文档库 最新最全的文档下载
当前位置:文档库 › 模流分析报告解析

模流分析报告解析

模流分析报告解析
模流分析报告解析

Moldflow的计算方式

?模具内熔体的前端不断前移来连接各节点。

?熔体不断填充相邻的节点,直到零件上所有的节点都被

填充。

?熔体和模具接触时会形成一个凝结层。

Frozen Layer

elements

Fountain

Flow Region

nodes

Moldflow中的前处理

?目前主流的模流分析软件是Moldflow,该软件只接受三角形单元以及四面体单元。

?高质量的有限元网格是有限元分析精度的保障。

?对于注塑件,在Moldflow主要有以下三种网格划分方式:中性面、双面流、3D实体。

抽取零件的中性面,然后在中

性面上划分网格(三角形单元)

抽取零件的表面做为模具的形

芯形腔面,然后进行网格划分

(三角形单元)

零件上下表面上的网格要求

一定的对应关系,网格划分要

求高

单元数量大,运算效率低零件中性面双面流3D实体

优点网格少,分析速度快,计算效

率高

无需抽取中性面,后处理更具

真实感

计算精度高

划分方法

缺点中性面抽取困难、分析精度低

网格质量检查:

1) 不能存在自由边界。

2) 双面流分析,上下表而的网格匹配率必须达到 90%o

3) 三角形单元的边长比:平均<3:1,最大<6:lo 4) 网格之间没有交叉和重叠。 5) 网格的大小。

网格大小对计算精度的影响

自山边界

Moldflow 网格质量检查报告

分析输入一定义浇口类型

侧浇口 (Gate)热浇道(Hot Drop) 潜伏式浇口(Sub) 旦接浇口 (Spnie) 香蕉型(Cashew) 阀式(Valve)

GM PPC Requirement Gate Type

定义浇口尺寸

定义浇口数量

定义浇口位置

分析输入一定义流道系统

?定义主流道以及分流道的尺寸

?在Moldflow中做出流道系统

分析输入一定义冷却系统

?定义冷却系统尺寸

?定义冷却液类型

?在Moldflow中做出冷却系统流道系统

冷却系统

基于MOLDFLOW的 模流分析技术上机实训教程主编: 姓名: 年级: 专业: 南京理工大学泰州科技学院

实训一基于Moldflow的模流分析入门实例 1.1Moldflow应用实例 下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。 图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。 (2)新建工程。启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。 图1-3 “创建新工程”对话框图1-4 工程管理视图 (3)导入模型。选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。选择STL文件进行导入。选择文件“lianpen.stl”。单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫

米。 图1-5 导入选项 单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。 图1-6 脸盆模型

图1-7 工程管理视窗图1-8 方案任务视窗 (4)网格划分。网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。双击方案任务

MOLDFLOW模流分析结果解释 解释结果的一个重要部分是理解结果的定义,并知道怎样使用结果。下面将列出常用结果的定义及怎样使用它们的建议,越常用的结果将越先介绍。 屏幕输出文件(screen output)和结果概要(results summary) 屏幕输出文件和结果概要都包含了一些分析的关键结果的总结性信息。屏幕输出文件还包含如图169所示的附加输出,表明分析正在进行,同时还提供重要信息。从它可以看出分析使用的压力和锁模力的大小、流率的大小和使用的控制类型。

图169. 充模分析的屏幕输出文件 屏幕输出文件和结果概要都有与图170相似的部分。它同时包含了分析过程中(第一部分)和分析结束时的关键信息。使用这些信息可以快速查看这些变量,从而判断是否需要详细分析某一结果,以发现问题。

