文档库 最新最全的文档下载
当前位置:文档库 › 二氧化碳腐蚀

二氧化碳腐蚀

二氧化碳腐蚀
二氧化碳腐蚀

二氧化碳腐蚀

二氧化碳腐蚀是指油气管道中含有一定浓度的二氧化碳(CO2)和水时产生的腐蚀。某些天然气,特别是凝析气中常含有较高浓度的二氧化碳(CO2)。二氧化碳(CO2)溶解在采出水或冷凝水中生成碳氢酸根离子(HCQT)、碳酸根离子(CCV-)离子,使钢铁产生电化学腐蚀。二氧化碳(CO2)腐蚀属于氢去极化腐蚀,往往比相同pH值的强酸腐蚀更严重。其腐蚀除受到去极化反应速度控制外,还与腐蚀产物是否在金属表面形成膜及膜的稳定性有关。

二氧化碳(CO2)腐蚀破坏多为膜破损处的点蚀。二氧化碳(CO2)与硫化氢(H2S)共存时会增大其腐蚀速率,并增大金属氢致开裂和硫化物应力开裂的敏感性。影响二氧化碳(CO2)腐蚀的主要因素有:二氧化碳(CO2)分压、温度、腐蚀产物膜的结构和形态、流速等。

腐蚀机理

关于二氧化碳腐蚀机理方面的研究工作较多。据文献资料介绍1.6~91,二氧化碳腐蚀遵循以下机制,阳极反应如下:

Fe+ H2O - >FeOHad+ H++ eFeOHad→FeOH++e

FeOH* + H+- +Fe++ H20

阴极反应有以下两种情况:

1)非催化的氢离子阴极还原反应:

CO201+ H2O - +H 2CO 301

H2CO3s1→Hs1+ HCO 3Hs→H ad .

Had+ e- >Had

Had+ Had+ e- *H2ad

2Had→H 2adH 2ad *H 2801Had→H ab

2)表面吸附CO2ad的氢离子催化还原反应:

CO2so1- CO 2ad

CO2ad+ HzO- *H 2CO 3ad

H2CO 3ad+ e- >Had+ HCO 3ad

H2CO3ad- >Had* + HCO 3adHad+ e→H ad

HCO3ad + Hs1- H 2CO 3ad .Had+ Had+ e- H 2ad2Had H 2ad .H2ad- >H2sol

Had→H ab

式中:ad,sol,ab分别为吸附,溶液和吸收, H ad表示吸附在钢铁表面的氢原子,Hab表示渗入钢铁内即钢铁所吸收的氢原子,H表示溶液介质体系中的H*。

其中,吸附在钢铁表面的氢原子既可能结合成H2脱附,也可能被金属吸收,从而导致产生氢脆。二氧化碳分子也可以直接被吸附在钢铁表面,从而对钢铁表面产生作用。

总的腐蚀反应方程式为:

Fe+ 2C02+ 2H20- Fe+ 2H2CO3-→Fe2++ H2+ 2HCO 3~

目前,关于高温高压下二氧化碳的腐蚀机理讨论得较少。

二氧化碳腐蚀影响因素

影响二氧化碳腐蚀的主要影响因素是:钢材材质和环境因素。钢材材质包括钢材的热处理状态(即钢材的显微组织)及其化学成分(主要是合金元素)。环境因素主要包括:温度、二氧化碳分压、溶液介质的化学性质、流速、单相或多相流体、几何因素、溶液的pH值、钢铁表面膜与结垢状况及外加载荷等。21钢材的材质(即钢材的显微组织与合金元素)的影响

2 1. 1钢材显微组织的影响

从金相角度来看,随着CO2腐蚀的进行,表面碳化物(主要是Fe;C)的量增加。这些碳化物在表面形成多孔、海绵状、片状或针状结构,有利于FeCO3的沉积,而表面碳化物的形状与结构取决于钢材的原始金相组织15.7”。PalaciosCA等人对APIN 80及冷轧UNS G10180钢的原始组织对腐蚀产物层及腐蚀速度的影响进行了研究,结果表明,APHN80及UNS G10180 CR正火态试样的初始FeCO3层比N 80QT试样的初始层要厚而且致密。Hausler认为这种变化是由于钢材的冶金因素所致。对于正火钢,珠光体均匀地分布于基体金属中,当珠光体形成渗碳体薄片,铁素体发生腐蚀时,珠光体薄片可以起到支撑FeCO 3沉积的作用。当通过珠光体的溶液处于停滞状态时,局部Fe2+的浓度很高,这就有利于FeCO3层的形成。

同时,研究结果还表明,腐蚀产物和垢层与基体金属的粘附性和厚度也取决于金属试样的显微组织。正火态试样的FeCO3层比QT状态试样的要厚,而且正火态试样的腐蚀层晶体颗粒比QT状态试样的要大而且更致密,成膜速度也比Q T状态试样的快。212合金元素的影响合金元素对CO2腐蚀有很大的影响,例如,在低于30°C时,阴极反应机制是CO2水解生成碳酸是决定速率步骤。当钢材中加入少量的Cu元素时,大大降低了CO2水解生成碳酸的活化能,因而极大地提高了决定速率步骤的反应速度,使腐蚀加快。

V idem和Ikeda等人的研究指出,钢材中加入铬、钼对CO2腐蚀有抵抗作用。Ikeda .A等人在动态循环下,对不同含Cr量的钢进行了腐蚀试验,发现在碳钢和铬钢表面都有粗晶粒的碳酸亚铁生成。13Cr、25Cr钢及xY双相不锈钢对CO2

