文档库 最新最全的文档下载
当前位置:文档库 › 数值计算方法总复习

数值计算方法总复习

数值计算方法总复习
数值计算方法总复习

数值计算方法总复习

第一章算法与误差

第二章非线性方程求解

第三章线性代数方程求解

第四章函数插值与曲线拟合

第五章数值积分与数值微分

第六章常微分方程的数值解法

Chap.1 (1)关于数值计算方法,What,特点

一、关于《数值计算方法》

数值计算方法是应用数学的一个分支,又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计和对数值结果进行分析的依据和基础。

应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数学模型;选用数值计算方法;程序设计和上机计算。可见数值计算方法是进行科学计算全过程的一个重要环节。

计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和一些逻辑运算。所以,各种复杂的数学问题------→归结为四则运算------→编程指令。

把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序有完整而准确的描述的算法称为数值计算方法或简称数值算法。研究各种算法和相关理论的一门课程。

§1.2 误差

一、误差的来源

数分为两类:精确数(准确数、真值);近似数/近似值。

1)模型误差或描述误差

2)测量误差(观测误差)

3)截断误差(方法误差)

4)舍入误差(计算误差):

数值计算关心的是截断误差(方法误差)和舍入误差(计算误差)

二、误差限和有效数字

1. 误差限的定义

设Z 是准确值Z *的某个近似值,如果根据具体测量或计算的情况,可以事先估计出误差的绝对值不超过某个正数ε:即: |Z * - Z |≤ε

则称ε为近似值的误差限。或称在允许误差ε的情况下,结果Z 是“准确的”.

2. 误差限和有效数字

在表示一个近似数时,常常用到“有效数字”,有效数字和误差限都是用来定量表示误差的大小,且它们之间有对应关系。 有效数字的定义:设数

x 的近似值m n x x x x 10.021*?= , 其中 xi 是0

到9之间的任一个数,但x 1≠0,i=1,2,3…,n 正整数,m 整数,若

n

m *|x x |-?≤-10

21 则称x *为x 的具有n 位有效数字的近似值,x *准确到第n 位,x1x2…xn 是x *

的有效数字。

Chap.2 非线性方程求解

由于非线性方程一般不便于用常规的代数求解方法求解,故用数值求解方法求解。

(1) 二分法确定根的大致范围。

(2) 用迭代法一步一步将解精确化。

迭代方法关于迭代法,谈几点相关的问题:

础上进行的。也就是已经知道方程的某个根的大致位置,而迭代法只是起着把根的精确位置一步一步确定下来的作用。这就是所谓根的精确化。至于另一个问题,即根的存在、个数、分布等,一般说来是很困难的。不用说复杂的方程组,就是一个未知元的方程,除了多项式方程外,都没有什么一般性的结论。对于具体工程问题,可根据工程背景进行讨论。

b) 收敛速度即误差下降速度是衡量迭代法的一个重要准则,而迭代一步

所花费的计算工作量也可用来作为一个衡量标准,从这二者来衡量得到的结果往往是矛盾的。

c) 迭代法不仅可以用于含有一个未知元的方程,也可用于含多个未知元

的方程组。

(3) 迭代格式的收敛判断条件:1)

()

(0)(?=?=dx

x dg x g x x f ε<-+k k x x 1或者。 牛顿迭代格式:)

()

(1x f x f x x k k k '-=+,牛顿迭代法是非常重要的求解非线性方程的方法。 (5) 快速弦截法:)()

()()

(111--+---

=k k k k k k k x x x f x f x f x x

(6)非线性方程的牛顿解法

Chap.3 线性方程组求解(迭代法和直接法)

1、 迭代格式:n ,,,i g x b x

i

)k (j n

j ij )

k (i

2111=+=∑=+

收敛条件:1max 1

1<=∑=≤≤n

j ij n

i b L

2、 G AUSS-SEIDEL 迭代格式:ii i j n

i j )k (j ij

)k (j

ij i )

