文档库 最新最全的文档下载
当前位置:文档库 › 半导体物理问答题

半导体物理问答题

半导体物理问答题
半导体物理问答题

第一篇 习题 半导体中的电子状态

1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为

[])sin(3.0)cos(1.01)(0ka ka E k E --=

其中E 0=3eV ,晶格常数a=5х10-11m 。求:

(1) 能带宽度;

(2) 能带底和能带顶的有效质量。

第一篇 题解 半导体中的电子状态

1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下:

A 、荷正电:+q ;

B 、空穴浓度表示为p (电子浓度表示为n );

C 、E P =-E n

D 、m P *=-m n *。

1-4、 解:

(1) Ge 、Si:

a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;

b )间接能隙结构

c )禁带宽度E g 随温度增加而减小;

(2) GaAs :

a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;

b )直接能隙结构;

c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;

1-5、 解:

(1) 由题意得:

[][])sin(3)cos(1.0)cos(3)sin(1.0022

2

0ka ka E a k d dE ka ka aE dk dE

+=-=

eV

E E E E a k

d dE a k E a k

d dE a k a k a k ka tg dk dE o

o

o o 1384.1min max ,

01028.2)4349.198sin 34349.198(cos 1.0,4349.198,

01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.183

1

,0400222

2400222

121=-=??=+====∴==--则能带宽度对应能带极大值。

当对应能带极小值;

当)(得令

(2)

()()

()()

()

()??????????-=??????????-=?????????? ??=?=??????????=?????????? ??=----------kg k d dE h m kg k d dE h m k n k n 27

1234

401

222*271234401

222*10925.110625.61028.2110925.110625.61028.2121带顶带底则

答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27

kg ,能带底部电子的有效质量约为-1.925x10-27kg 。

第二篇 习题-半导体中的杂质和缺陷能级

2-1、什么叫浅能级杂质?它们电离后有何特点?

2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体。

2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。

2-5、两性杂质和其它杂质有何异同?

2-6、深能级杂质和浅能级杂质对半导体有何影响?

2-7、何谓杂质补偿?杂质补偿的意义何在?

第二篇题解半导体中的杂质与缺陷能级

2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,

并同时向导带提供电子或向价带提供空穴。

2-2、解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。

施主电离成为带正电离子(中心)的过程就叫施主电离。

施主电离前不带电,电离后带正电。例如,在Si中掺P,P为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si 的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。这个过程就是施主电离。

n型半导体的能带图如图所示:其费米能级位于禁带上方

2-3、解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。

受主电离成为带负电的离子(中心)的过程就叫受主电离。

受主电离前带不带电,电离后带负电。

例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P 掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。这个过程就是受主电离。

p型半导体的能带图如图所示:其费米能级位于禁带下方

2-4、解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。掺杂半导体又分为n型半导体和p型半导体。

例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为 2.25╳104cm-3。半导体中的多数载流子是电子,而少数载流子是空穴。

2-5、解:两性杂质是指在半导体中既可作施主又可作受主的杂质。如Ⅲ-Ⅴ族GaAs中掺Ⅳ族Si。如果Si替位Ⅲ族As,则Si为施主;如果Si替位Ⅴ族Ga,则Si为受主。所掺入的杂质具体是起施主还是受主与工艺有关。

2-6、解:深能级杂质在半导体中起复合中心或陷阱的作用。

浅能级杂质在半导体中起施主或受主的作用。

2-7、当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。

利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。

第三篇习题-半导体中载流子的统计分布

3-1、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。即E Fn>E Fi。

3-2、试分别定性定量说明:

(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;

(2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。

3-3、若两块Si样品中的电子浓度分别为2.25×1010cm-3和6.8×1016cm-3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。假如再在其中都掺入浓度为2.25×1016cm-3的受主杂质,这两块样品的导电类型又将怎样?

3-4、含受主浓度为8.0×106cm-3和施主浓度为7.25×1017cm-3的Si材料,试求温度分别为300K和400K时此材料的载流子浓度和费米能级的相对位置。

3-5、试分别计算本征Si 在77K 、300K 和500K 下的载流子浓度。 3-6、Si 样品中的施主浓度为4.5×1016cm -3,试计算300K 时的电子浓度和空穴浓度各为多少?

3-7、某掺施主杂质的非简并Si 样品,试求E F =(E C +E D )/2时施主的浓度。

第三篇 题解 半导体中载流子的统计分布

3-1、证明:设n n 为n 型半导体的电子浓度,n i 为本征半导体的电子浓度。显然

n n > n i

i

n i n F F F c c F c c E E T k E E N T k E E N >???

?

??--?>???? ??--?则即00exp exp

得证。

3-2、解:

(1) (1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需

的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。 由公式

T

k E v c i g e

N N n 02-

=

也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。

(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而

增加。由公式 可知,这时

3-3、解:由 2

00i n p n =

???

