文档库 最新最全的文档下载
当前位置:文档库 › MLCC内部结构:由陶瓷介质体、内电极和外电极三部分构

MLCC内部结构:由陶瓷介质体、内电极和外电极三部分构

MLCC内部结构:由陶瓷介质体、内电极和外电极三部分构

MLCC内部结构:由陶瓷介质体、内电极和外电极三部分构

金属陶瓷

金 属 陶 瓷 材 料 2014级材料一班 王倩文 1430140512

目录 一、金属陶瓷的定义 (3) 二、金属陶瓷的特点 (4) 1.金属对陶瓷相的润湿性好。 (4) 2.金属相与陶瓷相应无剧烈的化学反应 (4) 3.金属相与陶瓷相的膨胀系数相差不会过大 (4) 三、金属陶瓷的行业现状 (5) 1.中国硬质合金工业产业分布、生产企业和研发机构 (5) 2.碳化钛基金属陶瓷 (5) 2.1 切削加工领域的应用 (6) 2.2 航天航空工业方面的应用 (6) 2.3 其他方面的应用 (7) 3.碳氮化钛基金属陶瓷 (8) 3.1 Ti(C,N)基金属陶瓷组分和成分设 (8) 3.2 晶粒细化 (9) 3.3 Ti(C,N)基金属陶瓷的应用 (9) 4.三元硼化物金属陶瓷 (10) 四、金属陶瓷的发展趋势 (11) 1.新材料的研究与开发。 (11) 2.超细晶粒和纳米级金属陶瓷。 (12) 3.梯度金属陶瓷的应用开发。 (12) 4.金属陶瓷回收再利用问题。 (12) 5.基础研究的发展。 (13)

材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 一、金属陶瓷的定义 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该

陶瓷电容及其介质

贴片电容贴片电容(单片陶瓷电容器)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 封装DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 封装DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U 电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下 Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。

金属陶瓷材料

金属陶瓷材料

[长春工业大学] 金属陶瓷材料读书笔记 090201 20090516 胡冰 2013/3/14 摘要:介绍了Ti(C,N)基金属陶瓷的基本组成和结构,其组织性能及其影响因素,综述了Ti(C,N)基金属陶瓷的研究现状,指出了未来的发展方向和应用。

Ti(C,N)基金属陶瓷的基础研究与进展 前言 TiC—Ni金属陶瓷最早出现在1929年,作为WC—Co合金的替代材料,主要用于切削加工[1]。Ti(C,N)基金属陶瓷是1931年发明的[2]。1956年,美国福特汽车公司Humenik发现在TiC—Ni基金属陶瓷中加入Mo后,可以改善Ni对TiC的润湿性,大大提高合金强度[3]。1971年Kiefer发现在TiC —Ni基金属陶瓷中引入N,并同时加入Mo2C和Mo粉,可使其获得更高的硬度、耐磨性、抗弯强度,较好的切削性能和抗氧化能力。此后,Ti(C,N)基金属陶瓷的研究越来越多。因此国内外对Ti(C,N)基金属陶瓷非常重视,进行深入系统的研究。自2O世纪8O年代以来,Ti(C,N)基金属陶瓷获得了迅速的发展,世界各国硬质合金厂先后推出了系列的Ti(C,N)基金属陶瓷刀具[4]。 3O多年来,随着粉末冶金技术的发展,成分的演化趋于稳定,烧结技术的不断更新,粉末粒径的不断细化,Ti(C,N)基金属陶瓷的机械性能不断提高,Ti(C,N)基金属陶瓷发展到一个比较成熟的阶段。在日本,Ti(C,N)基金属陶瓷刀具材料已占可转位刀片的30%。我国在“八五”期间也研制成功多种牌号的Ti(C,N)基金属陶瓷刀具,并批量上市,但性能不稳定[5]。 Ti(C,N)基金属陶瓷作为一种新型的工具材料,具有密度低、室温硬度和高温硬度都优于WC基硬质合金,化学稳定性和抗氧化性好,耐磨性好等优点。其应用填补了WC硬质合金和陶瓷刀具之间高速精加工和半精加工的空白,既适用于高速精加工,又适用于半精加工和间断切削加