k (i

a /)x a

x

a f (x

∑∑-=+=++-

-=1

1

1

11

3、 直接法:高斯消去法、主元素消去法、列主元素消去法;距阵分解法、LU

分解法、平方根法、乔累斯基法。各种方法的适用范围。 ***能熟练运用增广距阵进行消去法求解运算,要求步骤规范。

Chap.4 函数插值和曲线拟合

1、熟练掌握线性插值、抛物插值和拉格朗日插值多项式的形式,尤其是基函

数的组成和形式。 2、会用上述插值法求解问题。

3、熟悉埃特金逐步插值方法的步骤和每个插值函数的组成。

4、掌握分段插值方法的特点,及插值点x 和插值节点选取之间的关系:插值

点x 越靠近插值节点,精度越高。

5、掌握曲线拟合的原理及最小二乘法,及与函数插值的相同和不同之处。以及正规方程组的含义。

Chap.6 数值积分

1、熟练掌握基本的积分公式:两点公式(线性)、三点公式(Simpson )、五点

公式(Cotes)。

梯形公式:)]()([2

b f a f a

b T +-= Simpson 公式: )]()(4)([6

b f

c f a f a

b S ++-= 柯特斯公式:)](7)(32)(12)(32)(7[90

b f e f

c f

d f a f a

b C ++++-= 2、复化求积法。

3、各种求积公式的误差特性。

4、了解变步长求积公式--龙贝格算法。

Chap.7 常微分方程的数值积分(初值问题)

熟练理解常微分方程的数值求解方法的根本思想及方法。

1、欧拉法的递推型计算格式:???=+=+=+ ,2,1,0,)

,(01n nh x x y x hf y y n

n n n n

2、改进欧拉格式???

??

+=+=+=++)(2

1),(),(11c p n p n n c n n n p y y y y x hf y y y x hf y y

3、了解龙格—库塔方法的原理及计算公式。

数值计算方法学习指导书内容简介

数值计算方法学习指导书内容简介 数值计算方法学习指导书内容简介《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个mat1ab计算机仿真实验。 数值计算方法学习指导书目录绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构 2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换

3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(iir)数字滤波器的设计5.1 学习要点 5.2 例题 5.3 教材习题解答 第6章有限长单位冲激响应(fir)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于matlab的上机实验指导 9.1 常见离散信号的matlab产生和图形显示

9.2 信号的卷积、离散时间系统的响应 9.3 离散傅立叶变换 9.4 离散系统的频率响应分析和零、极点分布 9.5 iir滤波器的设计 9.6 fir滤波器的设计 数值计算方法学习指导书内容文摘第1章离散时间信号与系统 1.1 学习要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习。因此,作为重点学习内容,在概念上需要明白本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强葙关概念的联系,进一步提高运用概念解题的能力。学习本章需要解决以下一些问题: (1)信号如何分类。 (2)如何判断一个离散系统的线性、因果性和稳定性。 (3)线性时不变系统(lti)与线性卷积的关系如何。 (4)如何选择一个数字化系统的抽样频率。 (5)如何从抽样后的信号恢复原始信号。 因此,在学习本章内容时,应以离散时间信号的表示、离散时间系统及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值计算方法教学大纲

《数值计算方法》教学大纲 课程编号:MI3321048 课程名称:数值计算方法英文名称:Numerical and Computational Methods 学时: 30 学分:2 课程类型:任选课程性质:任选课 适用专业:微电子学先修课程:高等数学,线性代数 集成电路设计与集成系统 开课学期:Y3开课院系:微电子学院 一、课程的教学目标与任务 目标:学习数值计算的基本理论和方法,掌握求解工程或物理中数学问题的数值计算基本方法。 任务:掌握数值计算的基本概念和基本原理,基本算法,培养数值计算能力。 二、本课程与其它课程的联系和分工 本课程以高等数学,线性代数,高级语言编程作为先修课程,为求解复杂数学方程的数值解打下良好基础。 三、课程内容及基本要求 (一) 引论(2学时) 具体内容:数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,算法的稳定性与收敛性。 1.基本要求 (1)了解算法基本概念。 (2)了解误差基本概念,了解误差分析基本意义。 2.重点、难点 重点:误差产生的原因和误差的传播。 难点:算法的稳定性与收敛性。 3.说明:使学生建立工程中和计算中的数值误差概念。 (二) 函数插值与最小二乘拟合(8学时) 具体内容:插值概念,拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法。 1.基本要求 (1)了解插值概念。 (2)熟练掌握拉格朗日插值公式,会用余项估计误差。 (3)掌握牛顿插值公式。 (4)掌握分段低次插值的意义及方法。

