文档库 最新最全的文档下载
当前位置:文档库 › 第一章第三节化学键知识点归纳总结

第一章第三节化学键知识点归纳总结

第一章第三节化学键知识点归纳总结
第一章第三节化学键知识点归纳总结

第一章第三节化学键知识点归纳总结

https://www.wendangku.net/doc/e11464153.html,work Information Technology Company.2020YEAR

高中化学必修2知识点归纳总结

第一章物质结构元素周期律

第三节化学键

知识点一化学键的定义

一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子

或原子间的强烈的相互作用。

【对定义的强调】(1)首先必须相邻。不相邻一般就不强烈(2)只相邻但不强烈,也不叫化学键(3)“相互作用”不能说成“相互吸引”(实际既包括吸引又包括排斥)

一定要注意“相邻

..”和“强烈

..”。如水分子里氢原子和氧原子之间存在化学键,而两个氢原子之间及水分子与水分子之间是不存在化学键的。

二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。

三、类型:

离子键

化学键极性键

非极性键

知识点二离子键和共价键

一、离子键和共价键比较

化学键类型离子键共价键

概念阴、阳离子间通过静电作用所形成的化

学键

原子间通过共用电子对所形成的化学键成键微粒阴、阳离子原子

成键性质静电作用共用电子对

形成条件活泼金属与活泼非金属

a.IA、ⅡA族的金属元素与ⅥA、ⅦA

族的非金属元素。

b.金属阳离子与某些带电的原子团之

间(如Na+与0H—、SO

42-等)。

非金属元素的原子之间

某些不活泼金属与非金属之间。

形成示例共用电子对

存在离子化合物中非金属单质、共价化合物和部分离子化

合物中

作用力大小一般阴、阳离子电荷数越多离子半径越

小作用力越强

原子半径越小,作用力越强

与性质的关系

离子间越强离子化合物的熔沸点越高。

如:MgO>NaCl

共价键越强(键能越大),所形成的共

价分子越稳定,所形成的原子晶体的熔

沸点越高。如稳定性:H2O>H2S,熔沸

点:金刚石>晶体硅

实例NaCl、MgO Cl2、HCl、NaOH(O、H之间)

二、非极性键和极性键

非极性共价键极性共价键

概念同种元素原子形成的共价键不同种元素原子形成的共

价键,共用电子对发生偏

原子吸引电子能

相同不同

共用电子对不偏向任何一方偏向吸引电子能力强的原

形成条件由同种非金属元素组成由不同种非金属元素组成

通式及示例A—A、A==A、A≡A,如Cl-Cl、C=C、N≡N A—B、A==B、A≡B,如H-

Cl、C=O、C≡N

成键原子电性

成键原子不显电性,电中性显电性,吸引电子能力较

强的原子一方相对显负电

性存在

某金属单质中,某些共价化合物(如H2O2)中,

某些离子化合物(如Na2O2)中

共价化合物中,某些离子

化合物(如NH4Cl、

NaOH)中相互关系

知识点三离子化合物和共价化合物

项目离子化合物共价化合物

概念阴、阳离子间通过离子键结合形成的化

合物

不同元素的原子间通过共价键结合形成的

化合物

化合物中的

粒子

金属阳离子或NH4+、非金属阳离子或

酸根阴离子没有分子

分子或原子、没有离子

所含化学键离子键,还可能有共价键只含有共价键

物质类型活泼金属氧化物(过氧化物、超氧化

物)、强碱、大多数盐

非金属氧化物、非金属氢化物、含氧酸、

弱碱、少数盐大多数有机物

实例MgO、Na2O2、KO2、Ba(OH)2、MgSO4、

Kal(SO4)2.12H2O

CO2、SiO2、NH3、H2SO4、Al(OH)3、HgCl2、

C12H22O11

状态通常以晶体形态存在气态、液体或固态

导电性熔融状态能导电、易溶物质在水溶液里

能导电

熔融状态不导电,易溶物质在水溶液里可

能导电或不导电

类别强电解质强电解质、弱电解质或非电解质

熔融时

克服的

离子键分子间作用力或共价键

作用

熔沸点较高较低(如CO2)或很高(如SiO2)

(1)当一个化合物中只存在离子键时,该化合物是离子化合物(2)当一个化合中同时存在离子键

和共价键时,以离子键为主,该化合物也称为离子化合物(3)只有

..当化合物中只存在共价键时,该化合物才称为共价化合物。(4)在离子化合物中一般既含有金属元素又含有非金属元素;共价化合物一般只含有非金属元素(NH4+例外)

注意:(1)离子化合物中不一定含金属元素,如NH4NO3,是离子化合物,但全部由非金属元素组成。

(2)含金属元素的化合物不一定是离子化合物,如A1C1

3、BeCl

2

等是共价化合物。

二、化学键与物质类别的关系

化学键的种类实例

非金属单质无化学键稀有气体分子(单原子分子)He、Ne 非极性共价键O=O、Cl—Cl、H—H

共价化合物只有极性键H2O、CO2既有极性键又有非极性

H2O2

离子化合物只有离子键、离子键、极性共价键

离子键、非极性共价键

知识点四电子式和结构式的书写方法

一、电子式:

1.各种粒子的电子式的书写:

(1)原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。

例如:

(2)简单离子的电子式:

①简单阳离子:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。②简单阴离子:书写简单阴离子的电子式时不但要画出最

外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”电荷字样。例如:氧离子、氟离子。

③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。

例如:铵根离子、氢氧根离子。

(3)部分化合物的电子式:

①离子化合物的电子式表示方法:在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,离子化合物的电子式是由阳离子和带中括号的阴离子组成,且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。

如:。

②共价化合物的电子式表示方法:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。

如:

2.用电子式表示化学反应的实质:

(1)用电子式表示离子化合物的形成过程:

(2)用电子式表示共价化合物的形成过程:

说明:用电子式表示化合物的形成过程时要注意:

(1)反应物要用原子的电子式表示,而不是用分子或分子的电子式表示。用弯箭头表示电子的转移情况,而共价化合物不能标。

(2)这种表示化学键形成过程的式子,类似于化学方程式,因此,它要符合质量守恒定律。但是,用于连接反应物和生成物的符号,一般用“→”而不用“=”。

(3)不是所有的离子化合物在形成过程中都有电子的得失,如NH 4+与Cl -结合成NH 4Cl 的过程。

二、结构式:将分子中的共用电子对用短线表示,而反映分子中原子的排列顺序和结合方式的式子叫做物质的结构式。单双三键分别用—、=、≡表示。

知识点五 化学键与物质变化的关系

1. 与化学变化的关系

化学反应实质是旧化学键的断裂和新化学键的形成。任何反应都必然发生化学键的断裂和形成。 2. 与物理变化的关系

发生物理变化的标志是没有生成新物质可能伴随着化学键的断裂,但不会有新化学键的形成。物理变化的发生也可能没有化学键的断裂,只是破坏了分子之间的氢键或范德华力如冰的融化和干冰的气化。