碳陶刹车片

优点在1999 年法兰克福国际汽车交易会(IAA)上,碳陶刹车片首次被揭开了神秘的面纱。高科技材料的使用彻底颠覆了传统的刹车片技术:与传统的灰铸铁刹车片相比,碳陶刹车片的重量减轻了大约50%,非悬挂质量减轻了近20千克。碳陶刹车片更显著的优点还有:刹车反应速度提高且制动衰减降低、热稳定性高、无热振动、踏板感觉极为舒适、操控性能提升、抗磨损性高等等。因此,碳陶刹车片的使用寿命更长,而且几乎不会产生灰尘。最初,保时捷公司于2001年将碳陶刹车片作为配套设备装配在911 GT2型跑车上。此后,其他知名品牌汽车也陆续开始通过采用这一创新型刹车技术来提高车辆安全性并改善踏板舒适度。其中包括汽车制造商生产的奥迪、宾利、布加迪和兰博基尼等跑车与豪华汽车。 材料碳陶刹车片的一个显著特征是它是采用陶瓷复合材料制造而成。碳陶刹车片本身及两侧的摩擦层均由碳纤维增强碳化硅材料制成。主要基体成分有碳化硅(SiC)和工业硅(Si)。碳纤维(C)增强了材料的强度。主要基体成分碳化硅决定着复合材料的硬度。碳纤维的作用是提高材料的机械强度并为材料提供技术应用中所需的断裂韧度。陶瓷复合材料的同韧性剪切断裂特性为其抗高热负载和机械负载性能提供了保障。因此,碳纤维增强碳化硅材料完美结合了碳纤维增强碳(C/C)和多晶碳化硅陶瓷这两者的物理特性。C/SiC 材料的拉断伸长率从0.1% 到0.3% 不等。这对于陶瓷材料而言是极高的数值。正因为具有这些特征,碳纤维增强碳化硅才成为高性能刹车制动系统的首选材料:尤其是较轻的重量、良好的硬度、高压和高温条件下的稳定性、抗热冲击性和同韧性剪切断裂特性等特点延长了碳陶刹车片的使用寿命,并避免了传统灰铸铁刹车片因负载而产生的所有问题。 碳/碳-碳化硅复合材料(碳陶C/C-SiC) 汽车刹车片 碳/碳-碳化硅复合材料是碳纤维增强碳和碳化硅陶瓷基体复合材料,最早在20世纪80年代作为热结构材料出现,具有密度低、抗氧化性能好、耐腐蚀、优异的高温力学性能和热物理性能、良好的自润滑性能等优点,是一种能满足1650℃使用的新型高温结构材料和功能材料。作为刹车材料不仅具有碳盘密度小、刹车平稳,磨损失重率小、热容量大等优势,而且克服了碳盘吸湿性大、湿态摩擦系数低、静摩擦系数低、适应性差的不足,因此美军率先在F16战机上应用,效果良好。美国四大摩擦材料公司(Aircraft Braking Systems,Goodrich,

第六章 金属、玻璃、陶瓷材料

第六章 金属、玻璃、陶瓷包装材料及容器 第一节金属包装材料与容器 金属材料(metal m aterial )用于食品包装有近200年的历史,是现代最重要的四大包装材料之一。 金属包装材料以金属板或箔材为原材料,再加工成各种形式的容器来包装食品。 金属包装材料的性能 1、高阻隔性能;阻隔气、汽、水、油、光的透过 2、优良的机械性能;抗拉、抗压、抗弯、韧性及硬度 3、容器成型加工性好且生产效率高 4、具有良好的耐高低温性, 良好的导热性、耐热冲击性 5、表面装饰性好 6、包装废弃物易回收处理。 缺点:化学稳定性差,不耐酸碱腐蚀; 价格较贵;重量较大。 食品包装常用金属材料主要分类 1 、钢基包装材料 镀锡薄钢板(马口铁)、镀铬薄钢板(TFS 板)、 涂料板、镀锌板、不锈钢板。 2 、铝质包装材料 铝合金薄板、铝箔、铝丝等。 一、镀锡薄钢板(马口铁tinplate ) 镀锡薄钢板是低碳薄钢板表面镀锡而制成的产品,简称镀锡板,俗称马口铁板。它大量用于制造包装食品的各种容器,也可为其他材料制成的容器配制容器盖或底。 镀锡板由五部分组成,由内向外依次为钢基板、锡铁合金层、锡层、氧化膜和油膜组成。 (一)镀锡薄钢板(马口铁tinplate )) 镀锡薄钢板结构组成

