景........................................................................................................... 1.4 项目基本情况................................................................................................... 1.5 地理位置........................................................................................................... 1.6 项目所在地自然环境概况............................................................................... 2 清洗方案..................................................................................................................... 2.1 组件污染物现状分析....................................................................................... 2.2 清洗的目标....................................................................................................... 2.3 清洗方案概述................................................................................................... 2.4 资料、图纸准备............................................................................................... 2.5 人员配备......................................................................................................... 2.6 工期预计......................................................................................................... 2.7 实施方案......................................................................................................... 2.8 清洗流程概述................................................................................................. 2.9 组件清洗注意事项......................................................................................... 3 清洗作业安全管理................................................................................................... 4 光伏电站清洗效益分析........................................................................................... 5 附件........................................................................................................................... 附件1光伏组件清洗验收单............................................................................. 附件2光伏组件价格核算.............................................................................

光伏组件故障分析报告

一.接线盒 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电 流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料 应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部 分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒 制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全 的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限 公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组) 件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准:VDE 0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的

检测和质量分析,获得了

大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65 防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼 热丝试验。 接线盒测试常见失败项目统计图:

一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁 接线盒烧毁 引起组件背板烧焦 组件碎裂 二、接线盒在认证测试中常见失败项目及原因分析 1.接线盒 IP65 防冲水测试 防水性能是接线盒性能的重要指标。认证测试中,先进行老化预处理测试,然后进行防 冲水测试,再通过外观结构检查和工频耐压测试进行评判。测试能否顺利通过,取决于接线 盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等 级。就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。 图 1 IP65 防冲水测试测试图片

光伏电站太阳能板清洗方案

光伏电站太阳能板清洗方案 1、概述 华电****有限公司所辖三个光伏电站,分别是康保脑包图30MWp光伏站、**白**20MWp 光伏电站、**观日亭4MWp光伏电站。光伏组件安装在户外,其表面附着的细小粉尘颗粒、积雪等会影响光线的透射率,进而影响组件表面接受到的辐射量,影响发电效率;表面泥土、鸟粪等局部遮挡的污浊会在光伏组件局部造成热斑效应,降低发电效率甚至烧毁组件。为了提高太阳能电池板发电效率,需要定期对太阳能电池板进行清洗。上述三个光伏电站站址及装机情况如下: 1.脑包图光伏电站位于康保县二十倾村,装机容量30MW,其中太阳能电池板单体功率310W,目前共安装100044块光伏板。 2.白**光伏电站位于**县白土窑村,装机容量20MW,其中太阳能电池板单体功率 310W,共69120块电池板。 3.观日亭光伏电站位于塞北区东大门村,装机容量4MW,其中太阳能电池板单体功率260W,共15840块电池板。 2、清洗光伏板周期及方式 1. 清洗周期 定期:拟定在每年春季4-5月、秋季8-9月,进行两次集中清洗。现场常驻清洗人员,不间断地开展光伏组件的维护清理。 特殊天气:在冬季降雪较大时或局地沙尘暴对发电量影响较大时,组织施工人员对影响发电的光伏板进行针对性的临时清理。 2.清洗方式 工作模式:临时清洗+集中清洗 临时清洗主要是针对日常,避免组件表面因清理不及时产生较厚积尘,主要是避免因日常清理不及时导致组件效率下降或损坏。 集中清洗,选在春秋季节和特殊天气时段。 机具选用:脑包图光伏电站及白**光伏电站地势平坦,适宜大型清洗设备机场作业。但白**光伏电站站区排水不畅,如遇雨雪天气雪融化,极易结冰、积水,路况复杂,大部分区域车辆无法进入光伏阵列,需要人工携带清洗工具进行清洗。 观日亭光伏电站地处山地丘陵地带,如遇雨雪天气雪融化,极易结冰、积水,路况十分复杂,大部分区域车辆无法进入光伏阵列,不适宜采用大型清洗设备进场,需要人工携带清洗工具进行清洗。 2.2清洗工作组织及清洗标准 2.2.1清洗工作组织及要求 清洗工作由一个工作负责,多名清洗人员组成,分为至少6个组;每个清洗工作组织少由4人组成,1人负责驾驶工作车辆(皮卡),携带清水,发电机、高压水枪,车后斗1人向光伏组件喷洒清洗用清水,2人负责使用无纺布或毛刷擦拭光伏组件表面,直至光伏组件表面干净无污垢无灰尘。 如遇光伏组件表面有油性物质,可使用调有酒精的水涂在染色区域,等溶液将污染物渗透后,用毛刷擦拭去除。必要时可使用商业玻璃清洁剂连同无纺布或者玻璃刮对组件进行最后的清洁工作。不得使用塑料,橡胶刮板,防止对光伏板表面造成损伤。 如果需要清理积雪,应使用毛刷轻柔除雪,也可使用气吹的方式。禁止清除在组件上的冷冻住的雪或冰。 如光伏组件附近杂草高度可在光伏组件上形成阴影,清洗人员应将过高的杂草清除。 2.2.2清洗效果保证 清洗前、清洗后选择一天之中某一个时间段,记录光伏单元发电功率,对清洗效果进行对比。尤其记录同一个逆变器下电流偏小发电光伏组串,进行优先清理,并做对比;(现场值守人员提供)