(5)掌握曲线拟合的最小二乘法。 2.重点、难点 重点:拉格朗日插值, 余项,最小二乘法。 难点:拉格朗日插值, 余项。 3.说明:插值与拟合是数值计算中的常用方法,也是后续学习内容的基础。 (三) 第三章数值积分与微分(5学时) 具体内容:数值求积的基本思想,代数精度的概念,划分节点求积公式(梯形辛普生及其复化求积公式),高斯求积公式,数值微分。 1.基本要求 (1)了解数值求积的基本思想,代数精度的概念。 (2)熟练掌握梯形,辛普生及其复化求积公式。 (3)掌握高斯求积公式的用法。 (4)掌握几个数值微分计算公式。 2.重点、难点 重点:数值求积基本思想,等距节点求积公式,梯形法,辛普生法,数值微分。 难点:数值求积和数值微分。 3.说明:积分和微分的数值计算,是进一步的各种数值计算的基础。 (四) 常微分方程数值解法(5学时) 具体内容:尤拉法与改进尤拉法,梯形方法,龙格—库塔法,收敛性与稳定性。 1.基本要求 (1)掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格—库塔法。 (2)了解局部截断误差,方法阶等基本概念。 (3)了解收敛性与稳定性问题及其影响因素。 2.重点、难点 重点:尤拉法,龙格-库塔法,收敛性与稳定性。 难点:收敛性与稳定性问题。 3.说明:该内容是常用的几种常微分方程数值计算方法,是工程计算的重要基础。 (五) 方程求根的迭代法(4学时) 具体内容:二分法,解一元方程的迭代法,牛顿法,弦截法。 1.基本要求 (1)了解方程求根的对分法和迭代法的求解过程。 (2)熟练掌握牛顿法。 (3)掌握弦截法。 2.重点、难点 重点:迭代法,牛顿法。

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值计算方法思考题

数值计算方法思考题 第一章 预篇 1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣? 3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。 4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确: (1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。 (5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。 (8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题 ax 2 + bx + c = 0. 下面的公式是熟知的 a ac b b x 242-±-=. 与之等价地有 ac b b c x 422--= . 对于 a = 1, b = -100 000 000 , c = 1 应当如何选择算法? 8.指数函数有著名的级数展开 ++++=!3!213 2x x x e x 如果对x < 0用上述的级数近似计算指数函数的值,这样的算法结果是否会好?为什么? 9.考虑数列x i , i = 1,…, n , 它的统计平均值定义为 ∑==n i i x x x 1 1 它的标准差

1 12)(11??????--=∑-n i i x x n σ 数学上它等价于 1 12211???????????? ??--=∑=n i i x n x n σ 作为标准差的两种算法,你如何评价它们的得与失? 第二章 非线性方程求根 1.判断如下命题是否正确: (a) 非线性方程的解通常不是唯一的; (b) Newton 法的收敛阶高于割线法; (c) 任何方法的收敛阶都不可能高于Newton 法; (d) Newton 法总是比割线法更节省计算时间; (e) 如果函数的导数难于计算,则应当考虑选择割线法; (f) Newton 法是有可能不收敛; (g) 考虑简单迭代法x k +1 = g (x k ),其中x * = g (x *)。如果| g '(x *) | <1,则对任意的初 始值,上述迭代都收敛。 2.什么叫做一个迭代法是二阶收敛的?Newton 法收敛时,它的收敛阶是否总是二阶 的? 3.求解单变量非线性方程的单根,下面的3种方法,它们的收敛阶由高到低次序如何? (a) 二分法 (b) Newton 方法 (c) 割线方法 4.求解单变量非线性方程的解,Newton 法和割线方法,它们每步迭代分别需要计算几 次函数值和导数值? 5.求解某个单变量非线性方程,如果计算函数值和计算导数值的代价相当,Newton 法和割线方法它的优劣应如何评价? 第三章 解线性方程组的直接法 1.用高斯消去法为什么要选主元?哪些方程组可以不选主元? 2.高斯消去法与LU 分解有什么关系?用它们解线性方程组Ax = b 有何不同?A 要满足什么条件? 3.乔列斯基分解与LU 分解相比,有什么优点? 4.哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 5.什么样的线性方程组可用追赶法求解并能保证计算稳定? 6.何谓向量范数?给出三种常用的向量范数。 7.何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A = (a i j )的三种范数|| A ||1,|| A ||2,|| A ||∞,|| A ||1与|| A ||2哪个更容易计算?为什么? 8.什么是矩阵的条件数?如何判断线性方程组是病态的? 9.满足下面哪个条件可判定矩阵接近奇异? (1)矩阵行列式的值很小。 (2)矩阵的范数小。