T 50 可塑性好,用于拉伸容器如拉伸罐罐身。 T 52 拉伸性能中等,稍有刚性用于盖、圆环、螺旋盖、一次拉伸罐 T 57 刚性好,可用于大直径瓶盖、皇冠盖。T61 刚性稍高,可用于较大容器罐身、罐盖、罐底。 T 65 刚性高,可用于三片罐的罐身、罐盖、罐底。T 70 刚性很强,用于罐底、盖。 镀锡薄钢板的性能与使用 镀锡板由于露铁点等因素,具有的耐腐蚀性有时不能满足某些食品的需要,采用镀锡板上涂覆涂料,将食品与镀锡板隔离,以减少它们的接触反应。如富 含蛋白质的鱼、肉食品在高温加热中蛋白质分解产生硫化氢对镀锡罐产生化学腐蚀作用,与露铁点发生作 用形成硫化铁,将对食品产生污染;高酸性食品对罐壁腐蚀产生氢胀和穿孔;有色果蔬因罐内壁溶出二价锡离子的作用将发生褪色现象等等。 (二)涂料镀锡板 镀铬板是由钢基板、铬层、水合氧化铬层和油膜构成。 (一)镀铬薄钢板TFS (tin of free steel ) 二、无锡薄钢板 各层成分成分厚度性能特点 油膜 水合氧化铬层金属铬层 钢基板葵二酸二辛酯 水合氧化铬金属铬低碳钢 22mg/m 27.5~27mg/m 2 32.3~140mg/m 2制罐用0.2~0.3mm 防锈、润滑 保护金属铬层,便于涂料和印铁,防止产生孔眼 有一定腐蚀性,但比纯锡差 提供板材必须的强度,加工 性良好 镀铬板各层厚度、成分及性能特点 镀铬薄钢板性能与使用 (1)机械性能与镀锡钢板相差不大;(2)耐腐蚀性 有较好的耐腐蚀性,但比镀锡板稍差。 (3)加工性能镀铬板不能锡焊,制罐时接缝需采用熔接或黏结。适宜用于制造罐底、盖和两片罐。(4)价格便宜镀铬板加涂料后具有的耐腐蚀性比镀锡板高,价格便宜低10%左右,具有较好的经济性,其使用量逐渐扩大。