腐蚀都有抵抗作用。在去掉表面的腐蚀产物膜之后,发现在低含Cr量的钢中有严重的局部腐蚀"。

Cr钢的耐蚀性主要是因为Cr元素富集于腐蚀产物膜中的缘故。例如:在Cr

含量为2%(质量分数,下同)的钢中,腐蚀产物膜中的Cr浓度高达15%~ 17%。在潮湿的环境下,Cr钢的腐蚀产物致密并且粘附性、韧性都很好,而且Cr含量越高,腐蚀产物膜层越薄。从分析结果来看,Cr钢的耐蚀性归结于Cr富集于腐蚀产物膜中,形成了由Cr"- 0和/或Cr"-OH组成的类似于不锈钢的钝化膜!21。

据报道",合金元素Ni的加入会促进CO2腐蚀。但含Ni钢对于防止硫化物腐蚀开裂是很有效的。

环境因素的影响

温度与腐蚀产物对CO2腐蚀的影响

温度对CO2腐蚀的影响主要基于以下几方面的因素:

1)温度影响了介质中CO2的溶解度。介质中CO2浓度随着温度升高而减小。

2)温度影响了反应进行的速度。反应速度随着温度的升高而加快。

3)温度影响了腐蚀产物成膜的机制。温度的变化,影响了基体表面FeCO3晶核的数量与晶粒长大的速度,从而改变了腐蚀产物膜的结构与附着力,即改变了膜的保护性。

由此可见,温度是通过影响化学反应速度与腐蚀产物成膜机制来影响CO2

腐蚀的。大量的研究结果表明,根据温度与表面成膜状况,可把碳钢的CO2腐蚀划分为以下3种类型

第1种类型:在低温区(< 60"C),少量的腐蚀产物FeCO3附着于试样表面,松软而无附着力,表面光滑,为均匀腐蚀。

第2种类型:在中温区(一般在100C附近),腐蚀速度达最大,并且有严重的局部腐蚀出现,腐蚀产物厚而不紧,FeCO3晶粒粗大。

第3种类型:在高温区(一般在高于150°C的温度范围内),由于形成了晶粒细小、致密而又有附着力的FeCO3膜,这层膜对基体起了保护作用,因此腐蚀速度很小。此时,CO2腐蚀是FeCO3膜的快速修复和慢速溶;解的类似于不锈钢的钝化状态,X射线衍射的结果表明膜中只有FeCO3。

在低温区的第1种类型中,还可按反应的决定速率步骤的不同分为两个不同的温度区间151,在温度低于30C时,CO2水解生成碳酸是决定速率步骤。而在更高一点的温度(> 40*C)时,CO2扩散到金属表面是决定速率步骤。事实上, HauslerR H等人的研究结果表明,在温度低于30°C的条件下,腐蚀速;度受流速的影响不大,除非在流速特别低的情况下,使得扩散速度低于水解速度。随着温度的进一步升高,腐蚀速度最终等于CO2的扩散速度,但不超过CO2的水解速度,即在这个温度区间内,CO2水解的活化能大于扩散的激活能,因此,在这个温度区间内,腐蚀速度随温度的升高而增大。当温度高于30°C时, CO2的扩散过程成为决定速率步骤,此时,CO2的腐蚀速度强烈地依赖于CO2分压、温度和流速。

按温度范围的不同,将CO2腐蚀分为3种类型,是与基体上的腐蚀产物的成膜状况紧密相关,尤其是与FeCO3的成膜机制密切相关。事实上是温度影响了成膜机制,而表面的成膜状况直接影响到腐蚀速度的大小与腐蚀类型。因此,划分这3种类型的具体温度分界点则依赖于表面上成膜状况,对于不同的钢材及不同的介质体系会有所不同,有时还可能会有较大的差别。

在低温区(< 60°C)时,FeCO3的溶解度具有负的温度系数,随着温度的降低而增大,同时,温度越低,FeCO3沉积所需的过饱和度越大,因此,随着温度的降低,FeCO3沉积的速度与趋势均减小。故在这个温度区间内,FeCO3的成膜很困难,即使暂时形成FeCO3膜也会逐渐溶解。因此,试样表面没有FeCO3膜,

或是只有松软而无附着力的FeCO3膜。此时表现为均匀腐蚀。

在高温区(> 150C) 时,也许在高于120°C时,铁的溶解(Fe→Fe2++ 2e)和Fe-CO3膜的形成速度都很快,由于温度很高,能很快达到FeCO3的成膜条件,并且在试样表面引发数量很多的FeCO3晶核。同时, FeCO3晶粒的生长速度亦很快,因此,基体将很快被一-层晶粒细小、致密而附着力又强的FeCO3膜保护起来。这种保护膜大约在钢铁接触到腐蚀介质的最初20h左右就可形成,以后就具有保护作用"21。因此,这种类型的腐蚀速度很小。

在中温区(100°C附近),FeCO3膜的形成条件得以满足,但结晶动力学不同于高温区的情况。由于温度较低,基体表面生成的晶核数量少,晶粒长大速度也小,不均匀性增大,于是导致生成晶粒粗大、多孔而又厚的FeCO 3膜。由于膜上的多孔区在腐蚀过程中成为阳极区,因此,随着腐蚀过程的进行,将引发严重的局部腐蚀。

CO2分压的影响

CO2的分压与介质的PH值有关。CO2的分压值越大,PH越低,去极化反应就越快,腐蚀速度也越快。

对于第1种类型(低温区)的CO2腐蚀,表面还未成膜,腐蚀速度与Pc,的关系能较好地遵循Dew aard和M illiams的经验公式

在第2种类型(即中温区)中,随着CO2分压的增大,腐蚀速度加快,这与低温区的规律相似。因为此时虽然成膜,但膜多孔,附着力差,而无多大的保护性。

对于第3种类型(即高温区),试验发现",在Po2=QIMPa时的腐蚀速度反而比P ∞,=3(MPa时的腐蚀速度快。这是由成膜的竞争机制所决定的,从成膜的反应方程式3Fe+ 4HO= FeO4+ 8H* + 8eFe+ H2CO3= FeCO3+ 2H+ + 2e