图170. 结果概要输出 充模时间(Fill Time) 充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,但使用云纹图可更容易解释结果。云纹线的间距应该相同,这表明熔体流动前沿的速度相等。制件的填充应该平衡。当制件平衡充模时,制件的各个远端在同一时刻充满。对大多数分析,充模时间是一个非常重要的关键结果。 压力(Pressures) 有几种不同的压力图,每种以不同的方式显示制件的压力分布。所有压力图显示的都是制件某个位置(一个节点)、或某一时刻的压力。 使用的最大压力应低于注射机的压力极限,很多注射机的压力极限为140 MPa (~20,000 psi)。模具的设计压力极限最好为100 MPa (~14,500 psi)左右。如果所用注塑机的压力极限高于140MPa,则设计极限可相应增大。模具的设计压力极限应大约为注射机极限的70%。假如分析没有包括浇注系统,设计压力极限应为注射机极限的50%。 象充模时间一样,压力分布也应该平衡。压力图和充模时间图看起来应该十分相似,如果相似,则充模时制件内就只有很少或没有潜流。 具体的压力结果定义如下: ?压力(Pressure) 压力是一个中间结果,每一个节点在分析时间内的每一时刻的压力值都记录了下来。默认的动画是时间动画,因此,你可以通过动画观察压力随时间变化的情况。压力分布应该平衡,或者在保压阶段应保证均匀的压力分布和几乎无过保压。 ?压力(充模结束时)(Pressure (end of filling)) 充模结束时的压力属于单组数据,该压力图是观察制件的压力分布是否平衡的有效工具。因为充模结束时的压力对平衡非常敏感,因此,如果此时的压力图分布平衡,则制件就很好地实现了平衡充模。 ?体积/压力控制转换时的压力(Pressure at V/P switchover ) 体积/压力控制转换时的压力属于单组数据,该压力图同样是观察制件的压力分布是否平衡的有效工具。通常,体积/压力控制转换时的压力在整个注塑成型周期中是最高的,此时压力的大小和分布可通过该压力图进行观察。同时,你也可以看到在控制转换时制件填充了多少,未填充部分以灰色表示。

材料成型CAE论文(Moldflow注塑工艺分析) 姓名:郭玲玲 学号:20060330332

在Moldflow Plastic Insight 6.0环境中,运用MPI的各项菜单及其基本操作,来实现对所选制件在注塑成型过程中的填充、流动、冷却以及翘曲分析,以此来确定制件的最佳成型工艺方案,为工程实际生产提供合理的工艺设置依据,减少因工艺引起的制件缺陷,有助于降低实际生产成本,提高生产效率。 一、导入零件 导入文件guolingling.stp。选择【Fusion】方式。 二、划分网格 【网格】—【生成网格】—【立即划分】 三、网格诊断 【网格】—【网格诊断】,诊断结果如下:

图1、网格诊断 对诊断结果进行检查,发现连通区域为1,交叉边为0,最大纵横比为7.218616<8,均符合要求,网格划分合理。 四、选择分析类型 1、浇口位置 1)双击任务栏下的【充填】—【浇口位置】; 2)选择材料:双击任务栏下的【材料……】—【搜索】—输入“ABS” —搜索—在结果中任选一种材料,点击【选择】即可; 3)双击任务栏下的【立即分析】。 在分析结果中勾选:Best gate location,查看最佳浇口位置,如下图: 图2、最佳浇口 由最佳浇口位置分析结果可以知道,浇口设在零件上表面的中间

部位,零件的注塑工艺效果好。可采用直接浇口。 2、流动分析 1)设置注射位置:设置之前,先将方案备份。【文件】—【另存方案为】。 双击任务栏下的【设置注射位置】—鼠标变成一个十字光标和一漏 斗形状,然后在上一步分析中的最佳浇口位置处单击,即可完成注 射点的设置; 2)选择分析类型:双击任务栏下【浇口位置】—【流动】; 3)设置浇注系统:【建模】—【浇注系统向导】,设定直浇道、横浇道、 内浇道的尺寸,各浇道尺寸均采取的默认值。根据制件的形状特征 以及最佳浇口位置,采用直接浇口。 4)双击任务栏下的【立即分析】。 查看分析结果中的“pressure at V/P swithover”项,发现出现了浇不足的现象,经分析是由于注射压力过小所引起的,只需增大注射压力即可。在【工艺条件设置】中将【注射压力】增大到250MPa,进行流动分析,其结果如下