?

??--=???? ?

?--?=T

k E E N p T

k E E N n V F V F

c c 0000exp exp 和

()

()

()

()

????????≈??==?=??==

--3

316210022

023

101021001201103.3108.6105.1100.11025.2105.1cm n n p cm n n p i i

可见,

型半导体本征半导体n p n p n →>→≈02020101

又因为 T

k E E v v F e N p 00

--

=,则

??????

?+=???? ?????+=???? ???+=+≈????

?????+=???

? ???+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 3190202

10190101 假如再在其中都掺入浓度为2.25×1016cm -3

的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV 处;第一种半导体中的空穴的浓度为3.3x103cm -3,费米能级在价带上方0.331eV 处。掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

3-4、解:由于杂质基本全电离,杂质补偿之后,有效施主浓度 317*

1025.7-?≈-=cm N N N A D D

则300K 时,

电子浓度 ()3

1701025.7300-?=≈cm N K n D

空穴浓度 ()()

()

3

217

2

10001011.31025.7105.1300-?≈??==cm n n K p i

费米能级

()

eV

E E p N T k E E v v v V

F 3896.01011.3100.1ln 026.0ln 21900+=??

?

??????+=?

??

?

???+=

在400K 时,根据电中性条件 *

00D N p n += 和 2

0i p n p n = 得到

)

()

()

()

()

()

???

?????=??==?≈?+?+?-=++-=--3

1782132

03

82

13

2

1717

22*010249.7103795.1100.1103795.12

100.141025.71025.724*cm

p n n cm n N N p p i i D D

费米能级

()()

eV E E p K K K N T k E E v v p v v F 0819.01025.7300400101.1ln 026.0300400300ln 17

23

1923

0+=??????

???????????? ?????+=??

?

???

??????????? ????+=

答:300K 时此材料的电子浓度和空穴浓度分别为7.25 x1017cm -3和3.11x102cm -3,费米能级在价带上方0.3896eV 处;400 K 时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm -3和1.3795x108cm -3,费米能级在价带上方0.08196eV 处。

3-5、解: 假设载流子的有效质量近似不变,则

()()()()()

()

()()()

()

3

192

3192

3

3

182

3192

3

2

3

10367.2300500101.1300500300500104304.130077101.13007730077300300--?=??? ????=??? ???=?=??

? ????=??? ???=?

?

?

???=cm

K K K K K N K N cm

K K K K K N K N K T K N T N v v v v v v 则由

()()()()()

()()()()

(

)

3

192

3192

3

3

182

3192

3

2

3

10025.6300500108.230050030050010758.330077108.23007730077300300--?=??

? ????=??? ???=?=??

? ????=??? ???=?

?

?

???=cm

K K K K K N K N cm

K K K K K N K N K T K N T N c c c c c c 则由

()()()()()()()()()()()()()()eV T T E K E eV T T E K E eV T T E K E T T E T E g g g g g g g g 1059

.16365005001073.47437.005001615

.16363003001073.421.103002061

.1636

77771073.421.1077636

1073.402

422

422

4242

=+??-=+-==+??-=+-==+??-=+-==?=+-=----βαβαβαβαβ

α所以,且而

所以,由 T

k E v c i

g e N N n 02-=,有

()()()()()

()()()()()

(

)()()()()

????????

????≈????==?≈????==?≈????==-?????---?????--

--?????--------3145001038.1210602.11059.119192393001038.1210602.11615.119192320771038.1210602.12061.11818210669.110367.210025.6)500(105.3101.1108.2)300(10159.1104304.110758.3)77(233902339023

19

0cm e e N N K n cm e e N N K n cm e e N N K n T k E v c i T k E v c i T k E v c i g g g

答:77K 下载流子浓度约为 1.159×10-80cm -3

,300 K 下载流子浓度约为 3.5×109cm -3,500K 下载流子浓度约为1.669×1014cm -3。

3-6、解:在300K 时,因为N D >10n i ,因此杂质全电离

n 0=N D ≈4.5×1016cm -3

()

()

3

3162

1002

0100.5105.4105.1-?=??==cm

n n p i

答: 300K 时样品中的的电子浓度和空穴浓度分别是4.5×1016cm -3和5.0×103cm -3。

3-7、解:由于半导体是非简并半导体,所以有电中性条件

n 0=N D +

()c

D D C F V

D D C F T

k E E D T k E E c T

k E E D

T

k E E c N N E E E N N T k E E E e N

e N e N e

N F

D F

c F

D F c 221

2ln 21

22

12100000=+=???

?

????++=∴=+=

------

而即”可以略去,右边分母中的“施主电离很弱时,等式

答:N D 为二倍N C 。

第四篇

习题-半导体的导电性

4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。

4-2、何谓迁移率?影响迁移率的主要因素有哪些?