来看,在低的Pc,下易生成FeO3,而它的生成将影响FeCO3保护膜的形成,对腐蚀产物的X射线衍射分析结果也证明了这一-点。

二氧化碳腐蚀与防护综述

二氧化碳腐蚀与防护综述 李妍 (中海石油海洋工程股份有限公司设计分公司)提要:在油气田开发中,尤其是在石油天然气工业中,二氧化碳腐蚀是一个由来已久的问题,也是一个不容忽视的严重问题。如英国北海的ALPHA平台,因油气中含1.5~3.0%的二氧化碳,其由碳锰钢X52制成的管线仅用了两个多月就发生了爆炸。因此,关于二氧化碳的腐蚀问题,国内外的防腐工作者已进行了多年的研究工作,取得了一定的成果,也得到了一些防护方法。鉴于蓬莱19-3项目也面临着二氧化碳腐蚀的问题,本文就二氧化碳腐蚀的机理、影响因素及防护措施等几方面进行了综述。 关于二氧化碳的腐蚀机理,本文从阴阳两极的电化学反应出发,进行了详细阐述;影响因素主要讨论了温度、二氧化碳分压、流速、阳离子以及气、水产量等几方面;最后给出几种可行的防护措施。 Summary:C O2corrosion is a very important problem in the development of oil & gas field, especially in petrolic natural gas industry since many years ago. The ALPHA platform in North Sea of Britain exploded only two months after in use because its X52 steel cannot tolerant 1.5-3.0% C O2in its gas. Corrosion control workers have gained some outcome and protective methods after many years studies about C O2corrosion.

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

碱对碳钢的影响

碱对碳钢的影响 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

几种化学物质对压力容器的应力腐蚀 [ 2006-10-17 1:38:05 | By: rsjang ] 在较高温度和一定浓度的氢氧化钠溶液的特定环境下,热碱溶液会对碳钢或合金钢产生应力腐蚀,这种现象俗称碱脆或苛性碱脆化。 钢碱脆的机理目前还没有统一的认识。一般主伙是碳钢在高温下与水蒸气产生如下的化学反应: 在这个反应中,氢氧化钠起着催化作用,其过程是 反应生成的Fe3O4覆盖在钢的表面,形成一层保护膜。但可能由于过高的局部拉伸应力会使局部区域的保护膜遭到破坏;也可能由于氢氧化钠在表面富集使Fe3O4被溶解;或由于这两种情况的联合作用,在金属表面形成最初的腐蚀裂纹,氢氧化钠富集在裂纹中,形成电化学腐蚀。裂纹的尖端区域成为阳极,而裂纹周围的保护层成为阴极,再加上拉伸应力的作用,使裂纹迅速扩展,最终导致断裂。 钢的碱脆一般要同时具备3个条件,即高温、高浓度碱和拉伸应力。有人通过试验指出,浓度为10%的氢氧化钠溶液可以引起碱脆,而5%的浓度则不能。但在压力容器和锅炉中,局部地方常发生氢氧化钠的富集现象,如盐的沉积物或高温下水分的蒸发,都会使局部的碱浓度增大。

碱脆常常发生在锅炉的承压部件中,锅炉用水经过处理后有可能含有过剩的碱,在局部地方如沉积物或多孔的氧化皮下面,铆接或焊缝处,法兰连接处等,容易使碱浓度增大,加上不均匀的拉伸应力,使锅炉发生碱脆破裂。 近年来,国内外发生过多起一氧化碳和二氧化碳混合气的容器(气瓶)爆炸事故,这也是由应力腐蚀而引起的腐蚀。 一氧化碳在通常情况下,被铁吸收后,会在金属表面形成一层保护膜,但在工业应用的一氧化碳中会含有二氧化碳和水分。由于容器或气瓶反复多次充气,器壁上的交变应力,使这层保护层局部遭到破坏,从而会加速湿性二氧化碳对容器的腐蚀。 在以原油、天然气或煤为原料的炼油、石油化工及煤气工业设备中,硫化氢的腐蚀是比较普遍的问题,其中尤以湿硫化氢对碳钢及低合金钢的应力腐蚀最值的注意。 关于硫化氯应力腐蚀的机理还不十分清楚,有文献认为,湿的硫化氢与铁元素产生如下反应: 产生的氢原子向金属内部扩散、聚集、使金属变脆,在氢的作用下形成鼓泡和裂纹。在应力因素方面,主要是焊接的残余应力。 在石油化工生产中,有一些容器的工作介质是高温高压下的氢气,如合成氨、热裂化、酒精、加氢等生产装置中的反应器,这些设备如果设计、制造或使用不当就有可能因氢腐蚀而导致破坏。这种氢腐蚀属于化学腐蚀,因为在发生氢脆破坏的氨合成塔的破裂处,取样分析证实,钢的金相组织为脱碳的铁素体。 1.钢的氢脆是否发生,主要决定于氢的压力、温度、作用时间和钢的化学成分。氢气压力越高、温度越高、温度越高、碳钢的脱碳层就越深,发生氢脆断裂的时间也越快,其中温度影响最大。在较高温度下(例如>700℃),即使氢的压力只有,碳钢也会发生氢脆;如果温度较低(例如<200℃),氢的压力为100MPa,也难以产生氢脆。