目录 第1章模流分析的概述---------------------- 2 1.1模流分析的原理---------------------------------- 2 第2章塑件的工艺性分析---------------------- 3 2.1原材料分析--------------------------------------- 3 2.2结构分析----------------------------------------- 3 2.3成形工艺分析------------------------------------- 4 第3章成形方案的设计与分析------------------ 4 3.1成形方案的设计----------------------------------- 4 3.2初始方案的分析----------------------------------- 5 3.2.1侧浇口的特点 --------------------- 5 3.2.2工艺参数的设置 -------------------- 5 3.2.3网格模型的划分 -------------------- 6 3.2.4流动+翘曲的分析------------------- 7 3.2.5冷却分析 ----------------------- 9 3.3优化方案的分析----------------------------------- 10 3.3.1点浇口的特点 -------------------- 10 3.3.2冷却分析 ----------------------- 13 第4章方案对比 ----------------------- 13 4.1浇口位置对比-------------------------------------- 13 4.2工艺条件设定--------------------------------------- 13 4.3实验结果对比--------------------------------------- 14

第1章模流分析的概述 -------------------- 1 模流分析的原理 --------------------------------------------------- 1 第2章塑件的工艺性分析------------------- 2 原材料分析 --------------------------------------------------------- 2 结构分析 ------------------------------------------------------------ 3成形工艺分析 ------------------------------------------------------ 4 第3章成形方案的设计与分析 ---------------- 4成形方案的设计 --------------------------------------------------- 4 初始方案的分析 --------------------------------------------------- 5侧浇口的特点-------------------------------- 5 工艺参数的设置------------------------------ 6 网格模型的划分------------------------------ 6 流动+翘曲的分析----------------------------- 7 冷却分析------------------------------------ 9优化方案的分析 -------------------------------------------------- 10点浇口的特点------------------------------- 10 冷却分析----------------------------------- 13第4章方案对比-------------------------------- 14浇口位置对比 ----------------------------------------------------- 14工艺条件设定 ----------------------------------------------------- 14实验结果对比 ----------------------------------------------------- 14

目录 第1章模流分析的概述 -------------------- 2 1.1模流分析的原理------------------------------------------------------------------------- 2 第2章塑件的工艺性分析------------------- 3 2.1原材料分析 ---------------------------------------------------------------------------------- 3 2.2结构分析 --------------------------------------------------------------------------------------- 3 2.3成形工艺分析------------------------------------------------------------------------------ 4 第3章成形方案的设计与分析 ---------------- 4 3.1成形方案的设计------------------------------------------------------------------------- 4 3.2初始方案的分析------------------------------------------------------------------------- 5 3.2.1侧浇口的特点--------------------------- 5 3.2.2工艺参数的设置------------------------- 5 3.2.3网格模型的划分------------------------- 6 3.2.4流动+翘曲的分析------------------------ 7 3.2.5冷却分析------------------------------- 9 3.3优化方案的分析------------------------------------------------------------------------ 10 3.3.1点浇口的特点-------------------------- 10 3.3.2冷却分析------------------------------ 13 第4章方案对比-------------------------------- 13 4.1浇口位置对比----------------------------------------------------------------------------- 13 4.2工艺条件设定----------------------------------------------------------------------------- 13 4.3实验结果对比----------------------------------------------------------------------------- 14

目录 第 1 章模流分析的概述---------------- 2 1.1 模流分析的原理----------------- 2 第2章塑件的工艺性分析- --------------- 3 2.1 原材料分析-------------------- 3 2.2 结构分析--------------------- 3 2.3 成形工艺分析------------------ 4 第 3 章成形方案的设计与分析------------- 4 3.1 成形方案的设计----------------- 4 3.2 初始方案的分析----------------- 5 3.2.1 侧浇口的特点- ------------------------- 5 3.2.2 工艺参数的设置- ----------------------- 5 3.2.3 网格模型的划分- ----------------------- 6 3.2.4 流动+翘曲的分析- ---------------------- 6 3.2.5 冷却分析- ---------------------------- 9 3.3 优化方案的分析------------------ 9 3.3.1 点浇口的特点- ------------------------- 9 3.3.2 冷却分析- -------------------------- 12 第 4 章方案对比------------------ 13 4.1 浇口位置对比----------------------------- 13 4.2 工艺条件设定----------------------------- 13 4.3 实验结果对比----------------------------- 13

华东交通大学 螺丝刀盒moldflow实训说明书 QZ 2015/11/30 课程:材料成型计算机仿真 学校:华东交通大学 学院:机电工程学院 专业:材料成型及控制工程 班级:2012模具2班 姓名:覃钊 学号:20120310040 指导老师:匡唐清