碳陶刹车系统

“引擎的轰鸣声刺痛着我们的耳膜,全身的细胞被调动起来,完全的置身于速度带来的激情中。”这是很多喜欢看一级方程式赛车比赛的人们的真实体验。“好马配好鞍”也在追求速度的顶级跑车上得到了完美的体现。今天“材料+”小编就给大家说说这个碳陶刹车系统。 碳陶刹车系统 碳陶汽车刹车片首次被揭开神秘的面纱,是在1999 年法兰克福国际汽车交易会(IAA)上。高科技新材料的使用彻底颠覆了传统的汽车刹车片技术:与传统的灰铸铁刹车片相比,碳陶刹车片的重量减轻了大约60%,非悬挂质量减轻了近23公斤。碳陶刹车片更显著的优点还有:刹车反应速度提高且制动衰减降低、热稳定性高、无热振动、踏板感觉极为舒适、操控性能提升、抗磨损性高等等。因此,碳陶刹车片的使用寿命更长,而且几乎不会产生灰尘。最初,保时捷公司于2001年将碳陶刹车片作为配套设备装配在911 GT2型跑车上,911 C4S从2002年11月提供选配,其他知名品牌汽车也陆续开始通过采用这一创新型刹车技术来提高车辆安全性并改善踏板舒适度。其中包括Mercedes-Benz的CL55 AMG、奥迪W12 & S8、宾利、布加迪和兰博基尼等跑车与豪华汽车,Ford等也计划使用同类产品。 碳陶刹车系统的一个显著特征是它是采用陶瓷复合材料制造而成。碳陶刹车片本身及两侧的摩擦层均由碳纤维增强碳化硅材料制成。主要基体成分有碳化硅(SiC)和工业硅(Si)。碳纤维(C)增强了材料的强度。主要基体成分碳化硅决定着复合材料的硬度。碳纤维的作用是提高材料的机械强度并为材料提供技术应用中所需的断裂韧度。陶瓷复合材料的同韧性剪切断裂特性为其抗高热负载和机械负载性能提供了保障。因此,碳纤维增强碳化硅材料完美结合了碳纤维增强碳(C/C)和多晶碳化硅陶瓷这两者的物理特性。碳陶材料的拉断伸长率从0.1% 到0.3% 不等。这对于陶瓷材料而言是极高的数值。正因为具有这些特征,碳纤维增强碳化硅才成为高性能刹车制动系统的首选材料:尤其是较轻的重量、良好的硬度、高压和高温条件下的稳定性、抗热冲击性和同韧性剪切断裂特性等特点延长了碳陶刹车片的使用寿命,并避免了传统灰铸铁刹车片因负载而产生的所有问题。 根据数据统计采用碳陶刹车盘,顶级跑车从时速300km/h 制动至静止,只需 4 秒钟的刹车时间,刹车过程中的重力加速度可超过5 G。而从200km/h 制动至静止,只需要 2.9秒,刹车距离只需65 米。从100km/h 制动至静止,只需 1.4 秒,以及17 米的刹车距离。值得一提的是,再次期间刹车的瞬时温度也会达到1200℃左右。能够耐如此的高温,且具有高的摩擦系数,这也是碳陶刹车盘的奇迹所在。 虽然碳陶的性能很是优异,但是由于我国碳陶材料研究起步晚,技术相对落后,碳陶刹车盘的性能跟国外还是有一定的差距的。但是碳陶材料本身,我国已经有比较成熟的技术了,完整的生产线,稳定的生产产品。比如西安鑫垚陶瓷复合材料有限公司、湖南博望碳陶有限公司、河南泛锐复合材料研究院就是主要的碳陶生产厂商。

金属陶瓷

金属陶瓷材料 一、金属陶瓷的定义 材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 图1 金属陶瓷复合材料性能图

1、金属陶瓷的概念 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该归入“金属陶瓷”,IE. Campbell就将“硬质合金”归入到“金属陶瓷”。 2、金属陶瓷的历史 WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRA80~92),极高的抗压强度6000MPa(600kg/mm2),已经应用于许多领域。但是由于W和Co资源短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代:第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。又通过添加Co相和其他元素改善了粘结相。近年来,金属陶瓷研制的另一个新方向是硼化物基金属陶瓷。由于硼化物陶瓷具有很高的硬度、熔点和优良的导电性,耐腐蚀性,从而使硼化物基金属陶瓷成为最有发展前途的金属陶瓷。 3、金属陶瓷的设计 为了使金属陶瓷同时具有金属和陶瓷的优良特性,首先必须有一个理想的组织结构,要达到理想的组织结构,得注意以下几个主要原则: (1)金属对陶瓷相的润湿性要好。金属与陶瓷颗粒间的润湿能力是衡量金属陶瓷组织结构与性能优劣的主要条件之一。润湿能力愈强,则金属形成连续相的可能性愈大,金属陶瓷的性能愈好。