数值分析第8章作业

第八章 矩阵特征值问题计算 3.用幂法计算下列矩阵的主特征值及对应的特征向量 12732343()341;()463213331a A b A --???? ????=-=-???? ????--???? 当特征值有3位小数稳定代终止。 解:套用幂法公式 010,,,1,2,.... max()k k k k k v u v Au u k v -≠== = 取0(1,1,1)0T u =≠,将A 1代入上式,计算结果见下表 则1A 的主特征值19.605572λ≈,特征向量1(10.6050.394369)T x ≈- 将2A 代入幂法公式,取0(1,1,1)T u =,计算结果见下表 则2A 主住特征值18.869699λ≈,特征向量1(0.604228,1,0.160881)T x ≈- 4.用反幂法求矩阵 621231111A ?? ??=?? ???? 的最接近于6的特征向量。 解:本题按带原点平移的反幂法计算。平移向量p=6,则将

021231115B A pI ?? ??=-=-?? ??-?? 进行三分解:PB=LU ,其中 1 002310101511 001,10,02 221004 2701005 5P L U ? ??? ????-??? ??? ??????===-???????????? ?? ?? ??? ??? 然后1(1,1,1)T Uv =,解得 1 111,max()v v u v = 1,,,2,3,.... max()k k k k k k k v Ly PU Uv y U k v -=== = 计算结果如下:

李庆扬-数值分析第五版第7章习题答案(0824)汇编

第7章复习与思考题

求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得 X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何 X 。? [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列 〈X k 1有极限 则称迭代方程收敛,且X* =?(x*)为?(X )的不动点 故称 X k q 二(X k ), k =0,1,2,...为不动点迭代法。 5?什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定 X k 1 二「(X k )(k =0,1,2,...)的收敛阶 P219 设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差 e k = x k - x *满足渐近关系式 —t C,C =const 式 0 e/ 则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。 以收敛阶的大小衡量收敛速度的快慢。 6?什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。 牛顿法: 当| f (X k )卜J 时收敛。 7?什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。 在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。就是弦截法。 收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量) 8?什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229 X - m X k 1 =X k f (X k ) f (X k )

数值计算方法教学大纲(本)

数值计算方法教学大纲(本) 本着“崇术重用、服务地方”的办学理念和我校“高素质应用型人才”的培养目标,特制定了适合我校工科专业本科生的新教学大纲。 一、课程计划 课程名称:数值计算方法Numerical Calculation Method 课程定位:数学基础课 开课单位:理学院 课程类型:专业选修课 开设学期:第七学期 讲授学时:共15周,每周4学时,共60学时 学时安排:课堂教学40学时+实验教学20学时 适用专业:计算机、电科、机械等工科专业本科生 教学方式:讲授(多媒体为主)+上机 考核方式:考试60%+上机实验30%+平时成绩10% 学分:3学分 与其它课程的联系 预修课程:线性代数、微积分、常微分方程、计算机高级语言等。 后继课程:偏微分方程数值解及其它专业课程。 二、课程介绍 数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。 数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要介绍插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、常微分方程数值解以及矩阵特征值与特征向量数值计算,并特别加强实验环节的训练以提高学生动手能力。通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 科学计算是21世纪高层次人才知识结构中不可缺少的一部分,它潜移默化地影响着人们的思维方式和思想方法,并提升一个人的综合素质。

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

常用数值计算方法及仿真软件简介a

1.1.1 常用数值计算方法 自1864年麦克斯韦建立电磁场基本方程以来,电磁波理论与应用的发展已经过了100多年的历史。对电磁分布边值问题的求解从图解、模拟、解析到目前所采用的数值计算方法,经历了四个过程。解析方法只能解决一些经典问题,具体到复杂的实际环境,往往需要通过数值解得到具体环境中的电磁波特性。随着高速和大容量计算机技术的飞速发展,电磁数值计算已经发展成为一门新兴的重要学科,已提出多种实用有效的求解麦克斯韦方程的数值方法,主要有矩量法(MOM)、有限元法(FEM)、有限积分法(FIT)、和时域有限差分法(FDTD)等。基于这些数值计算方法开发出了许多优秀的电磁仿真软件。 一个好的数值算法可以很接近地模拟出微波器件的特性,这对于工程设计和研究而言,可以避免很多次的“cut-and-try”(试凑),节省时间从而提高了效率。 求解电磁问题的最终要求就是获得满足实际条件的Maxwell方程的解,借助于计算数学中的数值算法能够得到大多数电磁问题的近似解。数值算法的基本思想就是把连续变量函数离散化,把微分方程化为差分方程;把积分方程化为有限和的形式,从而建立起收敛的代数方程组,然后利用计算机技术进行求解。 目前常见的几种数值分析方法如表错误!文档中没有指定样式的文字。-1 电磁数值算法分类所示。针对本论文所应用到的方法,下面简要叙述常用的几种数值方法及相应的商业软件。