4-3、试定性分析Si 的电阻率与温度的变化关系。

4-4、证明当μn ≠μp ,且电子浓度p

n i n n μμ/0=,空穴浓度n p i n p μμ/0=时半导体的电导率有最小值,并推导min σ的表达式。

4-5、0.12kg 的Si 单晶掺有3.0×10-9kg 的Sb ,设杂质全部电离,试求出此材料的电导率。(Si 单晶的密度为2.33g/cm 3,Sb 的原子量为121.8)

第四篇 题解-半导体的导电性

4-1、解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。

4-2、解:迁移率是单位电场强度下载流子所获得的漂移速率。影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

4-3、解:Si 的电阻率与温度的变化关系可以分为三个阶段:

(1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以

忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。 (2) 温度进一步增加(含室温),电阻率随温度升高而升高。在这一温度范围

内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。

(3) 温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越多,

虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。

4-4、证明:

n

p i p

n i n

n n

p i p n n n dn

d p n n n d d dn

d n n p n n q q q i i i μμσσμμμμμμσμσσσσq 2//0

,00min 222

23

222====

==-

=>=

=有所以即

有极小值

故而有极值

得证。

4-5、解:

()

()()

()

31723

93

10881.2556.228.12110025.61000100.3502.5133

.21000

12.0--?≈????=∴=?=

cm N cm V Si D 的体积

故材料的电导率为

()()()11191704.2452010602.110579.6---Ω=????==cm nq n μσ

答:此材料的电导率约为24.04Ω-1cm -1。

第五篇 习题 非平衡载流子

5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?

5-2、漂移运动和扩散运动有什么不同?

5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?

5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?

5-5、证明非平衡载流子的寿命满足()τ

t

e p t p -?=?0,并说明式中各项的物理意义。

5-6、导出非简并载流子满足的爱因斯坦关系。

5-7、间接复合效应与陷阱效应有何异同?

5-8、光均匀照射在6cm ?Ω的n 型Si 样品上,电子-空穴对的产生率为4×

1021cm -3s -1,样品寿命为8μs。试计算光照前后样品的电导率。

5-9、证明非简并的非均匀半导体中的电子电流形式为

dx dE n j n F

n

μ=。

5-10、假设Si 中空穴浓度是线性分布,在4μm 内的浓度差为2×1016cm -3,试计算空穴的扩散电流密度。

5-11、试证明在小信号条件下,本征半导体的非平衡载流子的寿命最长。

第五篇 题解-非平衡载流子

5-1、解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。通常所指的非平衡载流子是指非平衡少子。

热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。

5-2、解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布引起的。

5-3、解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即

T k q D 0=

μ

5-4、答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。 平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。

5-5、证明:

()[]p p

dt t p d τ?=

?-

=非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流

时刻撤除光照如果在0=t

则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即

()[]()1?→??=?-p

p dt t p d τ

在小注入条件下,τ为常数,解方程(1),得到

()()()20?→??=?-p t

e p t p τ

式中,Δp (0)为t=0时刻的非平衡载流子浓度。此式表达了非平衡载流子随时间呈指数衰减的规律。

得证。

5-6、证明:假设这是n 型半导体,杂质浓度和内建电场分布入图所示

E 内

稳态时,半导体内部是电中性的,

Jn=0

()

10→=--x n n E nq dx dn q D μ

对于非简并半导体

()()()()()

()()()()

()

()()()()()()()()()()()()()()()T k q

D x n dx x dV D x n dx x dV D x n

E D dx x dn x n dx

x dV T k q dx x dn e

n e N x n x V q E x E n n n n n n x n n T

k x qV T

k E x E c c c F

c 00545143302000=?=→??=???? ??-????? ?

?-=??-=?→??=?

→?=?=→-+=--

μμμμ式式由由所以

这就是非简并半导体满足的爱因斯坦关系。

得证。

5-7、答:间接复合效应是指非平衡载流子通过位于禁带中特别是位于禁带中央的杂质或缺陷能级E t 而逐渐消失的效应,E t 的存在可能大大促进载流子的复合;陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级E t 中,使在E t 上的电子或空穴的填充情况比热平衡时有较大的变化,从引起Δn≠Δp ,这种效应对瞬态过程的影响很重要。此外,最有效的复合中心在禁带中央,而最有效的陷阱能级在费米能级附近。一般来说,所有的杂质或缺陷能级都有某种程度的陷阱效应,而且陷阱效应是否成立还与一定的外界条件有关。

5-8、解:光照前

()1100167.1611--?Ω≈==cm ρσ

光照后 Δp=G τ=(4×1021)(8×10-6

)=3.2×1017 cm -3 则()()()1119160051.3490106.1102.3167.1---?Ω=??+=???+=?+=cm q p p μσσσσ

答:光照前后样品的电导率分别为1.167Ω-1cm -1和3.51Ω-1cm -1。

5-9、证明:对于非简并的非均匀半导体

()()dx dn qD E nq j j j n

n n n +=+=μ漂扩

由于

()[]T

k E x qV E c n F c e

N n 00---

?=)

T k dx dE dx dV q n dx dn n

F 0+

?=

同时利用非简并半导体的爱因斯坦关系,所以

dx

dE

n T

k dx dE dx dV q n q T k q dx dV nq dx

dn

qD E nq j n

F

n n

F n n n

n ?=?????