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

陶瓷电容器的特性及选用

陶瓷电容器的特性及选用 陶瓷电容器是目前电子设备中使用最广泛的一种电容器,占整个电容器使用数量的50%左右,但由于许多人对其特性了解不足导致在使用上缺乏应有的重视。为达到部品使用的规范化和标准化要求,下面对陶瓷电容器的特性及我司使用中需要注意的事项做一概况说明: 一、陶瓷电容器特性分类: 陶瓷电容器具有耐热性能好,绝缘性能优良,结构简单,价格低廉等优点,但不同陶瓷材料其特性有非常大的差异,必须根据使用要求正确选用。陶瓷电容按频率特性分有高频瓷介电容器(1类瓷)和低频瓷介电容器(2类瓷);按耐压区分有高压瓷介电容器(1KV DC以上)和低压瓷介电容器(500V DC以下),现分述如下: 1.高频瓷介电容器(亦称1类瓷介电容器) 该类瓷介电容器的损耗在很宽的范围内随频率的变化很小,并且高频损耗值很小,(tanδ≤0.15%,f=1MHz),最高使用频率可达1000MHz以上。同时该类瓷介电容器温度特性优良,适用于高频谐振、滤波和温度补偿等对容量和稳定度要求较高的电路。其国标型号为CC1(低压)和CC81(高压),目前我司常用的温度特性组别有CH(NP0)和SL 组,其常规容量范围对应如下: 表中温度系数α C =1/C(C 2 -C 1 /t 2 -t 1 )X106(PPM/°C),是指在允许温度范围内,温度每变 化1°C,电容量的相对变化率。由上表看出,1类瓷介电容器的温度系数很小,尤其是CH特性,因此也常把1类瓷介电容器中CH电容称为温度补偿电容器。但由于该类陶瓷材

料的介电常数较小,因此其容量值难以做高。因此当需要更高容量值的电容时,则只能在下面介绍的2类瓷介电容中寻找。 2、低频瓷介电容器(亦称2类瓷介电容器) 该类瓷介电容的陶瓷材料介电常数较大,因而制成的电容器体积小,容量范围宽,但频率特性和温度特性较差,因此只适合于对容量、损耗和温度特性要求不高的低频电路做旁路、耦合、滤波等电路使用。国标型号为CT1(低压)和CT81(高压),其常用温度特性组别和常规容量范围对应如下: 中2R组为低损耗电容,由于其自身温升小,频率特性较好,因而可以用于频率较高的场合。 对低压瓷介电容,当容量大于47000pF时,则只能选择3类瓷介电容器(亦称半导体瓷介电容器),例如:我司大量使用的26-ABC104-ZFX,但该类电容温度特性更差,绝缘电阻较低,只是因高介电材料,体积可以做得很小。因此只适用要求较低的工作电路。如选用较大容量电容,而对容量和温度特性又有较高使用要求,则应选用27类有机薄膜电容器。 3、交流瓷介电容器 根据交流电源的安全性使用要求,在2类瓷介电容器中专门设计生产了一种绝缘特性和抗电强度很高的交流瓷介电容器,亦称Y电容,按绝缘等级划分为Y1、Y2、Y3三大系列,其用途和特性分类如下:

勒马碳陶产品工艺介绍

LeMyth used material is an advanced Carbon Fiber Reinforced Ceramic (CFRC) which is produced by LeMyth's proprietary processes, transforming Carbon-Carbon into our Carbon-Silicon Carbide (CSiC) ceramic. 勒马产品所使用的材料是一种先进的陶瓷增强型碳纤维材料,这种材料是通过勒马公司所拥有的工艺制造出来,该工艺能将碳纤维材料转化为我们的碳陶复合材料。 Whilst the carbon-ceramic discs you find on production road cars conventionally use discontinuous (chopped) carbon fiber, LeMyth interweaves continuous carbon fiber to form a 3D multi-directional matrix, producing a stronger and more durable product with 3x the heat conductivity of standard production components; this keeps the brake system temperature down and the brake performance consistent. 同时,在马路上您所看到的车辆使用的碳陶刹车盘产品通常使用的较短的短碳纤维,而勒马公司使用的是连续的长碳纤维以及3D多维编织方法,生产出性能更强大更耐用的刹车盘产品,并且其导热能力是普通刹车产品的三倍;高效的导热能力能保证制动系统拥有快速降温能力和持久一致性的制动能力。 LeMyth has developed unique patented next-generation Carbon-Ceramic Technology that provides the ultimate braking performance for road and track. Here are just seven reasons why you need this technology on your vehicle – 勒马公司研发出拥有唯一专利的新一代的碳陶材料科技,该技术能够提供最顶级的制动性能产品。以下列出了您的车辆需要这种技术的几个原因- ?Weight savings of up to 70% compared to iron brakes (typically 20kg of unsprung weight) ?相比铸铁刹车盘产品,重量减轻至少70%(典型的非悬挂重量减轻20KG)?? ?Improved handling and drivability ?更好的操控性和驾驶灵活性 ?Improved NVH (less noise, vibration and harshness) ?更好的刹车体感(无噪音;更少振动;更平顺) ?Improved performance (in both wet and dry conditions) ?绝佳的制动性能(包括干、湿不同条件) ?Reduced brake wear – giving increased life ?更少的制动磨损—更长使用周期 ?Corrosion Free ?耐腐蚀 ?Outstanding performance, even from cold ?非凡的制动表现,即使是在寒冷地带 For further technical information, you can read about Niche Vehicle Network funded project to develop a ceramic replacement for an iron brake disc on the BAC-Mono Supercar PROCESS 制程 LeMyth uses a unique patented process to produce its carbon-ceramic material, whilst we can’t tell you all our secrets we can give you an overview of how the discs are made – 勒马公司使用唯一专利性的制程来制作我们的碳陶复合材料。向您简单介绍一下我们的刹车盘产品是如何制作出来的-- Stage 1 - Carbon Fiber Preformed 第一步- 碳纤维预制体部件