1.1.1.1 有限元法 基于有限元方法(FEM)计算电磁问题,其基本构想是将由偏微分方程表征的连续函数所在的封闭场域划分成有限个小区域,每个小区域用一个选定的近似函数来代替,于是整个场域上的函数被离散化,由此获得一组近似的代数方程,并联立求解,以获得该场域中函数的近似数值。 广义的来说,三维麦克斯韦方程是三维电磁问题的三维支配方程,但是,一般情况下为了方便求解和建模,大多选取由麦克斯韦方程组的前两个旋度方程导出的电场强度满足矢量亥姆赫兹方程作为支配方程。如Ansoft HFSS 软件[i]的支配方程为: 2010r r E k E εμ??????-= ??? (错误!文档中没有指定样式的文字。-1) 由变分原理,上式的泛函可以写为: ()()() 201r r F E E E k E E d εμΩ??=????????-?Ω???? (错误!文档中没有指定 样式的文字。-2) 将这一个三维问题的泛函通过多面体离散成单元小矩阵,矩形块、四面体和六面体等都可以被选用做基本的离散单元,但是,不同离散单元对于有限元运算的精度、速度和内存需求都有不同。Ansoft HFSS 软件采用四面体作为基本离散单元,如图 错误!文档中没有指定样式的文字。-1所示,并选用上一世纪80 年代以后才被应用于电磁学中的棱边元作为矢量基函数。 假设图 错误!文档中没有指定样式的文字。-1所示的四面体内的未知函数e φ能够近似为 z d y c x b a e e e e e +++=φ (错误!文档中没有指定样式的文 字。-3)

计算数学简介

计算数学简介 一、什么是计算数学 现代的科学技术发展十分迅速,他们有一个共同的特点,就是都有大量的数据问题。比如,发射一颗探测宇宙奥秘的卫星,从卫星试制开始到发射、回收为止,科学家和工程技术人员、工人就要对卫星的总体、部件进行全面的设计和生产,要对选用的火箭进行设计和生产,这里面就有许许多多的数据要进行准确的计算。发射和回收的时候,又有关于发射角度、轨道、遥控、回收下落角度等等需要进行精确的计算。又如,在高能加速器里进行高能物理试验,研究具有很高能量的基本粒子的性质、它们之间的相互作用和转化规律,这里面也有大量的数据计算问题。 计算问题可以说是现代社会各个领域普遍存在的共同问题,工业、农业、交通运输、医疗卫生、文化教育等等,那一行那一业都有许多数据需要计算,通过数据分析,以便掌握事物发展的规律。 研究计算问题的解决方法和有关数学理论问题的一门学科就叫做计算数学(computational mathematics)。随着计算机的问世到当前状况,计算数学已经从数值分析(numerical analysis)、科学与工程计算(scientific and engineering computing)发展到二十一世纪的计算科学(computational sciences)阶段。 计算数学属于应用数学的范畴,它主要研究有关的数学和逻辑问题怎样由计算机加以有效地解决。科学计算的兴起是20世纪后半叶最重要的科技进步之一。计算与理论及实验相并列,已经成为当今世界科学活动的第三种手段。 二、计算数学的内容 计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。 我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代数方程的解,一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方程等等也只能采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题。 在求解方程的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的。迭代法还可以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比较古老的普通消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。 在计算方法中,数值逼近也是常用的基本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表示的函数。数值逼近的基本方法是插值法。初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。 在遇到求微分和积分的时候,如何利用简单的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法也是近似解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,目前常用的是有限差分法、有限元素法等。 有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程和定解条件。求出差分方程的解法作为求偏微分方程的近似解。有限元素法是近代才发展起来的,它是以变分原理和区域剖分插值作为基础的方法。在解决椭圆型方程边值问题

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

数值计算方法与算法第三版答案 数值计算方法学习指导书

数值计算方法与算法第三版答案数值计算方法学习指导书 数值计算方法学习指导书是怎么样的?以下是小编分享给大家的数值计算方法学习指导书简介的资料,希望可以帮到你! 数值计算方法学习指导书内容简介 《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个MAT1AB计算机仿真实验。 数值计算方法学习指导书目录 绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构

2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换 3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(IIR)数字滤波器的设计5.1 学习要点 5.2 例题

5.3 教材习题解答 第6章有限长单位冲激响应(FIR)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于MATLAB的上机实验指导 9.1 常见离散信号的MATLAB产生和图形显示 9.2 信号的卷积、离散时间系统的响应

相关文档