光伏电站的运行与维护规范

目录 光伏电站的运行与维护规范 1 总则 为使光伏电站及户用光伏系统的运行维护做到安全、经济和合理,特制定本规范。 本规范适用于验收合格后,已投入正常使用的光伏电站及户用光伏系统的运行与维护。光伏电站及户用光伏系统运行与维护除应符合本规范的规定外,还应符合国家现行有关强制性标准的规定。 2 一般要求 a)光伏电站及户用光伏系统的运行与维护应保证系统本身安全,以及系统不会对人员造 成危害,并使系统维持最大的发电能力。 b)光伏电站及户用光伏系统的主要部件应始终运行在产品标准规定的范围之内,达不到 要求的部件应及时维修或更换。 c)光伏电站及户用光伏系统的主要部件周围不得堆积易燃易爆物品,设备本身及周围环 境应通风散热良好,设备上的灰尘和污物应及时清理。 d)光伏电站及户用光伏系统的主要部件上的各种警示标识应保持完整,各个接线端子应 牢固可靠,设备的接线孔处应采取有效措施防止蛇、鼠等小动物进入设备内部。 e)光伏电站及户用光伏系统的主要部件在运行时,温度、声音、气味等不应出现异常情 况,指示灯应正常工作并保持清洁。 f)光伏电站及户用光伏系统中作为显示和交易的计量设备和器具必须符合计量法的要求, 并定期校准。 g)光伏电站及户用光伏系统运行和维护人员应具备与自身职责相应的专业技能。在工作 之前必须做好安全准备,断开所有应断开开关,确保电容、电感放电完全,必要时应

穿绝缘鞋,带低压绝缘手套,使用绝缘工具,工作完毕后应排除系统可能存在的事故隐患。 h)光伏电站及户用光伏系统运行和维护的全部过程需要进行详细的记录,对于所有记录 必须妥善保管,并对每次故障记录进行分析。 3 运行与维护 光伏方阵 4)玻璃松动、开裂、破损等。 1)应使用干燥或潮湿的柔软洁净的布料擦拭光伏组件,严禁使用腐蚀性溶剂或用硬物擦拭光伏组件;应该做到一掸二刮三清洗。 2)应在辐照度低于200W/m2的情况下清洁光伏组件,不宜使用与组件温差较大的液体清洗组件; 3)严禁在风力大于4级、大雨或大雪的气象条件下清洗光伏组件; 1)光伏组件存在玻璃破碎、背板灼焦、明显的颜色变化; 2)光伏组件中存在与组件边缘或任何电路之间形成连通通道的气泡; 3)光伏组件接线盒变形、扭曲、开裂或烧毁,接线端子无法良好连接。 4Ω。 0℃。装机容量大于50kWp的光伏电站,应配备红外线热像仪,检测光伏组件外表面温度差异。5%。 1)中空玻璃结露、进水、失效,影响光伏幕墙工程的视线和热性能; 2)玻璃炸裂,包括玻璃热炸裂和钢化玻璃自爆炸裂; 3)镀膜玻璃脱膜,造成建筑美感丧失; 直流汇流箱、直流配电柜 控制器、逆变器 接地与防雷系统 过电压保护装置功能应有效,其接地电阻应符合相关规定。 交流配电柜及线路 1)停电后应验电,确保在配电柜不带电的状态下进行维护; 2)在分段保养配电柜时,带电和不带电配电柜交界处应装设隔离装置; 3)操作交流侧真空断路器时,应穿绝缘靴,戴绝缘手套,并有专人监护; 4)在电容器对地放电之前,严禁触摸电容器柜; 5)配电柜保养完毕送电前,应先检查有无工具遗留在配电柜内; 6)配电柜保养完毕后,拆除安全装置,断开高压侧接地开关,合上真空断路器,观察变压器投入运行无误后,向低压配电柜逐级送电。

相关文档
相关文档 最新文档