贴片电容的介质分类(按温度稳定性)COG_X7R_Y5V_X5R_NPO

贴片电容COG,X7R,Y5V,X5R,NPO介质区别 这个是按美国电工协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能用级(Ⅲ)的介质材料Y5V。 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。 COG,X7R,X5R,Y5V均是电容的材质,几种材料的温度系数和工作范围是依次递减的,不同材质的频率特性也是不同的。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一 NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%, NPO(COG) 多层片式陶瓷电容器,它只是一种电容 COG(Chip On Glass)即芯片被直接邦定在玻璃上。这种安装方式可以大大减小LCD模块的体积,且易于大批量生产,适用于消费类电子产品的LCD,如:手机,PDA等便携式产品,这种安装方式,在IC生产商的推动下,将会是今后IC与LCD 的主要连接方式。 相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二 X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。

碳陶复合材料项目可行性研究报告

碳陶复合材料项目可行性研究报告 泓域咨询丨规划设计·投资分析

第一章项目绪论 一、项目名称及建设单位 (一)项目名称 碳陶复合材料项目 (二)项目建设单位 某某有限公司 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在某某工业园区。 (二)项目用地性质及用地规模 1、该项目计划在某某工业园区建设,用地性质为工业用地。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积133334.0 平方米(折合约200.0 亩),代征地面积1200.0 平方米,净用地面积132134.0 平方米(折合约198.2 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照碳陶复合材料行业生产规范和要求进行科学设计、合理

布局,符合碳陶复合材料制造和经营的规划建设需要。 (三)项目用地控制指标 1、该项目实际用地面积132134.0 平方米,建筑物基底占地面积90644.0 平方米,计容建筑面积149179.3 平方米,其中:规划建设生产车间121299.0 平方米,仓储设施面积16648.9 平方米(其中:原辅材料库房10042.2 平方米,成品仓库6606.7 平方米),办公用房5813.8 平方米,职工宿舍3303.4 平方米,其他建筑面积(含部分公用工程和辅助工程)2114.2 平方米;绿化面积8720.8 平方米,场区道路及场地占地面积32769.2 平方米,土地综合利用面积132134.0 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3342.0 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目建设的理由 “中国制造2025”的主攻方向是智能制造,智能制造的核心