? ?

?+

??+-=+=μμμμ00)()(

得证。

5-10、解:

()

()

(

)()

2

56

8

16

1919

190/1015.71041010

2106.110

602.1026.0055.0106.1m A dx

dp

q T k q dx

dp

qD j n p

p -----?-=?????

?

? ???????-=???

? ??-=-=μ扩

答:空穴的扩散电流密度为7.15╳10-5A/m 2

5-11、证明:在小信号条件下,本征半导体的非平衡载流子的寿命

()i rn p n r 21

100=

+≈τ 而 i n p n 2p n 20000=≥+

所以

i rn 21≤

τ

本征半导体的非平衡载流子的寿命最长。

得证。

半导体物理器件期末考试试题(全)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2015半导体物理器件期末考试试题(全) 半导体物理器件原理(期末试题大纲)指导老师:陈建萍一、简答题(共 6 题,每题 4 分)。 代表试卷已出的题目1、耗尽区:半导体内部净正电荷与净负电荷区域,因为它不存在任何可动的电荷,为耗尽区(空间电荷区的另一种称呼)。 2、势垒电容:由于耗尽区内的正负电荷在空间上分离而具有的电容充放电效应,即反偏 Fpn 结的电容。 3、Pn 结击穿:在特定的反偏电压下,反偏电流迅速增大的现象。 4、欧姆接触:金属半导体接触电阻很低,且在结两边都能形成电流的接触。 5、饱和电压:栅结耗尽层在漏端刚好夹断时所加的漏源电压。 6、阈值电压:达到阈值反型点所需的栅压。 7、基区宽度调制效应:随 C-E 结电压或 C-B 结电压的变化,中性基区宽度的变化。 8、截止频率:共发射极电流增益的幅值为 1 时的频率。 9、厄利效应:基带宽度调制的另一种称呼(晶体管有效基区宽度随集电结偏置电压的变化而变化的一种现象) 10、隧道效应:粒子穿透薄层势垒的量子力学现象。 11、爱因斯坦关系:扩散系数和迁移率的关系: 12、扩散电容:正偏 pn 结内由于少子的存储效应而形成的电容。 1/ 11

13、空间电荷区:冶金结两侧由于 n 区内施主电离和 p 区内受主电离

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 而形成的带净正电荷与净负电荷的区域。 14、单边突变结:冶金结的一侧的掺杂浓度远大于另一侧的掺杂浓度的 pn 结。 15、界面态:氧化层--半导体界面处禁带宽度中允许的电子能态。 16、平带电压:平带条件发生时所加的栅压,此时在氧化层下面的半导体中没有空间电荷区。 17、阈值反型点:反型电荷密度等于掺杂浓度时的情形。 18、表面散射:当载流子在源极和源漏极漂移时,氧化层--半导体界面处载流子的电场吸引作用和库伦排斥作用。 19、雪崩击穿:由雪崩倍增效应引起的反向电流的急剧增大,称为雪崩击穿。 20、内建电场:n 区和 p 区的净正电荷和负电荷在冶金结附近感生出的电场叫内建电场,方向由正电荷区指向负电荷区,就是由 n 区指向 p 区。 21、齐纳击穿:在重掺杂 pn 结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由 p 区的价带直接隧穿到 n 区的导带的现象。 22、大注入效应:大注入下,晶体管内产生三种物理现象,既三个效应,分别称为:(1)基区电导调制效应;(2)有效基区扩展效应; (3)发射结电流集边效应。 它们都将造成晶体管电流放大系数的下降。 3/ 11