知识点六 分

间作用力和氢键

一、 分子间作用力

⒈定义:分子之间存在一种把分子聚集在一起的作用力叫分子间作用力,又称范德华力. 2.主要特征:①广泛呢存在于分子之间。

②作用力的范围很小。当分子间距离为分子本身直径的4-5倍时候,作用力迅速减弱。 ③分子间作用力能量远远小于化学键。 ④范德华力无方向性和饱和性。 3.分子间作用力对物质性质的影响:

(1)分子间作用力越大,克服这种力使物质融化或汽化需要的能量越多,物质的熔沸点越高。

对组成相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点越高。

(2)溶质与溶剂间的分子作用力越大,溶质在该溶剂中的溶解度越大。如:CH4和H2O 分子间的作用力很小故CH4在水中的溶解度小。相似相溶规律:非极性溶质一般能溶于非极性溶剂;机型溶质一般能溶于极性溶剂。

二、氢键

1.定义:某些氢化物的分子之间存在着一种比分子间作用力稍强的相互作用,使它们只能在较高的温度下才能气化,这种相互作用叫做氢键。

化学键 分子间作用力 概念 相邻的原子间强烈的相互作用 物质分子间存在的微弱的相互作用

能量 较大 很弱 性质影响 主要影响物质的化学性质 主要影响物质的物理性质

常见易形成氢键的化合物:H2O、HF、NH3等.

2.特点①有方向性和饱和性。

②氢键的键能比化学键能小,比分子间作用力稍强。因此氢键不属于化学键,其强度比化学键弱得多,又不

属于分子间力(范德华力),但它比分子间作用力稍强。

3.氢键对物质性质的影响

(1)分子间氢键的形成使物质的熔沸点升高。因物质熔化或液体气化时必须要破坏氢键。如:H2O比同族H2S的熔沸点高

(2)分子间形成的氢键对物质的水溶性、溶解度等也有影响。如NH3极易溶于水,主要是氨分子与水分子之间已形成氢键。

(3)水中氢键对水的密度的影响:水结成冰时体积会

膨胀,密度减小。

【实验1-2】

钠和氯气反应实验的改进建议及说明:

1.教材中演示实验的缺点:(1)钠预先在空气中加

热,会生成氧化物,影响钠在氯气中燃烧;(2)预先收集的

氯气在课堂演示时可能不够;(3)实验过程中会产生少量污

染。

2.改进的装置(如图1-2)。

3.实验步骤:(1)取黄豆大的钠,用滤纸吸干表面的

煤油放入玻璃管中,按图示安装好;(2)慢慢滴入浓盐酸,

立即剧烈反应产生氯气;(3)先排气至管内有足够氯气时,

加热钠,钠熔化并燃烧。

4.实验现象:钠在氯气中剧烈燃烧,火焰呈黄色且有白烟,反应停止后,管壁上可观察到附着的白色固体。

5.改进实验的优点:(1)整个实验过程中氯气保持一定浓度和纯度,避免发生副反应。

(2)安全可靠,污染少。

6.实验条件控制:(1)高锰酸钾要研细;(2)盐酸质量分数为30%~34%。

第三节 化学键(最新版教案)

第三节化学键 一、离子键(第1课时) 使阴、阳离子结合成化合物时的静电作用,叫做离子键。 2Na+Cl2====2NaCl 二、电子式 注意: 1.离子须标明电荷; 2.相同的原子可以合并写,相同的离子要单个写; 3.阴离子要用方括号括起来; 4.不能把“→”写成“====”; 5.用箭头标明电子转移方向(也可不标)。 活动与探究 1.为什么NaCl中Na原子与Cl原子的个数比为1∶1,而Na2O中Na原子与O原子的个数比却是2∶1。 2.离子键的强弱与离子化合物性质的关系。 第三节化学键(第2课时) 三维目标 知识与技能:1.使学生理解共价键的概念,初步掌握共价键的形成,加深对电子配对法的理解。2.能较为熟练地用电子式表示共价分子的形成过程和分子结构。3.理解极性键、非极性键、化学键的概念。 过程与方法:1.通过对共价键形成过程的教学,培养学生抽象思维和综合概括能力。2.通过电子式的书写,培养学生的归纳比较能力,通过分子构型的教学培养学生的空间想像能力。 情感、态度与价值观:1.培养学生用对立统一规律认识问题。2.培养学生怀疑、求实、创新的精神。 教学重点:1.共价键和共价化合物的概念。2.用电子式表示共价化合物的形成过程。 教学难点:1.用电子式表示共化合物的形成过程;2.极性键与非极性键的判断

教具准备:多媒体课件、投影仪 教学过程 [新课导入]上节课我们介绍了化学键中的离子键,本节课我们再来认识另一种类型的化学键—共价键 板书二、共价键 [推进新课] 什么是共价键呢?我们初中所学的共价化合物的知识可以帮助我们找到答案。 请大家看以下实验,并描述实验现象。 [多媒体课件演示] 氢气在盛有氯气的集气瓶中燃烧。 板书 H2+Cl2====2HCl 板书原子之间通过共用电子对所形成的相互作用,叫做共价键。 师:氢原子与氯原子结合成氯化氢分子的过程,我们可用下列动画形象地表示出来。 师:从氯原子和氢原子的结构来分析,由于氯和氢都是非金属元素,不仅氯原子易得一个电子形成最外层8个电子的稳定结构,而且氢原子也易获得一个电子,形成最外层两个电子的稳定结构。这两种元素的原子获得电子难易的程度相差不大,所以相遇时都未能把对方的电子夺取过来。这两种元素的原子相互作用的结果是双方各以最外层一个电子组成一个电子对,电子对为两个原子所共用,在两个原子核外的空间运动,从而使双方最外层都达到稳定结构。这种电子对,就是共用电子对。共用电子对受两个核的共同吸引,使两个原子结合在一起。在氯化氢分子里,由于氯原子对于电子对的吸引力比氢原子的稍强一些,所以电子对偏向氯原子一方。因此,氯原子一方略显负电性,氢原子一方略显正电性,但作为分子整体仍呈电中性。以上过程也可以用电子式表示如下: 板书 师:为什么用电子式表示离子化合物与表示共价化合物有如此区别呢?这是因为在氯化氢分子中,共用电子对仅发生偏移,没有发生电子得失,未形成阴、阳离子,因此,书写共价化合物的电子式不能标电荷。而氯化钠形成过程中钠原子完全失去电子给氯原子形成钠离子和氯离子。因此两者电子式的表示是不同的,同学们要注意这点区别。 [多媒体展示]练习:用电子式表示下列共价化合物的形成过程。CO2、NH3、CH4 学生活动,教师巡视,并让三个同学到黑板上各写一个: 板书: 过渡:由以上分析可以知道,通过共用电子对可形成化合物的分子,那么,通过共用电子对,能不能形成单质的分子呢?下面,我们以氢分子为例,来讨论这个问题。 师:请大家用电子式表示氯气、氧气、氮气。 学生活动,教师巡视:对具有典型错误的写法进行分析、评价:

