文档库 最新最全的文档下载
当前位置:文档库 › 线性规划知识点梳理

线性规划知识点梳理

线性规划知识点梳理
线性规划知识点梳理

高考数学丨线性规划知识点梳理

1目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。2可行域:约束条件表示的平面区域称为可行域。

3整点:坐标为整数的点叫做整点。

4线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。只含有两个变量的简单线性规划问题可用图解法来解决。

5整数线性规划:要求量整数的线性规划称为整数线性规划。

线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

1对于不含边界的区域,要将边界画成虚线。

2确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。若直线不过原点,通常选择原点代入检验。

3平移直线y=-kx+P时,直线必须经过可行域。

4对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。

5简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:

(1)寻找线性约束条件,线性目标函数;

(2)由二元一次不等于表示的平面区域做出可行域;

(3)在可行域内求目标函数的最优解。

一、

1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=0

2.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0

3.点P(x0+,y0)D在直线Ax0+y0+C=0下方(左下或右下),当B>0时,Ax0+y0+C<0;当B>0时,Ax0+y0+C>0

注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。

(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得实数的符号相反。

即:

1.点(P x1,y1)和Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>0

2.点(P x1,y1)和Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)<0

二、二元一次不等式表示平面区域:

①二元一次不等式Ax+By+C>0(或<)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域,不包括边界;

②二元一次不等式Ax+By+C≥0(≤0)在平面直角坐标系中表示直线Ax+By+C0

某一侧所有点组成的平面区域且包括边界;

注意:作图时,不包括边界画成虚线;包括边界画成实线。

三、判断二元一次不等式表示哪一侧平面区域的方法:

方法一:取特殊点检验:“直线定界、特殊点定域”

原因:由于对在直线Ax+By+C0的同一侧的所有点(x,y)把它的坐标系(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判Ax+By+C>0表示直线哪一侧的平面区域。特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

方法二:利用规律:

1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上),当B<0时表示直线Ax+By+C=0下方(左下或右下);

2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下)当B>0时表示直线Ax+By+C=0上方(左上或右上)。

四、线性规划的有关概念:

①线性约束条件:

②线性目标函数:

③线性规划问题:

④可行解、可行域和最优解:

典型例题——————画区域

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

不等式线性规划知识点梳理及经典例题及解析(良心出品必属精品)

线性规划讲义 【考纲说明】 (1)了解线性规划的意义、了解可行域的意义; (2)掌握简单的二元线性规划问题的解法. (3)巩固图解法求线性目标函数的最大、最小值的方法; (4)会用画网格的方法求解整数线性规划问题. (5)培养学生的数学应用意识和解决问题的能力. 【知识梳理】 简单的线性规划问题 一、知识点 1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析 线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给

一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线. 2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域. 4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点. 5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解. 积储知识: 一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=0 2. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<0 3. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>0

《简单的线性规划》知识点及题型归总

二元一次不等式(组)与简单的线性规划问题 一、考点、热点回顾 1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线. (2)对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域. 2.线性规划相关概念 名称意义 约束条件由变量x,y组成的一次不等式 线性约束条件由x,y的一次不等式(或方程)组成的不等式组 目标函数欲求最大值或最小值的函数 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解 可行域所有可行解组成的集合 最优解使目标函数取得最大值或最小值的可行解 线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题 3.重要结论 画二元一次不等式表示的平面区域的直线定界,特殊点定域: (1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线. (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 知识拓展 1.利用“同号上,异号下”判断二元一次不等式表示的平面区域 对于Ax+By+C>0或Ax+By+C<0,则有 (1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方; (2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方. 2.最优解和可行解的关系 最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 二、典型例题 例1、(1)分别画出不等式x+2y-4>0和y≥x+3所表示的平面区域;

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2 .线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10. 大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问 题呢? 11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续 第二阶段? 二、判断下列说法是否正确。 1 .线性规划问题的最优解一定在可行域的顶点达到。 2 .线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的 范围一般将扩大。 5 .线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与j 0对应的变量都可以被 选作换入变量。 8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一 个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k对应的变量x k作为换入变量,可使目 标函数值得到最快的减少。 10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形 表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1 .某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额 不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有 30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2 .某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将 l向右上方平移,过点A(2,0)时,有最小值 2,过点B(2,2)时,有最大值6,故选A 二、求可行域的面积