金属腐蚀与防护

摘要:本文论述了腐蚀的产生机理,从而探讨了防腐蚀的办法。文章介绍了金属腐蚀与腐蚀机理,详细综述了形成保护层、电化学保护法、缓蚀剂法等几种常见腐蚀防护方法的原理以及在金属腐蚀与防腐中的应用和研究进展。 关键词:金属腐蚀防护 金属腐蚀的分类:根据金属腐蚀的反应机理,腐蚀可以分为电化学腐蚀和化学腐蚀。电化学腐蚀是指金属表面与离子导电的介质因发生电化学作用而产生的破坏;化学腐蚀是指金属表面与非电解质直接发生化学作用而引起的破坏。电化学腐蚀是最常见、最普遍的腐蚀,因为只要环境的介质中有水存在,金属的腐蚀就会以电化学腐蚀的形式进行。金属在各种电解质溶液,比如大气、海水和土壤等介质中所发生的腐蚀都属于电化学腐蚀.。环境中引起金属腐蚀的物质主要是氧分子和氢离子,它们分别导致金属的吸氧腐蚀和析氢腐蚀,其中又以吸氧腐蚀最为普遍。 腐蚀给人类社会带来的直接损失是巨大的。20世纪70年代前后,许多工业发达国家相继进行了比较系统的腐蚀调查工作,并发表了调查报告。结果显示,腐蚀的损蚀占全国GNP的1%到5%。这次调查是各国政府关注腐蚀的危害,也对腐蚀科学的发展起到了重要的推动作用。在此后的30年间,人们在不同程度上进行了金属的保护工作。在以后的不同时间各国又进行了不同程度的调查工作,不同时期的损失情况也是不同的。有资料记载,美国1975年的腐蚀损失为820亿美元,占国民经济总产值的4.9%;1995年为3000亿美元,占国民经济总产值的4.21%。这些数据只是与腐蚀有关的直接损失数据,间接损失数据有时是难以统计的,甚至是一个惊人的数字。我国的金属腐蚀情况也是很严重的,特别是我国对金属腐蚀的保护工作与发达的工业国家相比还有一段距离。据2003年出版的《中国腐蚀调查报告》中分析,中国石油工业的金属腐蚀损失每年约100亿人民币,汽车工业的金属腐蚀损失约为300亿人民币,化学工业的金属腐蚀损失也约为300亿人民币,这些数字都属于直接损失。如该报告中调查某火电厂锅炉酸腐蚀脆爆的实例,累计损失约15亿千瓦·时的电量,折合人民币3亿元,而由于缺少供电量所带来的间接损失还没有计算在内。所以说,金属腐蚀的损失是很严重的,必须予以高度的重视。金属腐蚀在造成经济损失的同时,也造成了资源和能源的浪费,由于所报废的设备或构件有少部分是不能再生的,可以重新也冶炼再生的部分在冶炼过程中也会耗费大量的能源。目前世界上的资源和能源日益紧张,因此由腐蚀所带来的问题不仅仅只是一个经济损失的问题了。腐蚀对金属的破坏,有时也会引发灾难性的后果,此方面的例子太多了,所以对金属腐蚀的研究是利国利民的选择。由于世界各国对于腐蚀的危害有了深刻的认识,因此利用各种技术开展了金属腐蚀学的研究,经过几十年代努力已经取得了显著的成绩。 金属防护的方法: 改善金属的本质根据不同的用途选择不同的材料组成耐蚀合金,或在金属中添加合金元素,提高其耐腐蚀性,可以防止或减缓金属的腐蚀。例如,在钢中加入镍制成不锈钢可以增强防腐蚀能力。 在金属表面形成保护层在金属表面覆盖各种保护,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法[3]。工业上普遍使用的保护层有非金属保护层和金属保护层两大类。它们是用化学方法、物理方法和电化学方法实现的。该法就是使金属表面形成转化层和加上一层坚固的保护层,达到隔离大气保护金属的目的.如对金属表面实施电镀、化学镀以及氧化、磷化处理等,可使金属表面覆盖一层耐腐蚀的保护层;也可以对金属表面氮化。

油田中的二氧化碳腐蚀

油田中的二氧化碳腐蚀 CO2是油田生产中常见的腐蚀介质,油田单井、流程、海管中介质含有CO2均可能产生CO2腐蚀,尤其是流体含水量超过30%的情况下。 CO2通常状况下是一种无色、无臭、无味无毒的气体,能溶于水,在25℃溶解度为0.144g (100g水)。密度约为空气的1.5倍。干燥的CO2气体本身是没有腐蚀性的,但CO2溶于水后对钢铁材料具有比较强的腐蚀性。CO2较容易溶解在水中,而在碳氢化合物(如原油)中的溶解度则更高,气体CO2与碳氢化合物的体积比可以达到3:1。当CO2溶解在水中时,会促进钢铁发生电化学腐蚀。 CO2腐蚀除产生均匀腐蚀外,在大多数情况下产生局部腐蚀损伤。根据CO2腐蚀的不同腐蚀破坏形态,能提出不同的腐蚀机理。以CO2对钢铁和含铬钢的腐蚀为例,有全面腐蚀,也有局部腐蚀。根据介质温度的不同,腐蚀的发生可以分为三类:在温度较低时,主要发生金属的活泼溶解,对碳钢主要发生金属的溶解,为全面腐蚀,而对于含铬钢可以形成腐蚀产物膜;在中间温度区间,两种金属由于腐蚀产物在金属表面的不均匀分布,主要发生局部腐蚀,如点蚀等;在高温时,无论碳钢和含铬钢,腐蚀产物可以较好地沉淀在金属表面,从而抑制金属的腐蚀。 1.二氧化碳全面腐蚀机理 二氧化碳腐蚀是气体二氧化碳溶解于水中所产生的电化学腐蚀。首先环境中的二氧化碳溶解于水中并形成碳酸。然后碳酸经过两步电离,使溶液呈现酸性。 CO2+H2O?H2CO3 H2CO3?H++HCO3? HCO3??H++CO32? 在含有二氧化碳的腐蚀溶液中,钢铁材料的阳极反应为: F e→F e2++2e? 阴极反应为: 2H++2e?→H2↑ 总的腐蚀反应为: CO2+H2O+F e→F e CO3+H2 由总反应式可知,阳极溶解的铁离子和溶液中碳酸根离子形成F e CO3,F e CO3为规则的块状附着在金属表面。当金属表面形成F e CO3腐蚀膜后,这种腐蚀膜没有明显的保护性。在