人教版 高中化学必修二第一章第三节化学键

化学键学案 【学习目标】 1.理解离子键的含义,了解离子键的形成条件。 2.能用电子式表示离子化合物的形成过程。 3.理解共价键、非极性键、极性键的含义。 4.能用电子式表示共价化合物的形成过程。 5.知道化学键的含义及其分类,并从化学键的角度认识化学变化的本质 【学习过程】 第一课时 一、离子键 1.钠与氯气反应实验: 实验现象及解释实验结论 钠在氯气中剧烈燃烧,产生色火焰(原因:金属钠与氯气剧烈反应,生成氯),集气瓶中有白烟生成(原化钠。 因: )。 2.用原子结构知识解释NaCl的形成过程 原子结构达到稳定结构离子结构NaCl形成过程 示意图的途径示意图 电子 Cl:得到Cl-: 电子 3、离子键概念:称为离子键。 思考:“相互作用”可以认为是相互吸引吗? 4、离子键成键微粒:阴阳离子 5、成键本质:静电作用 6、离子化合物: 由的化合物叫离子化合物。通常, 由形成。 (含金属元素的化合物不一定是离子化合物,如A1C1、BeCl等。) 32 思考:离子化合物中一定含金属元素吗? 注意:含有离子键的化合物均为离子化合物(如:铵盐、大多数金属化合物) 例1.下列化合物中有离子键的是() (1)KI(2)HBr(3)Na 2 SO 4 (4)NaOH(5)KNO 3 7、电子式 在化学反应中,一般是原子的电子发生变化,我们可以在元素符号周围用小 黑点(·或X)来代表原子的最外层电子,这种式子叫电子式。 例如:原子电子式: Na:失去Na+:阳离子电子式:阳离子的电子式一般是离子符号本身来表 示Na+Mg2+

阴离子电子式:阴离子的电子式要用方括号括起来并标明离子所带电荷 离子化合物的电子式:由阴、阳离子的电子式构成,但相同离子不能合并 AB 型 : AB 型: 2 A B 型: 2 ①用电子式表示原子或离子: 氟原子 钙原子 氢原子 氧原子 钙离子 铝离子 氯离子 硫离子 ②用电子式表示下列化合物:(注意相同的离子不能合并) NaCl : MgO Na 2S : MgCl 2 ③用电子式表示下列化合物的形成过程:离子化合物的形成过程,可用电子式表示 例:用电子式表示氯化钠的形成过程: 注意: 左边写原子的电子式,右边写化合物的电子式,中间用箭头连接,离子化合物还要 用箭头表示出电子的转移方向,不写反应条件。 练习:用电子式表示下列物质的形成过程 KBr : MgCl 2 : 第二课时 二、共价键 1、共价键的概念:原子之间通过共用电子对所形成的相互作用 叫做共价键。 2、共价键的成因:非金属元素的原子容易得电子,当非金属元素的原子间形成分子时 一般不发生电子的得失 ,通常通过形成共用电子对的方式结合。 3、成键本质: 共用电子对 4、共价化合物 以原子间以共用电子对所组成的化合物叫做共价化合物。如 H 0、C0 等。 2 2 注意: (1)只含有共价键的化合物属于共价化合物(即若存在离子键,就为离子化合物) (2)共价键存在于非金属单质的双原子分子、多原子分子中、共价化合物和某些离子 化合物中(如 NaOH 、Na 2O 2 ) (3)判断化合物是离子化合物还是共价化合物方法: 判断化合物中是否含有离子键, 如果有,则为离子化合物;如没有,则为共价化合物。 5、共价键的表示方法

化学键知识点

离子键 一离子键与离子化合物 1.氯化钠的形成过程: 2.离子键 (1)概念:带相反电荷离子之间的相互作用称为离子键。 (2)实质: (3)成键微粒:阴、阳离子。 (4)离子键的形成条件:离子键是阴、阳离子间的相互作用,如果是原子成离子键时,一方要容易失去电子,另一方要容易得到电子。 ①活泼金属与活泼的非金属化合时,一般都能形成离子键。如第IA、ⅡA族的金属元素(如Li、Na、K、Mg、Ca等)与第ⅥA、ⅦA族的非金属元素(如O、S、F、Cl、Br、I等)化合时,一般都能形成离子键。 ②金属阳离子与某些带负电荷的原子团之间(如Na+与OH-、SO4-2等)形成离子键。 ③铵根离子与酸根离子(或酸式根离子)之间形成离子键,如NH4NO3、NH4HSO4。 【注意】①形成离子键的主要原因是原子间发生了电子的得失。 ②离子键是阴、阳离子间吸引力和排斥力达到平衡的结果,所以阴、阳离子不会无限的靠近,也不会间距很远。 3.离子化合物 (1)概念:由离子键构成的化合物叫做离子化合物。 (2)离子化合物主要包括强碱[NaOH、KOH、B a(O H)2等]、金属氧化物(K2O、Na2O、