金属陶瓷复合材料的应用

金属陶瓷复合材料的应用 我公司提供以下热喷涂技术服务:修复各类设备主轴、曲轴以及所有轴的轴颈、轴承档、油封档、键槽的磨损、拉伤等缺陷。“锅炉四管”(水冷壁管、过热器管、预热器管和省煤器管)喷涂防护、循环硫化床锅炉、膜式壁热喷涂防护、风机叶片、拉丝塔轮、拨丝缸、水轮机的导风叶、水轮机叶片的迷宫环等部件的防汽蚀、防磨处理。大型液压油缸的陶瓷涂覆活塞杆和液压缸以及位置测量成套系统、化工泵中往复泵柱塞陶瓷涂层、机械密封环和轴套表面喷涂、陶瓷蝶阀密封面喷涂代替镶圈结构、高参数球阀喷涂陶瓷、在石油、天然气勘测和钻采过程中所用设备的关键部件如钻头、轴、轴套、灌浆泵等表面热喷涂防护。 在塑料工业设备中,塑料挤出机螺杆、塑料切碎机喷嘴、塑料薄膜生产辊。冶金工业中,连续退火炉辊、张紧辊和偏转器辊自清理炉辊、热浸镀锌用沉没辊、稳定辊等先进涂层。热轧无缝管顶头的表面强化涂层、铜合金热挤压模具强化涂层。在化纤工业中,各种槽辊、锭杯、牵伸辊、导丝辊、表面陶瓷涂层、造纸烘缸表面防腐防磨防护、上光砑光棍、纸浆真空吸水箱板、印刷工业中铸铁印刷滚表面喷涂防护、陶瓷网纹辊、电晕辊。 在玻璃工业中,铜电板的抗高温氧化保护涂层、喂料柱塞和喂料管、内燃机燃烧室的热障陶瓷涂层(汽缸盖底面、活塞底面、活塞顶面、汽门全部底面缸套、活塞环、水泵动密封环、气门顶杆、增压器涡轮) 热喷涂涂层工业应用介绍 随着涂层新材料和新工艺的不断涌现,热喷涂涂层已在国民经济各个工业部门广泛地应用。加之现代计算机技术、传感测试技术、自动化及机器人技术、真空技术与热喷泉涂技术的结合和渗透,使得热喷涂技术的深入发展和工业规模化生产均有大幅度的进步和提高。对未来热喷涂发展的方向以及市场与工业规模的预测为:技术附加值高、效益好的如生物工程,航空航天,工、模具,电子工业等,但规模相对较小;要求成本低的大规模产业如汽车工业和钢结构,但技术附加值低;应用面最广的仍是机械工业,包括石油化工、轻纺、能源、冶金、航空、汽车等也均属此范畴。 热喷涂技术能赋予各类机械产品,特别是关键零部件许多特种功能涂层,形成复合材料结构具有的综合作用,真正做到了“ 好钢用在刀刃上” ,是材料科学表面技术发展的一个方向。但热喷涂技术仅通过涂层在机械产品基体表面获得一定的特殊功能,而不能代替基材或提高产品的结构性能。 钢铁长效防腐蚀涂层 由于锌、铝、锌铝、铝镁涂层的电极电位均负于钢铁,故对钢铁结构能起到阴极保护作用。从20世纪40年代起,国外已将它们喷涂于钢铁构件上作为长效抗腐涂层。国内自70年代起开始推广应用,迄今成功的实例不胜枚举。目前大面积钢结构喷涂锌、铝涂层一般采用电弧喷涂工艺,局部辅助以氧乙炔火焰线材喷涂补遗。现在国内每年采用热喷涂大面积施工工程均在数百万平方米以上。