腐蚀数据与选材手册

内容有效性 本书是根据腐蚀数据手册的前一版进行修订和改编的。该书补充了许多工业环境和媒体中材料选择的内容,并补充了原书中的数据。该书收集了大约一百万个数据,一百多种材料,1500多种媒体和大约18种工业环境。这是一本具有完整数据和强大实用性的必要参考书。本书的第一章简要介绍了腐蚀的基本概念。第二部分介绍了正确选择材料和设计的原理以及设计工作中应注意的事项。结合原理并列举了许多示例,它也引入了一些材料选择方面的错误。在接下来的十章中,从介质和工业环境的角度介绍了各种材料的耐腐蚀性,重点是硫酸和硫酸行业,硝酸和硝酸行业,盐酸和盐酸行业,氢氟酸和氢氟酸。酸工业,磷酸和磷酸工业,乙酸和乙酸工业,脂肪酸和脂肪酸工业,氯和氯碱工业,氯化钠和盐工业腐蚀数据和重要腐蚀介质(如氢氧化钠,氨水)的材料选择(氢氧化铵)硫,电子工业,罐车工业,航空航天工业,高温腐蚀环境以及工业环境中的各种材料。解释了在不同环境中使用各种材料以及它们的优缺点的比较。在第三部分中,以表格的形式列出了材料在不同介质中的耐腐蚀性。本文收集了一百多种材料,例如金

属和合金,塑料,橡胶,木材,陶瓷,玻璃,混凝土,碳和石墨,涂料,涂料,涂料,乳香,碱,盐,气体,液态金属,其他机械,有机物,石油产品,轻工业产品,食品和植物油,大气,土壤,水和海水以及在不同温度下的腐蚀数据。在第四附录中,介绍了产生应力腐蚀开裂的材料的物理和机械性能以及材料和环境的组合。本书适用于从事化学,石油,石化,轻工,食品,纺织,冶金,建筑,机械,能源,交通,电子,国防,石油,化工,石油和天然气等领域的科研和设计人员,从事腐蚀和防护的工程技术人员,航空航天等行业。高校相关专业的师生也可以参考。 符号说明 腐蚀的基本概念 第一章简介1 1,腐蚀的定义1 二,腐蚀危害1 1.经济损失

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施 地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行 轨兼作负回流线。由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨 对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄 漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流 即称迷流,又称地铁杂散电流。地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装 外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用 寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。如煤 气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。另外,地铁迷流同时 也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流 腐蚀机理及防护措施方面浅谈管见。 1杂散电流腐蚀机理 1.1杂散电流腐蚀机理 地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属 于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都 是具有阳极过程和阴极过程的氧化还原反应。即电极电位较低的金属铁失去电子被氧化而 变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到 电子被还原。地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。图中,I为牵引 电流,Ix、Iy分别为走行轨回流和泄漏的迷流。 由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即 电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区); 电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。 当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其 周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。概括起来可将发生腐蚀的 氧化还原反应分为两种:当金属铁周围的介质是酸性电解质,即pH<7时,发生的氧化还原反 应是析氢腐蚀,以H+为去极化剂;当金属铁周围的介质是碱性电解质,即pH≥7时,发生的氧化还原反应是吸氧腐蚀,以O2为去极化剂。 1.2杂散电流大小 当钢轨为悬浮系统时(指全线钢轨采取对地绝缘,在任何地点不直接接地或通过其它 装置接地),虽然钢轨对地采取了一系列措施,但钢轨对地泄漏电阻在工程实施中不可能无限大,一般在5~100Ω·km范围内。同时随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、漏水和高地应力作用等影响,使地铁车站以及区间隧道中的轨、地绝缘性能降 低或先期防护措施失效,势必增大了由走行轨泄漏到土壤介质中的杂散电流。当列车在两牵 引变电所间运行时,钢轨电位如图2所示,列车位置处为阳极区,钢轨电位为正,牵引变电所附 近为阴极区,钢轨电位为负。钢轨电位产生的原因是牵引回流在钢轨上产生了纵向电压。研 究表明,钢轨电位的大小与钢轨泄漏电阻的关系不大,当钢轨对地泄漏电阻在5~100Ω·km范围内变化时,受从牵引变电所至列车位置处的钢轨纵向电压钳制,钢轨对地电位基本不变。杂

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

土壤电阻率对埋地管道杂散电流腐蚀影响 的研究进展

Applied Physics 应用物理, 2015, 5(10), 123-130 Published Online October 2015 in Hans. https://www.wendangku.net/doc/e6917813.html,/journal/app https://www.wendangku.net/doc/e6917813.html,/10.12677/app.2015.510017 Research Progress on Soil Resistivity Affecting Stray Current Corrosion of Buried Pipeline Qiong Feng1, Yaping Zhang1*, Hao Yu1, Lianqing Yu1, Yan Li2 1College of Science, China University of Petroleum (East China), Qingdao Shandong 2College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao Shandong Email: *zhangyp@https://www.wendangku.net/doc/e6917813.html, Received: Oct. 12th, 2015; accepted: Oct. 26th, 2015; published: Oct. 29th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/e6917813.html,/licenses/by/4.0/ Abstract Using four-electrode method to measure soil resistivity can decrease the influence caused by non- uniformity of soil compositions. Generally, soil resistivity is inversely proportional to the stray current corrosion. Factors which can affect soil resistivity may make differences to stray current corrosion, such as water content, salt content, porosity, temperature, PH value of soil and the types of salt. Within a certain range, as the water content, water saturation, salinity, temperature and porosity increase, soil resistivity decreases and then stray current corrosion aggravates. However, different types of salt have different influences on stray current corrosion. This paper analyzes how the acidic salt, alkaline salt and the salt containing Cl? affect stray current corrosion, and puts forward the outlook for the research of complex salt types. Keywords Buried Pipeline, Stray Current Corrosion, Soil Resistivity, Environmental Factors 土壤电阻率对埋地管道杂散电流腐蚀影响 的研究进展 封琼1,张亚萍1*,余豪1,于濂清1,李焰2 *通讯作者。