MgO 等)和绝大数盐。 【注意】离子化合物中一定含有离子键,含有离子键的化合物一定是离子化合物。 二 电子式 1.电子式的概念 在元素符号周围,用“· ”或“×”来表示原子的最外层电子的式子叫电子式。 (1)原子的电子式:元素周围标明元素原子的最外层电子,每个方向不能超过2个电子。当最外层电子数小于或等于4时以单电子分步,多于4时多出部分以电子对分布。例如: (2)简单阳离子的电子式:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子的符号表示,如: Na +、Li +、Mg +2、Al +3等。 (3)简单阴离子的电子式:不但要画出最外层电子数,而且还应用括号“[ ]”括起来,并在右上角标出“- n ”电荷字样。例如:氧离子 、氟离子 。 (4)多原子离子的电子式:不仅要画出各原子最外层电子数,而且还应用括号“[ ]”括 起来,并在右上角标出“-n ”或“+ n 电荷字样。例如:铵根离子 氢氧根离子 。 (5)离子化合物的电子式:每个离子都要单独写,而且要符合阴阳离子相邻关系,如MgCl 2要写成 ,不能写成,也不能写成 。 2.用电子式表示离子化合物的形成过程 例如:NaCl 的形成过程:; Na 2O 的形成过程: CaBr 2的形成过程: F

(大数据)北邮大数据技术课程重点总结

(大数据)北邮大数据技术课程重点总结

5.数据化与数字化的区别 数据化:将现象转变为可制表分析的量化形式的过程; 数字化:将模拟数据转换成使用0、1表示的二进制码的过程 6.基于协同过滤的推荐机制 基于协同过滤的推荐(这种机制是现今应用最为广泛的推荐机制)——基于模型的推荐(SVM、聚类、潜在语义分析、贝叶斯网络、线性回归、逻辑回归) 余弦距离(又称余弦相似度):表示是否有相同的倾向 欧几里得距离(又称欧几里得相似度):表示绝对的距离 这种推荐方法的优缺点: 它不需要对物品或者用户进行严格的建模,而且不要求物品的描述是机器可理解的;推荐是开放的,可以共用他人的经验,很好的支持用户发现潜在的兴趣偏好。 数据稀疏性问题,大量的用户只是评价了一小部分的项目,而大多数的项目是没有进行评分;冷启动问题,新物品和新用户依赖于用户历史偏好数据的多少和准确性,一些特殊品味的用户不能给予很好的推荐。 7.机器学习:构建复杂系统的可能方法/途径 机器学习使用场景的核心三要素:存在潜在模式、不容易列出规则并编程实现、有历史的数据 8.机器学习的基础算法之PLA算法和Pocket算法(贪心PLA) 感知器——线性二维分类器,都属于二分类算法 二者的区别:迭代过程有所不同,结束条件有所不同; 证明了线性可分的情况下是PLA和Pocket可以收敛。 9.机器为什么能学习 学习过程被分解为两个问题: 能否确保Eout(g)与Ein(g)足够相似? 能否使Ein(g)足够小? 规模较大的N,有限的dVC,较低的Ein条件下,学习是可能的。 切入点:利用具体特征的,基于有监督方式的,批量学习的分析,进行二分类预测。 10.VC维: 11.噪声的种类: 12.误差函数(损失函数) 13.给出数据计算误差 14.线性回归算法:简单并且有效的方法,典型公式 线性回归的误差函数:使得各点到目标线/平面的平均距离最小! 15.线性回归重点算法部分:

化学键知识点总结和考点例析

化学键知识点总结和考点例析本部分知识主要包含:化学键的定义、化学键的比较、原子的电子式、简单阴阳离子的电子式、原子团的电子式、离子化合物的电子式、共价化合物的电子式、离子间的形成、共价键的形成、结构式的书写、极性键与非极性键的比较、分子的极性、键的极性与分子极性的关系等知识。主要的知识点是: 1、使离子或原子相结合的作用力通称为化学键。化学键是强烈的相互作用,所谓“强烈”是指原子间存在电子的转移,即共用电子对的偏移或电子的得失。 2、原子的电子式: 常把其最外层电子数用小黑点“·”或小叉“×”来表示。 4、简单阳离子的电子式:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。 5、原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。 6、离子化合物的电子式:在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,离子化合物的电子式是由阳离子和带中括号的阴离子组成,且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。

7、共价化合物的电子式:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。 8、离子键的形成:原子在参加化学反应时,都有通过得失电子或形成共用电子对使自己的结构变成稳定结构的倾向。 9、共价键的形成:从氯原子和氢原子的结构分析,由于氯和氢都是非金属元素,这两种元素的原子获得电子难易的程度相差不大,原子相互作用的结果是双方各以最外层的一个电子组成一个电子对,电子对为两个原子所共用,在两个原子核外的空间运动,从而使双方最外层都达到稳定结构,这种电子对,就是共用电子对。共用电子对受两个核的共同吸引,使两个原子结合在一起。我们把这种原子间通过共用电子对所形成的相互作用称为共价键。 10、非极性键与极性键的比较: 11、极性分子:非极性分子:正负电荷中心重合的分子称为非极性分子。例如:X2型双原子分子(如H2、Cl2、Br2等)、XYn型多原子分子中键的极性互相抵消的分子(如CO2、CCl4等)都属非极性分子。极性分子:正负电荷中心不重合的分子称为极性分子。例如

第一章第三节化学键知识点归纳总结

第一章第三节化学键知识点归纳总结 一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子或原子间的强烈的相互作用。 二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。 三、类型:离子键化学键共价键极性键非极性键知识点二离子键和共价键 一、离子键和共价键比较化学键类型离子键共价键概念阴、阳离子间通过静电作用所形成的化学键原子间通过共用电子对所形成的化学键成键微粒阴、阳离子原子成键性质静电作用共用电子对形成条件活泼金属与活泼非金属a、I A、ⅡA族的金属元素与Ⅵ A、ⅦA族的非金属元素。b 、金属阳离子与某些带电的原子团之间(如Na+与0H A、A== A、A≡A,如Cl-Cl、C= C、N≡N A”电荷字样。例如:氧离子、氟离子。③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n、=、≡表示。知识点五化学键与物质变化的关系

1、与化学变化的关系化学反应实质是旧化学键的断裂和新化学键的形成。任何反应都必然发生化学键的断裂和形成。 2、与物理变化的关系发生物理变化的标志是没有生成新物质可能伴随着化学键的断裂,但不会有新化学键的形成。物理变化的发生也可能没有化学键的断裂,只是破坏了分子之间的氢键或范德华力如冰的融化和干冰的气化。知识点六分子间作用力和氢键 一、分子间作用力⒈定义:分子之间存在一种把分子聚集在一起的作用力叫分子间作用力,又称范德华力、 2、主要特征:①广泛呢存在于分子之间。②作用力的范围很小。当分子间距离为分子本身直径的4-5倍时候,作用力迅速减弱。③分子间作用力能量远远小于化学键。④范德华力无方向性和饱和性。 3、分子间作用力对物质性质的影响:(1)分子间作用力越大,克服这种力使物质融化或汽化需要的能量越多,物质的熔沸点越高。对组成相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点越高。(2)溶质与溶剂间的分子作用力越大,溶质在该溶剂中的溶解度越大。如:CH4和H2O分子间的作用力很小故CH4在水中的溶解度小。相似相溶规律:非极性溶质一般能溶于非极性溶剂;机型溶质一般能溶于极性溶剂。 二、氢键