无机非金属材料导论期末论文

无机非金属材料导论期末论文 王继阁无机非1009404094 一、课程内容总结 全书一共分为八章内容,前两章从物理、化学角度介绍无机非金属材料的微观结构,以及热学、力学、电磁学等方面性能的知识,从而为下面章节知识的展开作下了铺垫。3~4章介绍了从一般无机非金属材料:陶瓷、玻璃、水泥,到6~7章的特殊无机非金属材料:耐火材料、无机非金属复合材料,最后一章介绍了新型无机非金属材料:功能无机非金属材料。 无机非金属的结构在课程旳学习中,陶瓷一般分为传统陶瓷和新型陶瓷,最主要的区别是新型陶瓷是具有特殊的功能的陶瓷。陶瓷制备过程包括原料的制备、成坯、烧结等步骤。陶瓷的性能取决于结构组织,通过合理的制作工艺,可以做到对产品的结构进行一定程度的控制。也是由于传统陶瓷结构的疏松,而决定了其大多应用于建筑上对材料要求不高的领域。而新型陶瓷因其取材种类的繁多、制备工艺的突破而实现了各种性能及应用范围。在氧化物陶瓷中有氧化铝陶瓷、氧化铍、氧化钙、氧化锆、钛酸钙、钛酸镁、钛酸钡。非氧化物陶瓷则包括金刚石和石墨、碳化硅、氮化硅、氮化硼等。 玻璃的狭义定义是熔融物冷却过程中不发生结晶的无机物质。所以玻璃无晶体结构,不具有各向异性的特点。玻璃形成的方法有1.熔体冷却法2.气相冷却法3.固态法4溶郊凝胶法。对于玻璃的结构理论存在很多说法,有无序密堆硬球模型、无规则线团模型、晶子模型、无规则网络模型、玻璃结构近程有序论。我们最常见的硅酸岩玻璃是传统氧化物玻璃的一种,其他有硼酸盐玻璃,磷酸盐玻璃,锗酸盐玻璃。传统的玻璃已经不能满足现实的需要,而以重金属为基础组分形成的非传统氧化物玻璃满足了其在其他方面的需要。 以及玻璃中的非氧化物玻璃、微晶玻璃、金属玻璃。 对于水泥这一章节,介绍了水泥的原料及化学反应机理,水泥的生产工艺及流程。并举例硅酸三、二钙,硅酸三钙、铁铝酸四钙,玻璃相方面介绍了硅酸盐水泥的结构特征。硅酸盐水泥的水化和硬化,研究的是水泥调配和使用过程中的化学反应过程。对于其它品种的水泥,相铝酸盐水泥、硫铝酸盐水泥、氟铝酸盐水泥已经超越了传统水泥的在很在硬化时间,硬化强度等方面。 第六章介绍了耐火材料,耐火材料从不同的角度有不同的分类方法。从耐火材料的组成可以分为,硅质制品,镁质制品、铬质制品、碳质制品、锆质制品等。耐火材料主要成份为sio2,除此以外,还有一些杂质及添加成分以降低烧成温度。耐火材料的性能很大程度上取决于耐火材料的组织结构,材料中的气孔密度,体积密度,真密度,透气度都是表征材料的重要参数。 定型耐火材料包含了硅质耐火材料、硅酸铝制耐火材料,碱性耐火制品。特种制品,熔铸制品。及不定型耐火材料等。 第七章介绍了无机非金属符合材料,无机复合材料即两种或两种以上的化学性质相同的组成的材料。无机复合材料由基体和增强体组成。一般增强方法为纤维增韧和颗粒增韧。按照属性又可分为金属纤维增强材料,无机非金属增强材料。颗粒增强无机非金属基符合材料,金属陶瓷复合材料、碳陶复合材料。 第八章介绍了功能无机非金属材。功能无机非金属材料及在光电磁热等

贴片电容COG、NPO、X7R、Y5V、X5R介质区别

贴片电容COG NPO、X7R Y5V X5R介质区别 在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V, COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。 这个是按美国电工协会(EIA )标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能用级(川)的介质材料丫5V。 这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不 同的值也对应着一定的电容容量的范围。具体来说,就是:X7R常用于容量为 3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0 °C变化为70 °C时,电容容量的变化为土15%; Y5P与丫5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为土10%或者+22%/-82%。对于其他的编码与温度特性的关系,大家可以参考表4-1。例如,X5R的意思就是该电容的正常工作温度为-55 ° C~+85 ° C,对应的电容容量变化为土15%。 下面我们仅就常用的NPO、X7R、Z5U和丫5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,

其他公司的产品请参照该公司的产品手册。NPO、X7R、Z5U和Y5V的主要区 别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质 是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定 的电容器之一。在温度从-55 C到+125 C时容量变化为0 ± 30ppm/ C电容量随频率的变化小于土0.3 INPO电容的漂移或滞后小于土0.05%相对大于土2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于土0.13NPO电容器随封装形式不同其电容量和介质损耗随频 率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合

电解电容与陶瓷电容两种电容的不同作用

电解电容与陶瓷电容:两种电容的不同作用 电解电容与陶瓷电容一般用在IC的电源与地之间,起滤波作用,陶瓷电容单独使用去耦作用,它的使用一般在IC中会有说明,其电解值的大小与IC所需电流大小有关,陶瓷取0.01uf。 电解电容 陶瓷电容 ? 如果我要用别的电容替代某个电容的时候,是必须容量和耐压值都要满足吗有的时候,发现很难两全其美。这时候能不能舍弃其中之一呢

滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢是因为器件对电流的需求随着驱动的需求快。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 电解电容的作用和使用注意事项 一、电解电容在电路中的作用 1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰. 2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。 二、电解电容的判断方法

相关文档