例2、不等式组 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个

解:|x|+|y|≤2等价于 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 ,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1

解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故 a=1,选D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13, D、 , 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题 【知识概述】 线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题. 解决线性规划的数学问题我们要注意一下几点 1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题; 2.解决线性规划问题需要经历两个基本的解题环节 (1)作出平面区域;(直线定”界”,特“点”定侧); (2)求目标函数的最值. (3)求目标函数z=ax+by最值的两种类型: ①0 b>时,截距最大(小),z的值最大(小); ②0 b>时,截距最大(小),z的值最小(大); 【学前诊断】 1.[难度] 易 满足线性约束条件 23, 23, 0, x y x y x y +≤ ? ?+≤ ? ? ≥ ? ?≥ ? 的目标函数z x y =+的最大值是() A.1 B.3 2 C.2 D.3 2.[难度] 易 设变量,x y满足约束条件 0, 0, 220, x x y x y ≥ ? ? -≥ ? ?--≤ ? 则32 z x y =-的最大值为( ) A.0 B.2 C.4 D.6

3. [难度] 中 设1m >,在约束条件1y x y mx x y ≥??≤??+≤? 下,目标函数z x my =+的最大值小于2,则m 的取 值范围为( ) A .(1,1 B .(1)+∞ C .(1,3) D .(3,)+∞ 【经典例题】 例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =+的最大值为( ) A.5 B.4 C.1 D.8 例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为( ) A.4 B.3 C.2 D.1 例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥??--≤??≥≥? ,若目标函数(0,0)z abx y a b =+>>的最小 值为8,则a b +的最小值为____________. 例4. 在约束条件下0,0,,24, x y x y s x y ≥??≥??+≤??+≤?当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )

二元一次方程简单的线性规划要点

§3.3.1二元一次不等式(组)与 平面区域(1) 1.了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 一、课前准备 复习1:一元二次不等式的定义_______________二元一次不等式定义________________________二元一次不等式组的定义_____________________ 复习2:解下列不等式: (1)210x -+>; (2)22320 41590 x x x x ?+-≥??-+>?? . 二、新课导学 ※ 学习探究 探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,30 40x x +>??-

并思考: 当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?_______________ 根据此说说,直线x-y=6左上方的坐标与不等式6x y -<有什么关系?______________ 直线x-y=6右下方点的坐标呢? 在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线x-y=6的_____;反过来,直线x-y=6左上方的点的坐标都满足不等式6x y -<. 因此,在平面直角坐标系中,不等式6x y -<表示直线x-y=6左上 方的平面区域;如图: 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图: 直线叫做这两个区域的边界 结论: 1. 二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2. 不等式中仅>或<不包括 ;但含“≤”“≥”包括 ; 同侧同号,异侧异号. ※ 典型例题 例1画出不等式44x y +<表示的平面区域. 分析:先画 ___________(用 线表示),再取 _______判断区域,即可画出. 归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0C ≠时,常把原点作为此特殊点. 变式:画出不等式240x y -+-≤表示的平面区域. 例2用平面区域表示不等式组312 2y x x y <-+??

人教版高中数学【必修五】[知识点整理及重点题型梳理]_简单的线性规划问题_提高

人教版高中数学必修五 知识点梳理 重点题型(常考知识点)巩固练习【巩固练习】 简单的线性规划问题 【学习目标】 1. 了解线性规划的意义,了解线性规划的基本概念; 2. 掌握线性规划问题的图解法. 3. 能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力. 【要点梳理】 要点一:线性规划的有关概念: 线性约束条件: 如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. 线性目标函数: 关于x 、y 的一次式(,)z f x y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. 线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解、可行域和最优解: 在线性规划问题中, ①满足线性约束条件的解(,)x y 叫可行解; ②由所有可行解组成的集合叫做可行域; ③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题. 要点二:线性规划的应用 1.线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出所有的限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清. 2.线性规划的理论和方法经常被用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.

相关文档
相关文档 最新文档