半导体物理学试题库完整

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

半导体物理答案

一、选择 1.与半导体相比较,绝缘体的价带电子激发到导带所需的能量(比半导体的大); 2.室温下,半导体Si 掺硼的浓度为1014cm -3,同时掺有浓度为×1015cm -3的磷,则电子浓度约 为(1015cm -3 ),空穴浓度为(×105cm -3),费米能级为(高于E i );将该半导体由室温度升至 570K ,则多子浓度约为(2×1017cm -3),少子浓度为(2×1017cm -3),费米能级为(等于E i )。 3.施主杂质电离后向半导体提供(电子),受主杂质电离后向半导体提供(空穴),本征激发 后向半导体提供(空穴、电子); 4.对于一定的n 型半导体材料,温度一定时,减少掺杂浓度,将导致(E F )靠近E i ; 5.表面态中性能级位于费米能级以上时,该表面态为(施主态); 6.当施主能级E D 与费米能级E F 相等时,电离施主的浓度为施主浓度的(1/3)倍; 重空穴是指(价带顶附近曲率较小的等能面上的空穴) 7.硅的晶格结构和能带结构分别是(金刚石型和间接禁带型) 8.电子在晶体中的共有化运动指的是电子在晶体(各元胞对应点出现的几率相同)。 9.本征半导体是指(不含杂质与缺陷)的半导体。 10.简并半导体是指((E C -E F )或(E F -E V )≤0)的半导体 11.3个硅样品的掺杂情况如下: 甲.含镓1×1017cm -3;乙.含硼和磷各1×1017cm -3;丙.含铝1×1015cm -3 这三种样品在室温下的费米能级由低到高(以E V 为基准)的顺序是(甲丙乙) 12.以长声学波为主要散射机构时,电子的迁移率μn 与温度的(B 3/2次方成反比) 13.公式* /q m μτ=中的τ是载流子的(平均自由时间)。 14.欧姆接触是指(阻值较小并且有对称而线性的伏-安特性)的金属-半导体接触。 15.在MIS 结构的金属栅极和半导体上加一变化的电压,在栅极电压由负值增加到足够大的 正值的的过程中,如半导体为P 型,则在半导体的接触面上依次出现的状态为(多数载流子 堆积状态,多数载流子耗尽状态,少数载流子反型状态)。 16.在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带(曲率 小),对应的有效质量(大),称该能带中的空穴为(重空穴E )。 17.如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。 18.在通常情况下,GaN 呈(纤锌矿型 )型结构,具有(六方对称性),它是(直接带隙) 半导体材料。 19.同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0 值是乙的2倍,那么用类氢模型计算结果是(甲的施主杂质电离能是乙的32/9,的弱束缚 电子基态轨道半径为乙的3/8 )。 20.一块半导体寿命τ=15μs ,光照在材料中会产生非平衡载流子,光照突然停止30μs 后, 其中非平衡载流子将衰减到原来的(1/e 2)。 21.对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、 n i >> /N D -N A / 时,半导体具有 (本征) 半导体的导电特性。 22.在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向(Ev ) 移动;当掺杂浓度一定时,温度从室温逐步增加,费米能级向( Ei )移动。 23.把磷化镓在氮气氛中退火,会有氮取代部分的磷,这会在磷化镓中出现(产生等电子陷 阱)。 24.对于大注入下的直接复合,非平衡载流子的寿命不再是个常数,它与(非平衡载流子浓 度成反比)。 25.杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和

半导体物理学练习题(刘恩科)

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有: (4) (5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系 (1)

(2) 令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同? 7晶体体积的大小对能级和能带有什么影响? 8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量 描述能带中电子运动有何局限性? 9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么? 10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。”是否如此?为什么? 11简述有效质量与能带结构的关系? 12对于自由电子,加速反向与外力作用反向一致,这个结论是否适用于布洛赫电子? 13从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同? 14试述在周期性势场中运动的电子具有哪些一般属性?以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系? 15为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?16为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 17有两块硅单晶,其中一块的重量是另一块重量的二倍。这两块晶体价带中的能级数是否相等?彼此有何联系? 18说明布里渊区和k空间等能面这两个物理概念的不同。 19为什么极值附近的等能面是球面的半导体,当改变存储反向时只能观察到一个共振吸收峰? 第二章半导体中的杂质与缺陷能级 例1.半导体硅单晶的介电常数=11.8,电子和空穴的有效质量各为= 0.97, =0.19和=0.16,=0.53,利用类氢模型估计: (1)施主和受主电离能; (2)基态电子轨道半径 解:(1)利用下式求得和。

半导体物理课后习题解答

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????= ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理练习题

一、选择填空(含多项选择) 1. 与半导体相比较,绝缘体的价带电子激发到导带所需的能量() A. 比半导体的大 B. 比半导体的小 C. 与半导体的相等
2. 室温下,半导体 Si 掺硼的浓度为 1014cm-3,同时掺有浓度为 1.1×1015cm-3 的磷,则电子浓度约为(),空穴浓度为(),费米能级();将该半导体升温至 570K,则多子浓度约为(),少子浓度为(),费米能级()。(已知:室温下,ni ≈1.5×1010cm-3,570K 时,ni≈2×1017cm-3) A. 1014cm-3 C. 1.1×1015cm-3 E. 1.2×1015cm-3 G. 高于 Ei I. 等于 Ei 3. 施主杂质电离后向半导体提供(),受主杂质电离后向半导体提供(),本征 激发后向半导体提供()。 A. 空穴 B. 电子 B. 1015cm-3 D. 2.25×1015cm-3 F. 2×1017cm-3 H. 低于 Ei
4. 对于一定的半导体材料, 掺杂浓度降低将导致禁带宽度 () 本征流子浓度 , () , 功函数()。 A. 增加 B. 不变 C. 减少
5. 对于一定的 n 型半导体材料,温度一定时,较少掺杂浓度,将导致()靠近 Ei。 A. Ec B. Ev C. Eg D. Ef
6. 热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与()有关,而与 ()无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度
7. 表面态中性能级位于费米能级以上时,该表面态为()。