CO2腐蚀文献2

FUNDAMENTAL ASPECTS OF CO 2 METAL LOSS CORROSION – PART II: INFLUENCE OF DIFFERENT PARAMETERS ON CO 2 CORROSION MECHANISMS Guenter Schmitt Laboratory of Corrosion Protection Iserlohn University for Applied Sciences Frauenstuhlweg 31, D-58644 Iserlohn Germany Michaela H?rstemeier Institute for Technical and Macromolecular Chemistry Aachen University of Technology Worringerweg 1, D-52074 Aachen Germany ABSTRACT The literature has been reviewed with respect to information gained in the recent 20 years on CO 2 corrosion of materials used in the oil and gas industry. The paper discusses the effect of materials- related, medium-related and interface-related parameters on general (uniform) and localized corrosion. INTRODUCTION Carbon dioxide corrosion of steels is influenced by materials-related, medium-related and interphase-related parameters. The paper will address the present day knowledge on the effect of these parameters on the corrosion of steels with respect to general corrosion and localized corrosion including pitting, preferential weld corrosion, flow induced localized corrosion and stress cracking. The rate of general corrosion and the susceptibility to localized corrosion is mainly dependent on the formation of protective, semi-protective or non-protective corrosion product scales which are affected by temperature, CO 2 partial pressure, medium composition (iron ion concentration, presence of certain chemicals), pH, flow, alloy composition and mechanical stress. 06112 Paper No. ?2006 NACE International. Requests for permission to publish this manuscript in any form, in part or in whole must be in writing to NACE International, Conferences Division, 1440 South Creek Drive, Houston, Texas 77084. The material presented and the views expressed in this paper are solely those of the author(s) and are not necessarily endorsed by the Association. Printed in the U.S.A. Copyright

碳钢的防腐方法

碳钢的防腐方法 碳钢的防腐方法 1、耐候钢: 耐腐蚀性能优于一般结构用钢的钢材称为耐候钢,一般含有磷、铜、镍、铬、钛等金属,使金属表面形成保护层,以提高耐腐蚀性。其低温冲击韧性也比一般的结构用钢好。标准为《焊接结构用耐候钢》(GB4172-84)。 2、热浸锌 热浸锌是将除锈后的钢构件浸入600℃左右高温融化的锌液中,使钢构件表面附着锌层,锌层厚度对5mm以下薄板不得小于65μm,对厚板不小于86μm。从而起到防腐蚀的目的。这种方法的优点是耐久年限长,生产工业化程度高,质量稳定。因而被大量用于受大气腐蚀较严重且不易维修的室外钢结构中。如大量输电塔、通讯塔等。近年来大量出现的轻钢结构体系中的压型钢板等。也较多采用热浸锌防腐蚀。热浸锌的首道工序是酸洗除锈,然后是清洗。 这两道工序不彻底均会给防腐蚀留下隐患。所以必须处理彻底。对于钢结构设计者,应该避免设计出具有相贴合面的构件,以免贴合面的缝隙中酸洗不彻底或酸液洗不净。造成镀锌表面流黄水的现象。热浸锌是在高温下进行的。对于管形构件应该让其两端开敞。若两端封闭会造成管内空气膨胀而使封头板爆裂,从而造成安全事故。若一端封闭则锌液流通不畅,易在管内积存。 3、热喷铝(锌)复合涂层 这是一种与热浸锌防腐蚀效果相当的长效防腐蚀方法。具体做法是先对钢构件表面作喷砂除锈,使其表面露出金属光泽并打毛。再用乙炔-氧焰将不断送出的铝(锌)丝融化,并用压缩空气吹附到钢构件表面,以形成蜂窝状的铝(锌)喷涂层(厚度约80μm~100μm)。最后用环氧树脂或氯丁橡胶漆等涂料填充毛细孔,以形成复合涂层。 此法无法在管状构件的内壁施工,因而管状构件两端必须做气密性封闭,以使内壁不会腐蚀。这种工艺的优点是对构件尺寸适应性强,构件形状尺寸几乎不受限制。大到如葛洲坝的船闸也是用这种方法施工的。另一个优点则是这种工艺的热影响是局部的,受约束的,因而不会产生热变形。与热浸锌相比,这种方法的工业化程度较低,喷砂喷铝(锌)的劳动强度大,质量也易受操作者的情绪变化影响。