(完整版)第一章第三节化学键知识点归纳总结

高中化学必修2知识点归纳总结 第一章物质结构元素周期律 第三节化学键 知识点一化学键的定义 一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子或原子间的强烈 的相互作用。 【对定义的强调】(1)首先必须相邻。不相邻一般就不强烈(2)只相邻但不强烈,也不叫化学键(3)“相互作用”不能说成“相互吸引”(实际既包括吸引又包括排斥) 一定要注意“相邻 ..”和“强烈 ..”。如水分子里氢原子和氧原子之间存在化学键,而两个氢原子之间及水分子与水分子之间是不存在化学键的。 二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。 三、类型: 离子键 化学键共价键极性键 非极性键 知识点二离子键和共价键 一、离子键和共价键比较 化学键类型离子键共价键 概念阴、阳离子间通过静电作用所形成的化学键原子间通过共用电子对所形成的化学键 成键微粒阴、阳离子原子 成键性质静电作用共用电子对 形成条件活泼金属与活泼非金属 a.IA、ⅡA族的金属元素与ⅥA、ⅦA族的非 金属元素。 b.金属阳离子与某些带电的原子团之间(如 Na+与0H—、SO42-等)。 非金属元素的原子之间 某些不活泼金属与非金属之间。 形成示例共用电子对 存在离子化合物中非金属单质、共价化合物和部分离子化合物中作用力大小一般阴、阳离子电荷数越多离子半径越小作用 力越强 原子半径越小,作用力越强 与性质的关系离子间越强离子化合物的熔沸点越高。 如:MgO>NaCl 共价键越强(键能越大),所形成的共价分子越 稳定,所形成的原子晶体的熔沸点越高。如稳 定性:H2O>H2S,熔沸点:金刚石>晶体硅实例NaCl、MgO Cl2、HCl、NaOH(O、H之间) 二、非极性键和极性键 非极性共价键极性共价键 概念同种元素原子形成的共价键不同种元素原子形成的共价键, 共用电子对发生偏移 原子吸引电子能力相同不同 共用电子对不偏向任何一方偏向吸引电子能力强的原子 形成条件由同种非金属元素组成由不同种非金属元素组成 通式及示例A—A、A==A、A≡A,如Cl-Cl、C=C、N≡N A—B、A==B、A≡B,如H-Cl、 C=O、C≡N

大数据库面试基础知识总结材料

1. 数据抽象:物理抽象、概念抽象、视图级抽象,模式、模式、外模式 提示: (1). 概念模式:(面向单个用户的) 是数据中全部数据的整体逻辑结构的描述。它由若干个概念记录类型组成。 (2). 外模式:(面向全局的) 是用户与数据库系统的接口,是用户用到的那部分数据的描述。它由若干个外部记录类型组成。(3). 模式:(面向存储的) 是数据库在物理存储方面的描述,它定义所有的部记录类型、索引、和文件的组织方式,以及数据控制方面的细节。 模式描述的是数据的全局逻辑结构,外模式描述的是数据的局部逻辑结构。对应与同一个模式可以有任意多个外模式。在数据库中提供两级映像功能,即外模式/模式映像和模式/模式映像。对于没一个外模式,数据库系统都有一个外模式/模式映像它定义了该外模式与模式之间的对应关系。这些映像定义通常包括在各自外模式的描述中,当模式改变时,由数据库管理员对各个外模式/模式的映像做相应改变,可以使外模式保持不变,从而应用程序不必修改,保证了数据的逻辑独立性。数据库中只有一个模式,也只有一个模式,所以模式/模式映像是唯一的,它定义了数据全局逻辑结构与存储结构之间的对应关系。当数据库的存储结构改变了,由数据库管理员对模式/模式映像做相应改变,可以使模式保持不变,从而保证了数据的物理独立性。 2. SQL语言包括数据定义、数据操纵(Data Manipulation),数据控制(Data Control) 数据定义:Create Table,Alter Table,Drop Table,Craete/Drop Index等 数据操纵:Select ,insert,update,delete, 数据控制:grant,revoke 3. SQL常用命令 CREATE TABLE Student( ID NUMBER PRIMARY KEY, NAME V ARCHAR2(50) NOT NULL);//建表 CREATE VIEW view_name AS Select * FROM Table_name;//建视图 Create UNIQUE INDEX index_name ON TableName(col_name);//建索引 INSERT INTO tablename {column1,column2,…} values(exp1,exp2,…);//插入 INSERT INTO Viewname {column1,column2,…} values(exp1,exp2,…);//插入视图实际影响表 UPDA TE tablename SET name=’zang 3’ condition;//更新数据 DELETE FROM Tablename WHERE condition;//删除 GRANT (Select,delete,…) ON (对象) TO USER_NAME [WITH GRANT OPTION];//授权 REVOKE (权限表) ON(对象) FROM USER_NAME [WITH REVOKE OPTION] //撤权 列出工作人员及其领导的名字: Select https://www.wendangku.net/doc/e11464153.html,,https://www.wendangku.net/doc/e11464153.html, FROM EMPLOYEE E S WHERE E.SUPERName=https://www.wendangku.net/doc/e11464153.html, 4. 视图 提示: 计算机数据库中的视图是一个虚拟表,其容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查