A. 施主态
B. 受主态
C. 电中性
8. 当施主能级 Ed 与费米能级 Ef 相等时,电离施主的浓度为施主浓度的()倍。 A. 1 B. 1/2 C. 1/3 D. 1/4
9. 最有效的复合中心能级位置在()附近;最有利陷阱作用的能级位置在()附 近,常见的是()的陷阱 A. Ea B. Ed C. E D. Ei E. 少子 F. 多子
10. 载流子的扩散运动产生()电流,漂移运动长生()电流。 A. 漂移 B. 隧道 C. 扩散
11. MIS 结构的表面发生强反型时,其表面的导电类型与体材料的(),若增加掺 杂浓度,其开启电压将()。 A. 相同 二、思考题 1. 简述有效质量与能带结构的关系。 2. 为什么半导体满带中的少量空状态可以用带有正电荷和具有一定质量的空穴来 描述? 3. 分析化合物半导体 PbS 中 S 的间隙原子是形成施主还是受主?S 的缺陷呢? 4. 说明半导体中浅能级杂质、深能级杂质的作用有何不同? 5. 为什么 Si 半导体器件的工作温度比 Ge 半导体器件的工作温度高?你认为在高 温条件下工作的半导体应满足什么条件工厂生产超纯 Si 的室温电阻率总是夏天低, 冬天高。试解释其原因。 6. 试解释强电场作用下 GaAs 的负阻现象。 7. 稳定光照下, 半导体中的电子和空穴浓度维持不变, 半导体处于平衡状态下吗? 为什么? 8. 爱因斯坦关系是什么样的关系?有何物理意义? B. 不同 C. 增加 D. 减少

半导体物理学题库20121229

1.固体材料可以分为 晶体 和 非晶体 两大类,它们之间的主要区别是 。 2.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半 导体称 N 型半导体。 3.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 。前者在 电离施 主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 4.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载 流子将做 漂移 运动。 5.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末, 为非 简并条件; 为弱简并条件; 简并条件。 6.空穴是半导体物理学中一个特有的概念,它是指: ; 7.施主杂质电离后向 带释放 ,在材料中形成局域的 电中心;受主杂质电离后 带释放 , 在材料中形成 电中心; 8.半导体中浅能级杂质的主要作用是 ;深能级杂质所起的主要作用 。 9. 半导体的禁带宽度随温度的升高而__________;本征载流子浓度随禁带宽度的增大而__________。 10.施主杂质电离后向半导体提供 ,受主杂质电离后向半导体提供 ,本征激发后向半导体提 供 。 11.对于一定的n 型半导体材料,温度一定时,较少掺杂浓度,将导致 靠近Ei 。 12.热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与 和 有关,而与 、 无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度 12. 指出下图各表示的是什么类型半导体? 13.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不 变 ;当温度变化时,n o p o 改变否? 改变 。 14.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命 τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 15. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子 运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 16.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 17.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主 要作用 对载流子进行复合作用 。

半导体物理习题答案

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: ?????????????????????????????????????????? (1)同理,-K状态电子的速度则为: ????????????????????????????????????????(2)从一维情况容易看出:??????? ????????????????????????????????????????????????????????(3)同理有:????????????????????????????? ????????????????????????????????????????????????????????(4)???????????????????????????????????????????????????????? ?????????????????????(5) 将式(3)(4)(5)代入式(2)后得: ??????????????????????????????????????????(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关系??????????????????? ??????????????????????????????????????????????? (1) ????????????????????????????????????(2)令???得:????? 当时,代入(2)得: 对应E(k)的极小值。 ?当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度????????? (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理习题与问题

半导体物理习题与问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有:(4 )(5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几

率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系(1) (2)令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。

故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。 5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。