二氧化碳的影响及综合利用

二氧化碳的影响及综合利用 引言:近十多年来,在涉及地球环境保护的诸多问题中,最令人关注的当属大气环境逐渐变暖,即所谓的温室效应。近年来所发生的许多危害,都或多或少被打上了温室效应的烙印,如:严酷的天气类型,变化的生态系统,物种灭绝及生物多样性的丧失,饮用水的减少,海平面上升造成的陆地减少和平均气温上升等。尽管产生全球气候变化的原因是多方面的,但大量研究表明,产生温室效应的主要原因与温室气体(CHG)的大量排放有直接关系。 当前所谓的温室气体主要有6种,除二氧化碳外,还包括甲烷,氧化氮,氢氟烃,全氟碳和六氟化硫。这些气体能大量吸收地球表面辐射的热量,从而使地表温度升高而产生温室效应。而现在摆在人们面前的不仅仅是如何减少二氧化碳的排放量,更应该去思考如何利用这部分温室气体进行工业生产,来为世界创造更多的价值。 一、概述: 碳循环是碳通过大气圈,生物圈,土壤圈,岩石圈和水圈的变化和传递的总过程。 碳在生物圈的存在形式主要为有机碳;碳在水圈中的存在形式为溶解的有机碳,溶解的无机碳,沉淀的有机碳,沉淀的无机碳和有机碳;碳在岩石圈中的存在形式为有机碳(包括化石燃料)和碳酸盐;碳在土壤圈的存在形式为有机碳;碳在大气圈中的主要存在形式为二氧化碳和甲烷气体。

现在大气中的二氧化碳的浓度为0。000370%。而近年来,人类每年排入大气的二氧化碳为280*10^8t,是植被和土壤呼吸及海表交换排入大气的CO2平均自然流通量(总量约为5500*10^8t)的5%。大气中CO2总量的变化由排放和吸收量之间的净平均差额决定,而不是各流量本身。有数据表明:在过去的42万年中,二氧化碳的含量在过去的250年增长了31%,其中最近几十年更是以指数形式在增长。而化石燃料的使用对CO2排放的贡献占人类活动总排量的70%~90%。 Rising carbon dioxide concentrations in air in the past decades 二、温室效应: 目前,公认的二氧化碳所引起的温室效应对人类生活环境的几大影响主要包括:一是极端气象和气候现象频繁发生;二是冰川融化,海平面上升;三是对动植物种群数目和分布产生影响;四是全球气候变暖导致越来越严重的缺水问题;五是全球全球变暖带来的种种后果将使人类健康问题越来越突出。 1.温室效应的起因

CO2腐蚀

CO2腐蚀的机理及介绍

1.1 CO2的腐蚀特点: 从CO2的腐蚀情况来看,腐蚀的形状各异,但从各种情况分析,除了外观和介质油差别外,所有的气田用钢材的CO2腐蚀都非常集中以蚀坑、沟槽或大小不同的腐蚀区的型式出现,所以腐蚀穿透率很高,一般都达数毫米/年,一般来说,底面平整边缘锐利,是典型的CO2腐蚀特征。 2.3CO2的腐蚀机理: 钢铁在除O2水中CO2腐蚀机理,其阳极反应主要是Fe的溶解,可简写为: Fe →Fe2+ + 2e (1) 对阴极过程观点不一,较占主导的观点认为,在环境温度下,裸钢在除O2水中的腐蚀是受氢析出动力学控制,而阴极析氢机制除了一般的电化学还原H3O+离子放电反应析氢外,既在低pH除了非催化的析氢机制: H3O+ + e →H + H2O (2) 反应外,还可以通过下述表面吸附催化作用H+还原反应析氢机制进行:CO2 + H2O = H2CO3 (3) H2CO3 + e =H+ + HCO3- (4) HCO3- + H3O+ = H2CO3 + H2O (5) 上述析氢机制得到的一些试验的支持,并由此可以得出 (1)不同金属材料具有不同的催化活性,而影响腐蚀速率。 (2)在一定pH范围(4~6),pH对阴极反应速度没有明显影响。

然而实际中,钢铁表面总是被某些物质覆盖着,如扎皮、氧化膜或在含介质中的腐蚀产物膜等,这些覆盖物使析氢可能不是在裸钢表面而是在膜或覆盖物上进行,因此影响到腐蚀特性,而这些问题不是上述简单机制所能解决的,所以CO2腐蚀机理仍在研究中。 2.4影响CO2腐蚀的因素: 由于介质中的成分比较复杂,各种成分的含量也各不同,因此在各种条件下,影响CO2腐蚀特性的因素很多,归纳起来可以分为以下几个因素:(1)温度的影响(2)CO2分压(Pco2)影响(3)腐蚀产物膜的影响(4)流速的影响(5)pH、Fe2+及介质组成的影响等,这些因素可能导致钢的多种腐蚀破坏,比如可能产生高的腐蚀速率、严重的局部腐蚀穿孔,甚至可能发生应力腐蚀开裂等。 2.4.1温度的影响: 大量的研究结果显示温度是CO2腐蚀的重要影响参数,较多的结果表明在60℃附近CO2腐蚀在动力学上有质的变化。由于碳酸亚铁的溶解度具有负的温度系数,随着温度的升高而降低,因此在60℃~110℃之间,钢表面可生成具有一定保护性的腐蚀产物膜层,是腐蚀腐蚀速率出现过渡区,该温区内局部腐蚀较突出。而低于60℃时不能形成保护性膜层,钢的腐蚀速率在此区出现极大值(含Mn钢在40℃附近、含Cr钢在60℃附近)。在110℃或更高的温度范围内,由于可能发生下列反应: 3Fe + 4H2O = Fe3O4 + 4H2 因而在110℃附近显示出钢的第二个腐蚀速率极大值,表面产物膜层也由FeCO3变成杂有Fe3O4和FeCO3膜并随温度升高,Fe3O4量增加,达到