第三节 化学键(第1课时)教案

第一章物质结构元素周期律 第三节化学键(第1课时) 课前预习学案 一预习目标:1.理解离子键地含义,了解离子键地形成条件. 2.能用电子式表示离子化合物地形成过程. 二预习内容:理解离子键地含义,了解离子键地形成条件,能用电子式表示离子化合物地形成过程. 三提出疑惑:离子键地形成条件是什么?怎样用电子式表示化合物地形成过程 课内探究学案 一学习目标:1.理解离子键地含义,了解离子键地形成条件. 2.能用电子式表示离子化合物地形成过程. 学习重点难点:离子键和离子化合物、用电子式表示化合物地形成过程 二学习过程:根据NaCl地形成过程,结合课本填写下列空白 (一)、离子键: 1、离子键 称为离子键 ①成键微粒: ②成键本质: ③成键条件: 注意:1含有离子键地化合物均为离子化合物(如:大多数金属化合物、碱、盐类)2金属和非金属不一定形成离子键,例如:氯化铝 3非金属和非金属也能形成离子键,例如:氯化铵 例1.下列化合物中有离子键地是() (1)KI (2)HBr (3)Na 2 SO 4(4)NH 4 Cl (5)H 2 CO 3(二)、电子式: 在化学反应中,一般是原子地电子发生变化,我们可以在元素符号周围用小黑点(·或X)来代表原子地最外层电子,这种式子叫电子式. 例如:原子电子式: 离子电子式:Na+ Mg2+ 例2 ①用电子式表示原子或离子:

氟原子钙原子氢原子氧原子 注意:阳离子地电子式一般是离子符号本身,而阴离子地电子式要用方括号括起来. 钙离子铝离子氯离子硫离子 铵根离子氢氧根离子过氧根离子 (三)、用电子式表示下列化合物:(注意相同地离子不能合并) NaCl: MgO CaCl 2: Na 2 O 2 (四)、用电子式表示化合物地形成过程: 例3.用电子式表示氯化钠地形成过程: 注意:左边写原子地电子式,右边写化合物地电子式,中间用箭头连接,离子化合物还要用箭头表示出电子地转移方向,不写反应条件. 例4用电子式表示下列化合物地形成过程 KBr: MgCl 2: Na 2 S: 反思总结:1含有离子键地化合物均为离子化合物,离子化合物一定含离子键,不一定含共价键键. 2金属和非金属不一定形成离子键,例如:氯化铝.非金属和非金属也能形成 离子键,例如:氯化铵 3阳离子地电子式一般是离子符号本身,而阴离子地电子式要用方括号括起来. 4用电子式表示离子化合地形成过程时,左边写原子地电子式,右边写化合物 地电子式,中间用箭头连接,离子化合物还要用箭头表示出电子地转移方 向,不写反应条件. 当堂检测: 1.下列说法正确地是() A.离子键就是阴阳离子间地静电引力 B.所有金属元素与所有非金属元素间都能形成离子键 C.钠原子与氯原子结合成氯化钠后体系能量降低 D.在离子化合物CaCl2中,两个氯离子间也存在离子键 2.下列各数值表示有关元素地原子序数,能以离子键相互结合成稳定化合物地是() A.10与19 B.6与16 C. 11与17 D.14与8 3.下列不是离子化合物地是()

化学键_知识点概括

化学键 一、化学键 1、概念:化学键是指使离子或原子之间结合的作用。或者说,相邻的原子或原子团强烈的 相互作用叫化学键。 注意:不是所有的物质都是通过化学键结合而成。惰性气体就不存在化学键。 2、分类:金属键、离子键、共价键。 3、意义:①解释绝大部分单质和化合物的形成:绝大部分单质和化合物都是离子或者原子 通过化学键的作用形成的。 ②解释化学变化的本质:化学变化的本质就是反应物化学键的断裂和生成物化学键的形 成过程。原子重新组合就是通过反应物原子间化学键的断裂,然后又重新形成 新的化学键的过程。 二、离子键:带相反电荷离子间的相互作用称为离子键。 1、概念:使阴阳离子结合成化合物的静电作用,叫做离子键。 2、成键微粒:阴阳离子 3、本质:静电作用 4、成键过程:阴阳离子接近到某一定距离时,吸引和排斥达到平衡,就形成了离子键。 5、成键条件:活泼金属(IA IIA)与活泼非金属(VIA VIIA)之间的化合物。 6、结果:形成离子化合物。离子化合物就是阴阳离子通过离子键而形成的化合物。离子晶体就是阴阳离子通过离子键而形成的晶体。 7、范围:典型的金属与典型的非金属之间容易形成离子键。特别是位于元素周期表中左下方的金属与右上方的非金属元素之间。例如:氧化钾、氟化钙、氢氧化钠、硝酸钾、氯化钾 三、共价键: 1、概念:原子通过共用电子对形成的相互作用。 2、本质:静电作用 3、方式:原子间通过共用电子对形成静电作用。 4、条件:非金属元素的原子之间容易形成共价键。 5、结果:形成共价单质或共价化合物。共价单质是指同种元素的原子通过共价键所形成的单质。共价化合物是由不同种元素的原子通过共价键所形成的化合物。 6、范围:共价单质有H2、B、C、N2、O2、O3、F2、Si、P、S、Cl2、Br2、I2. 共价化合物主要有非金属氢化物、非金属的氧化物、酸、非金属的氯化物。 7、类型:极性键:共用电子对发生偏移的共价键。主要存在于不同元素的原子之间所形成的共价键。如:H-O、C=O、H-C、

数据的分析知识点总结与典型例题

数据的分析知识点总结 与典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

目录 数据的分析知识点总结与典型例题 一、数据的代表 1、算术平均数: 把一组数据的总和除以这组数据的个数所得的商. 公式:n x x x n +???++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使 用该公式计算平均数. 2、加权平均数: 若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则 n n n w w w w x w x w x +???+++???++212211,叫做这n 个数的加权平均数. 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时, 一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度. 常见的权:1)数值、2)百分数、3)比值、4)频数等。 3、组中值:(课本P128)

数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据. 4、中位数: 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半. 5、众数: 一组数据中出现次数最多的数据就是这组数据的众数. 特点:可以是一个也可以是多个. 用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量. 6、平均数、中位数、众数的区别: 平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义. ※典型例题: 考向1:算数平均数 1、数据-1,0,1,2,3的平均数是(C) A.-1 B.0 C.1 D.5

高一化学人教版必修二第一章第3节《化学键》知识点总结

第3节化学键 一、化学键 ①定义:使离子相结合或原子相结合的作用力通称为化学键. ②种类(离子键、共价键、配位键、金属键)[注意:氢键不是化学键] 二、离子键 1.离子键的形成过程 (1)实验探究NaCl的形成 (2)从原子结构角度解释NaCl的形成过程 Na: Na+: Cl: Cl-: (3)离子键 ①定义:带相反电荷离子之间的相互作用称为离子键[离子键不具有饱和性和方向性]. ②成键微粒:阴离子和阳离子. ③成键的本质:阴、阳离子之间通过静电作用而相互结合在一起(注意:阴、阳离子之间不会发生电荷中和,因为在