(完整word版)半导体物理填空题——武汉理工

1.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放电子。这种杂质称施主杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。其运动速度正比于 电场 ,比例系数称为 迁移率 。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合效应 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关。 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是q T k D n n 0=μ,称为关爱因斯坦关系式。 6.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末,T k E E F C 02>-为非简并条件; T k E E F C 020<-<为弱简并条件;0≤-F C E E 为简并条件。 9.以长声学波为主要散射机构时,电子迁移率与温度的-3/2次方成正比。 10.半导体中载流子的扩散系数决定于其中的载流子的浓度梯度。 11.电子在晶体中的共有化运动指的是电子不在完全局限在某一个原子上,而是可以从晶胞中某一点自由移动到其它晶胞内的对应点,因而电子可以在整个晶体中运动。 12.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 13.半导体中掺杂浓度很高时,杂质电离能 增大 ,禁带宽度 减小。 14.简并半导体一般是 重掺杂半导体,这时 电离杂质 对载流子的散射作用不可忽略。 15.处在饱和电离区的N 型Si 半导体在温度升高后,电子迁移率会 下降/减小 ,电阻率会上升/增大。 16.电子陷阱存在于 P/空穴 型半导体中。 17.随温度的增加,P 型半导体的霍尔系数的符号 由正变为负 。 18.在半导体中同时掺入施主杂质和受主杂质,它们具有 杂质补偿 的作用,在制造各种半导体器件时,往往利用这种作用改变半导体的导电性能。 19.ZnO 是一种宽禁带半导体,真空制备过程中通常会导致材料缺氧形成氧空位,存在氧空位的ZnO 半导体为 N/电子 型半导体。 20.相对Si 而言,InSb 是制作霍尔器件的较好材料,是因为其电子迁移率较 高/大 。 21.掺金工艺通常用于制造高频器件。金掺入半导体Si 中是一种 深能级 杂质,通常起 复合中心的作用,使得载流子寿命减小。 22. 有效质量 概括了晶体内部势场对载流子的作用,可通过回旋共振实验来测量。 23.某N 型Si 半导体的功函数W S 是4.3eV ,金属Al 的功函数W m 是4.2 eV , 该半导体和金属接触时的界面将会形成 反阻挡层接触/欧姆接触 。 24.有效复合中心的能级位置靠近 禁带中心能级/本征费米能级/E i 。 26.金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电子势垒高度将降低,空间电荷区宽度将相应地(减少/变窄/变薄)。 27.硅的导带极小值位于布里渊区的 <100>方向上,根据晶体的对称性共有 6 个等价能谷。n 型硅掺砷后,费米能级向 Ec(上) 移动,如升高材料的工作温度,则费米能级向 Ei(下)移动。 28.波尔兹曼分布函数为 ???? ??--≈???? ??-+=T k E E T k E E E f F F 00exp exp 11 )( 29.对于导带为多能谷的半导体,如GaAs ,当能量适当高的子能谷的曲率较 小 时,有可能观察导负微分电导现象,这是因为这种子能谷中的电子的有效质量较 大 。 30.复合中心的作用是促进电子和空穴的复合,起有效的复合中心的杂质能级必须位于Ei (禁带中线),并且对电子和空穴的俘获系数r n 和r p 必

半导体物理试题汇总

半导体物理学考题 A (2010年1月)解答 一、(20分)简述下列问题: 1.(5分)布洛赫定理。 解答:在周期性势场中运动的电子,若势函数V(x)具有晶格的周期性,即:)x (V )na x (V =+, 则晶体中电子的波函数具有如下形式:)x (u e )x (k ikx =ψ,其中,)x (u k 为具有晶格周期性的函数,即:)x (u )na x (u k k =+ 2.(5分)说明费米能级的物理意义; 试画出N 型半导体的费米能级随温度的变化曲线。 解答: 费米能级E F 是反映电子在各个能级中分布情况的参数。 能量为E F 的量子态被电子占据的几率为1/2。 N 型半导体的费米能级随温度变化曲线如右图所示:(2分) 3、(5分)金属和N 型半导体紧密接触,接触前,二者的真空能级相等,S M W W <。试画出金属— 半导体接触的能带图,标明接触电势差、空间电荷区和内建电场方向。 解答: 4.(5分)比较说明施主能级、复合中心和陷阱在半导体中的作用及其区别。 解答: 施主能级:半导体中的杂质在禁带中产生的距离能带较近的能级。可以通过杂质电离过程向半导体导带提供电子,因而提高半导体的电导率;(1分) 复合中心:半导体中的一些杂质或缺陷,它们在禁带中引入离导带底和价带顶都比较远的局域化能级,非平衡载流子(电子和空穴)可以通过复合中心进行间接复合,因此复合中心很大程度上影响着非平衡载流子的寿命。(1分) 陷阱:是指杂质或缺陷能级对某一种非平衡载流子的显著积累作用,其所俘获的非平衡载流子数目可以与导带或价带中非平衡载流子数目相比拟。陷阱的作用可以显著增加光电导的灵敏度以及使光电导的衰减时间显著增长。(1分) 浅施主能级对载流子的俘获作用较弱;有效复合中心对电子和空穴的俘获系数相差不大,而且,其对非平衡载流子的俘获几率要大于载流子发射回能带的几率。一般说来,只有杂质的能级比费米能级离导带底或价带顶更远的深能级杂质,才能成为有效的复合中心。而有效的陷阱则要求其对电子和空穴的俘获几率必须有很大差别,如有效的电子陷阱,其对电子的俘获几率远大于对空穴的俘获几率,因此才能保持对电子的显著积累作用。一般来说,当杂质能级与平衡时费米能级重合时,是最有效的陷阱中心。(2分) C E v E x FN E FM E i E eV E C E i E d E V E T () 型N E F