CO2腐蚀套管规律及机理研究

CO2腐蚀套管规律及机理研究 摘要:采用理论和实验相结合的方法,分析和研究了主要影响CO2腐蚀速率的影响因素和影响规律,总结出了二氧化碳对油气井管材的腐蚀机理;提出了具体合理的防护措施,初步形成了一套系统较为完整的理论体系,为油气田防腐提供了理论及实验依据。 关键词:CO2腐蚀电化学套管 一.前言 国内有相当多的油气构造富含CO2。华北油田古潜山构造伴生气中CO2平均含量最高,为20%,其中留路地区最高可达42%;胜利油田气田气中CO2含量为12%;南海涯13-1区块气田气中CO2含量也达10%;四川气田川东石炭系构造中CO2含量为1%~4.5%,CO2分压达0.41~0.97Mpa【1】。国内外研究表明在高温高压条件下CO2对套管存在严重的腐蚀问题。研究CO2对油气井管材的腐蚀机理、规律及防护措施,对于延长各个油气田中油气井的生产寿命、提高生产效率以及有效推广CO2混相驱油技术的增产措施等都具有重要意义。 二.CO2的腐蚀机理 不同的温度、不同的分压及不同材质的管材,CO2对其产生的腐蚀情况也不相同。 温度不同,铁和碳钢的CO2腐蚀大致有三种情况:①60℃以下时,钢铁表面存在少量软而附着力小的FeCO3腐蚀产物膜,金属表面光滑,易于发生均匀腐蚀;②100℃附近,腐蚀产物层厚而松,易于发生严重的均匀腐蚀和局部腐蚀(深孔);③150℃以上时,腐蚀产物是细致、紧密、附着力强、具有保护性质的FeCO3和Fe3O4膜,能够降低金属的腐蚀速度。 而介质中的CO2分压对钢的腐蚀形态有显著的影响:当CO2分压低于0.438×10-1MPa时,易于发生的均匀腐蚀;当CO2分压在0.438×10-1MPa~2.07×10-1MPa之间时,则可能发生不同程度的小孔腐蚀;当CO2分压大于2.07×10-1MPa时,发生严重的局部腐蚀【2】。一般来说,钢质油套管处于流动的含有CO2水介质中都会发生腐蚀现象。其腐蚀的种类和形式大致分为均匀腐蚀、点蚀、台地侵蚀、流动诱使局部腐蚀及腐蚀裂开几种形式。其腐蚀产物通常为FeCO3和Fe3O4。 当钢铁暴露在含水的介质中时,表面很容易沉积一层垢或腐蚀产物,当这层垢或腐蚀产物的结构较为致密时,像一层物理屏障,阻碍金属的腐蚀。而当这层垢或腐蚀产物为不致密的结构时,垢下金属为缺氧区,会和周围的富氧部分形成氧浓差电极,垢下金属因缺氧电位较负,发生阳极溶解即沉积物下方腐蚀【3】。 三.CO2对套管的腐蚀机理

腐蚀数据与选材手册

腐蚀数据与选材手册 硝酸是极其重要的有机和无机化工原料,广泛用于化工、冶金、化纤和医药等工业部门,在国防军事工业中多用于制造TNT炸药。但随着运行时间的增加,装置的腐蚀问题也必然随之加剧,因此,正确认识、了解硝酸的腐蚀问题,听取、吸收厂家的实践经验,采用适宜的耐蚀材料,这将大大提高装置设计质量,延长运行周期,避免事故发生,具有十分重大的现实意义。 1 硝酸的腐蚀机理 硝酸是强酸,又是强氧化剂,这主要由于HNO3分子分解放出了[O]和HNO3分子在溶液中电离出的H+,它们都能得到电子的缘故,而HNO3分子的氧化性强弱则决定于放出[O]的速率。浓硝酸中HNO3分子数目多,放出[O]的速率大,则氧化性强;稀硝酸在加热后也提高了放[O]速率,同样增强了氧化性;而硝酸盐在溶液中不分解放出[O],也不电离出H+,所以硝酸盐溶液没有氧化性[1]。 硝酸大体以其共沸浓度为分界线,低于68%成为稀硝酸,高于68%称为浓硝酸,两者腐蚀机理不同,耐蚀材料各异。浓、稀硝酸均具有氧化性,但在相同的条件下,仍是浓硝酸比稀硝酸的氧化性强,如:稀硝酸只能把S2-氧化到单质S,而浓硝酸可把S2-氧化到H2SO4;极稀硝酸不能氧化I-,而较浓硝酸很容易把I-氧化到I2。当硝酸浓度相同时,热的比冷的氧化性强,当两种硝酸的浓度差不多时,加热的稍稀硝酸不一定比冷的稍浓硝酸的氧化性弱,这说明硝酸的氧化性

是相对的。 1.1 硝酸与不活泼金属的反应机理 以硝酸与铜反应为例。铜与浓硝酸在加热或通入NO2时反应才能迅速发生,主要放出NO2气体;而铜与热的稀硝酸反应主要放出NO 气体。 在硝酸与铜的反应中,不论硝酸的浓度如何,首先都是发生了硝酸分子的分解反应,放出了新生态的氧原子[O]。 HNO3 =HNO2 + [O] (A) 由于新生态的氧原子的氧化能力极强,它很容易将铜氧化成CuO,CuO又立即与过量的HNO3反应生成Cu(NO3)2,在A反应中生成的HNO2由于不稳定,特别是在酸性或加热条件下更是如此,又会迅速分解生成NO。 稀硝酸中由于HNO3分子的浓度很低,当生成的NO在溶液中达到饱和后大部分能从溶液中逸出来,而在浓硝酸中,生成的NO既可与新生态的氧原子作用生成NO2,又可与大量存在的HNO3分子作用而生成NO2,NO2在溶液中达到饱和后也逸放出来。因此硝酸浓度越高,生成NO2的可能性越大,放出NO的机会就越小。 1.2 硝酸与活泼金属的反应机理 硝酸与活泼金属反应时,我们不能忽视HNO3在溶液中电离出的H+的氧化作用,在溶液中除了能发生A反应外,同时存在H+与活泼金

相关文档
相关文档 最新文档