阴、阳离子之间之间除了有静电相互吸引作用外,还有电子与电子、原子核与原子核之间的相互排斥作用.当两种离子接近到某一定距离时,吸引与排斥达到了平衡,于是阴、阳离子之间就形成了稳定的化学键.所以所谓阴、阳离子电荷相互中和的现象是不会发生的).(静电作用包括阴阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电作用) ④成键的条件: 活泼金属(即IA 族、IIA 族)或NH 4 M(金属原子)??→?- ne 失去+ n M ??→?化合 活泼非金属(即VIA 族、VIIA 族) X(非金属原子)-???→?- m me X 得到 ⑤成键的原因 a.原子之间相互得失电子形成稳定的阴、阳离子. b.离子之间的相互吸引与相互排斥处于平衡状态. c.体系的能量最低. (4)离子键的存在范围:离子键一般存在于活泼金属与活泼非金属形成的化合物、金属氧化物、强碱和绝大数的盐中,即离子键一定存在于化合物中. (5)影响离子键强弱的因素 ①阴、阳离子的半径的大小; ②阴、阳离子所带电荷数目的多少. 特别提醒:并不是只有活泼金属与活泼非金属化合时才能形成离子键.在强碱中也存在离子键,比如NaOH 等;另外非金属元素之间也能形成离子键,比如NH 4Cl 晶体中,NH 4+ 与Cl -之间的化学键就是离子键. 三、离子化合物 (1)定义:由离子键构成的化合物叫做离子化合物. (2)常见离子化合物的分类: ①由活泼金属元素(即IA 族、IIA 族)与活泼非金属元素(即VIA 族、VIIA 族)之间形成的化合物.例如NaCl 、MgCl 2、Na 2O 、Na 2O 2、CaO 等. ②由活泼金属阳离子与酸根阴离子(或酸式酸根阴离子)之间形成的化合物.比如Na 2SO 4、K 2CO 3、NaHSO 4、KHCO 3

第一章第三节化学键知识点归纳总结

高中化学必修2知识点归纳总结 第一章 物质结构 元素周期律 第三节 化学键 知识点一化学键的定义 一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子或原子间的强烈的相互作用。 【对定义的强调】(1)首先必须相邻。不相邻一般就不强烈 (2)只相邻但不强烈,也不叫化学键 (3)“相互作用”不能说成“相互吸引”(实际既包括吸引又包括排斥) 一定要注意“相邻..”和“强烈..”。如水分子里氢原子和氧原子之间存在化学键,而两个氢原子之间及水分子与水分子之间是不存在化学键的。 二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。 三、类型: 离子键 化学键 共价键 极性键 非极性键 知识点二离子键和共价键 一、离子键和共价键比较 二、非极性键和极性键

知识点三离子化合物和共价化合物 通常以晶体形态存在 离子键为主,该化合物也称为离子化合物(3)只有 ..当化合物中只存在共价键时,该化合物才称为共价化合物。(4)在离子化合物中一般既含有金属元素又含有非金属元素;共价化合物一般只含有非金属元素(NH4+例外) 注意:(1)离子化合物中不一定含金属元素,如NH4NO3,是离子化合物,但全部由非金属元素组成。(2)含金属元素的化合物不一定是离子化合物,如A1C13、BeCl2等是共价化合物。 二、化学键与物质类别的关系 、

知识点四电子式和结构式的书写方法 一、电子式: 1.各种粒子的电子式的书写: (1)原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。 例如: (2)简单离子的电子式: ①简单阳离子:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。②简单阴离子:书写简单阴离子的电子式时不但要画出最外层电子数,而且还应用括号“[]” 括起来,并在右上角标出“n—”电荷字样。例如:氧离子、氟离子。 ③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。 例如:铵根离子、氢氧根离子。 (3)部分化合物的电子式: ①离子化合物的电子式表示方法:在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,离子化合物的电子式是由阳离子和带中括号的阴离子组成,且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。 如:。 ②共价化合物的电子式表示方法:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。 如: 2.用电子式表示化学反应的实质: (1)用电子式表示离子化合物的形成过程: (2)用电子式表示共价化合物的形成过程: 说明:用电子式表示化合物的形成过程时要注意: (1)反应物要用原子的电子式表示,而不是用分子或分子的电子式表示。用弯箭头表示电子的转移情况,而共价化合物不能标。

北邮_大数据技术课程重点总结

大数据技术 1.什么是数据挖掘,什么是机器学习: 什么是机器学习 关注的问题:计算机程序如何随着经验积累自动提高性能; 研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能; 通过输入和输出,来训练一个模型。 2.大数据分析系统层次结构:应用层、算法层、系统软件层、基础设施层 3.传统的机器学习流程 预处理-》特征提取-》特征选择-》再到推理-》预测或者识别。 手工地选取特征是一件非常费力、启发式(需要专业知识)的方法,如果数据被很好的表达成了特征,通常线性模型就能达到满意的精度。 4.大数据分析的主要思想方法 4.1三个思维上的转变 关注全集(不是随机样本而是全体数据):面临大规模数据时,依赖于采样分析;统计学习的目的——用尽可能少的数据来证实尽可能重大的发现;大数据是指不用随机分析这样的捷径,而是采用大部分或全体数据。 关注概率(不是精确性而是概率):大数据的简单算法比小数据的复杂算法更有效 关注关系(不是因果关系而是相关关系):建立在相关关系分析法基础上的预测是大数据的核心,相关关系的核心是量化两个数据值之间的数理关系,关联物是预测的关键。 4.2数据创新的思维方式 可量化是数据的核心特征(将所有可能与不可能的信息数据化);挖掘数据潜在的价值是数据创新的核心;三类最有价值的信息:位置信息、信令信息以及网管和日志。 数据混搭为创造新应用提供了重要支持。 数据坟墓:提供数据服务,其他人都比我聪明! 数据废气:是用户在线交互的副产品,包括了浏览的页面,停留了多久,鼠标光标停留的位置、输入的信息。 4.3大数据分析的要素 大数据“价值链”构成:数据、技术与需求(思维);数据的价值在于正确的解读。