半导体物理习题与解答

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 诺 编 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温

度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q; B、空穴浓度表示为p(电子浓度表示为n); C、E P=-E n D、m P*=-m n*。 1-4、解: (1)Ge、Si: a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV; b)间接能隙结构 c)禁带宽度E g随温度增加而减小; (2)GaAs: a)E g(300K) 第二篇习题-半导体中的杂质和缺陷能级 诺编 2-1、什么叫浅能级杂质?它们电离后有何特点? 2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。

半导体物理综合练习题(1)

1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 解:在一定温度下,价带电子获得足够的能量(≥E g)被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 2、试指出空穴的主要特征。 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q; B、空穴浓度表示为p(电子浓度表示为n); C、E P=-E n D、m P*=-m n*。 3、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 4、简述Ge、Si和GaAS的能带结构的主要特征。 解: (1)G e、Si:

a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV; b)间接能隙结构 c)禁带宽度E g随温度增加而减小; (2)G aAs: a)E g(300K)= 1.428eV,Eg (0K) = 1.522eV; b)直接能隙结构; c)Eg负温度系数特性:dE g/dT = -3.95×10-4eV/K; 5、什么叫浅能级杂质?它们电离后有何特点? 解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。它们电离后将成为带正电(电离施主)或带负电(电离 受主)的离子,并同时向导带提供电子或向价带提供空穴。 6、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。 解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。 施主电离成为带正电离子(中心)的过程就叫施主电离。 施主电离前不带电,电离后带正电。例如,在Si中掺P,P 为Ⅴ族元素, 本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。这个过程就是施主电离。 n型半导体的能带图如图所示:其费米能级位于禁带上方

半导体物理试题

姓名:班级:学号: 密封线请在本线宽度范围内出题 新余学院 2010--2011学年 第二学期 新能源科学与工程学 院 09级光伏专业各班 《半导体物理与器件(闭卷)》期末试卷A卷出卷人:刘 坚批准人: 一、单项选择题(本题总分30分,每题3分) 1、本征半导体是指______的半导体。 A、不含杂质与缺陷 B、电子密度与空穴密度相等 C、电阻率最高 D、电子密度与本征载流子密度相等 2、在晶体硅中掺入元素______杂质后,能形成N型半导体。 A、锗 B、磷 C、硼 D、锡 3、300K下,硅本征载流子浓度是______cm-3。 A、2.33×1013 B、1.02×1010 C、 1.1×107 D、3.9×1018 4、电子在导带能级中分布的概率表达式是。 A、 B、 C、 D、 A、杂质电离,本征激发 B、本征激发,杂质电离 C、施主电离,本征激发 D、本征激发,受主电离 6、硅导带结构为。 A、位于第一布里渊区内沿<100>方向的6个球形等能面 B、一半位于第一布里渊区内沿<111>方向的6个球形等能面 C、一半位于第一布里渊区内沿<111>方向的8个椭球等能面 D、位于第一布里渊区内沿<100>方向的6个椭球等能面 7、一般半导体它的价带顶位于,而导带底位于。( )

A、波矢k=0或附近,波矢k≠0 B、波矢k≠0,波矢k=0或附近 C、波矢k=0,波矢k≠0 D、波矢k=0或附近,波矢k≠0 或k=0 8、杂质对于半导体导电性能有很大影响,下面哪两种杂质分别 掺杂在硅中能显著地提高硅的导电性能()。 A、硼或铁 B、铁或铜 C、硼或磷 D、金或银 9、本征半导体费米能级的表达式是。 A、 B、 C、 D、 10、一般可以认为,在温度不很高时,能量大于费米能级的量子态 基本上,而能量小于费米能级的 量子态基本上为,而电子占据费米能级的概率在各种温度下总是,所以费米能级的位置 比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。 A、没有被电子占据,电子所占据1/2 B、电子所占据,没有 被电子占据1/2 C、没有被电子占据,电子所占据1/3 D、电子所占据,没有 被电子占据1/3 二、名词解释(每题4分,共20分) 1、载流子的有效质量 2、有效态密度 第1页(共2页) 密封线请在本线宽度范围内出题 3、深能级杂质 4、费米能级 5、本征激发 三、简答题(每题6分,共30分) 1、从带隙及载流子占据的能级等方面说明导体、半导体和绝缘

相关文档