(完整版)化学键知识点

离子键 一 离子键与离子化合物 1.氯化钠的形成过程: 2.离子键 (1)概念:带相反电荷离子之间的相互作用称为离子键。 (2)实质: (3)成键微粒:阴、阳离子。 (4)离子键的形成条件:离子键是阴、阳离子间的相互作用,如果是原子成离子键时,一方要容易失去电子,另一方要容易得到电子。 ①活泼金属与活泼的非金属化合时,一般都能形成离子键。如第IA 、ⅡA 族的金属元素(如Li 、Na 、K 、Mg 、Ca 等)与第ⅥA 、ⅦA 族的非金属元素(如O 、S 、F 、Cl 、Br 、I 等)化合时,一般都能形成离子键。 ②金属阳离子与某些带负电荷的原子团之间(如Na +与OH -、SO 4-2等)形成离子键。 ③铵根离子与酸根离子(或酸式根离子)之间形成离子键,如NH 4NO 3、NH 4HSO 4。 【注意】①形成离子键的主要原因是原子间发生了电子的得失。 ②离子键是阴、阳离子间吸引力和排斥力达到平衡的结果,所以阴、阳离子不会无限的靠近,也不会间距很远。 3.离子化合物 (1)概念:由离子键 构成的化合物叫做离子化合物。 (2)离子化合物主要包括强碱[NaOH 、KOH 、B a (O H )2等]、金属氧化物(K 2O 、Na 2O 、 MgO 等)和绝大数盐。 【注意】离子化合物中一定含有离子键,含有离子键的化合物一定是离子化合物。 二 电子式

1.电子式的概念 在元素符号周围,用“·”或“×”来表示原子的最外层电子的式子叫电子式。 (1)原子的电子式:元素周围标明元素原子的最外层电子,每个方向不能超过2个电子。当最外层电子数小于或等于4时以单电子分步,多于4时多出部分以电子对分布。例如:(2)简单阳离子的电子式:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子的符号表示,如: Na+、Li+、Mg+2、Al+3等。 (3)简单阴离子的电子式:不但要画出最外层电子数,而且还应用括号“[ ]”括起来,并在右上角标出“-n”电荷字样。例如:氧离子、氟离子。 (4)多原子离子的电子式:不仅要画出各原子最外层电子数,而且还应用括号“[ ]” 括起来,并在右上角标出“-n”或“+n电荷字样。例如:铵根离子氢氧根离子。 (5)离子化合物的电子式:每个离子都要单独写,而且要符合阴阳离子相邻关系,如MgCl 2要写成,不能写成,也不能写成。2.用电子式表示离子化合物的形成过程 例如:NaCl的形成过程:; Na 2 O的形成过程: CaBr 2 的形成过程: 【注意】用电子式表示离子化合物的形成过程是要注意: ①连接符号必须用“→”而不用“=”。 ②左边相同的原子的电子式可以合并,但右边构成离子化合物的每个离子都要单独写,不能合并。 第二课时共价键 一共价键 F

云计算和大数据基础知识教学总结

云计算与大数据基础知识 一、云计算是什么? 云计算就是统一部署的程序、统一存储并由相关程序统一管理着的数据! 云计算cloud computing是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。因此,云计算甚至可以让你体验每秒超过10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。 通俗的理解是,云计算的“云”就是存在于互联网上的服务器集群上的资源,它包括硬件资源(服务器、存储器、CPU等)和软件资源(如应用软件、集成开发环境等),所有的处理都在云计算提供商所提供的计算机群来完成。 用户可以动态申请部分资源,支持各种应用程序的运转,无需为繁琐的细节而烦恼,能够更加专注于自己的业务,有利于提高效率、降低成本和技术创新。 云计算的核心理念是资源池。 二、云计算的基本原理 云计算的基本原理是,在大量的分布式计算机集群上,对这些硬件基础设施通过虚拟化技术构建不同的资源池。如存储资源池、网络资源池、计算机资源池、数据资源池和软件资源池,对这些资源实现自动管理,部署不同的服务供用户应用,这使得企业能够将资源切换成所需要的应用,根据需求访问计算机和存储系统。 打个比方,这就好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。 三、云计算的特点 1、支持异构基础资源 云计算可以构建在不同的基础平台之上,即可以有效兼容各种不同种类的硬件和软件基础资源。硬件基础资源,主要包括网络环境下的三大类设备,即:计算(服务器)、存储(存储设备)和网络(交换机、路由器等设备);软件基础资源,则包括单机操作系统、中间件、数据库等。 2、支持资源动态扩展 支持资源动态伸缩,实现基础资源的网络冗余,意味着添加、删除、修改云计算环境的任一资源节点,或者任一资源节点异常宕机,都不会导致云环境中的各类业务的中断,也不会导致用户数据的丢失。这里的

[新教材]新人教版必修1第4章第3节化学键学案

第三节化学键 核心微网络 素养新目标 1。认识离子键和共价键的含义。 2.学会用电子式表示离子化合物、共价化合物的形成过程。 3.认识非极性键和极性键及常见的分子空间结构. 4.理解化学键的含义,并从化学键的角度解释化学反应的本质。 学业基础 [预习新知] 一、离子键 1.离子键 (1)定义:带相反电荷离子之间的相互作用 (2)成键粒子:阴离子和阳离子 (3)成键元素:一般是活泼金属元素和活泼非金属元素 (4)存在:离子化合物 2.离子化合物 (1)定义:由离子键构成的化合物 (2)形成过程 ①电子式:在元素符号周围用“·”或“×”来表示原子的最外层电子(价电子)的式子。如 原子:Na Na×、Mg ×Mg×Cl错误!错误!错误!、S·错误!· 阳离子:Na+Na+、Mg2+Mg2+;

阴离子:Cl-[错误!错误!错误!]-、S2-[错误!错误!错误!]2-。 ②形成过程: 二、共价键 1.共价键 (1)形成过程(以Cl2形成为例) 用电子式表示::Cl Cl::Cl:Cl: ???????? ?+?→ ???????? (2)定义:原子间通过共用电子对所形成的相互作用。 (3)成键粒子:原子。 (4)成键元素:同种或不同种非金属元素化合时能形成共价键. (5)存在 ①非金属元素的多原子单质,如H2、O2、N2。 ②共价化合物,如CO2、HCl、H2SO4。 ③某些离子化合物,如NaOH、Na2CO3、NH4Cl。 2.共价键的类型 共价键分为:极性共价键和非极性共价键。 3.共价化合物 以共用电子对形成分子的化合物。 4.含有共价键分子的表示方法 (1)用电子式表示含共价键的粒子 单质 H2:H错误!H、N2::N??N: 化合物 H2O:H错误!错误!错误!H、 CO2:错误!错误!错误!错误!错误!错误!错误!、 CH4: (2)用电子式表示分子的形成过程 N2: CO2:

相关文档
相关文档 最新文档