1、三维造型 利用UG8.0设计出模型如下图1.1、1.2表示 图1.1 实物图图1.2三维图 模型参数长宽高为143*85*19.5,主壁厚为1.5mm。二维图如图1.3 图1.3二维图 壁厚均匀,但在盖钩和挂孔处厚度和壁厚相差较大,体积收缩率在这两个地方应该会出现一些问题。主分型面在上表面,侧面有卡勾及圆孔,需要做侧抽芯。材料选用普通PP材料。

模型建好之后导出为IGES格式。 2、模型修复与简化 打开CAD Doctor后导入IGES模型,检查并修复,直到所有错误都为0,修复完成 之后将模型导出,格式为udm格式。 3、moldflow模流分析 3.1网格划分 (1)新建工程,输入工程名称,导入模型,在导入窗口选择双层面。 (2)网格划分,网格变长取壁厚的3倍,为4.5mm,合并容差默认为0.1,启用弦高控制0.1mm,立即划分网格,划分之后打开网格统计,看到网格的基本情况,不存在自由边和多个连通区域的问题后进行下一步。一般来说初始划分的网格纵横比都比较大,所以要进行修复。纵横比诊断结果如图3.1.1:最大纵横比达到了45.57。 图3.1.1初次纵横比诊断 3.2网格诊断与修复 点击【网格】——【网格修复向导】,前进到选择目标纵横比,输入6,点击修复。之后在进行手动修复,通过合并节点移动节点等方式进行,直到得到满意的结果。如下图3.2.1:

Moldflow的计算方式 ?模具内熔体的前端不断前移来连接各节点。 ?熔体不断填充相邻的节点,直到零件上所有的节点都被 填充。 ?熔体和模具接触时会形成一个凝结层。 Frozen Layer elements Fountain Flow Region nodes

Moldflow中的前处理 ?目前主流的模流分析软件是Moldflow,该软件只接受三角形单元以及四面体单元。 ?高质量的有限元网格是有限元分析精度的保障。 ?对于注塑件,在Moldflow主要有以下三种网格划分方式:中性面、双面流、3D实体。 抽取零件的中性面,然后在中 性面上划分网格(三角形单元) 抽取零件的表面做为模具的形 芯形腔面,然后进行网格划分 (三角形单元) 零件上下表面上的网格要求 一定的对应关系,网格划分要 求高 单元数量大,运算效率低零件中性面双面流3D实体 优点网格少,分析速度快,计算效 率高 无需抽取中性面,后处理更具 真实感 计算精度高 划分方法 缺点中性面抽取困难、分析精度低

网格质量检查: 1) 不能存在自由边界。 2) 双面流分析,上下表而的网格匹配率必须达到 90%o 3) 三角形单元的边长比:平均<3:1,最大<6:lo 4) 网格之间没有交叉和重叠。 5) 网格的大小。 网格大小对计算精度的影响 自山边界 Moldflow 网格质量检查报告

分析输入一定义浇口类型 侧浇口 (Gate)热浇道(Hot Drop) 潜伏式浇口(Sub) 旦接浇口 (Spnie) 香蕉型(Cashew) 阀式(Valve) GM PPC Requirement Gate Type 定义浇口尺寸 定义浇口数量 定义浇口位置

《模流分析基础入门》 目录 第一章、计算机辅助工程与塑料射出成形 1-1 计算机辅助工程分析 1-2 塑料射出成形 1-3 模流分析及薄壳理论 1-4 模流分析软件的未来发展 第二章、射出成形机 2-1 射出机组件 2-1-1 射出系统 2-1-2 模具系统 2-1-3 油压系统 2-1-4 控制系统 2-1-5 锁模系统 2-2 射出成形系统 2-3 射出机操作顺序 2-4 螺杆操作 2-5 二次加工 第三章、什么是塑料 3-1 塑料之分类 3-2 热塑性塑料 3-2-1 不定形聚合物 3-2-2 (半)结晶性聚合物 3-2-3 液晶聚合物 3-3 热固性塑料 3-4 添加剂、填充料与补强料 第四章、塑料如何流动 4-1 熔胶剪切黏度 4-2 熔胶流动之驱动--射出压力 4-2-1 影响射出压力的因素 4-3 充填模式 4-3-1 熔胶波前速度与熔胶波前面积

4-4 流变理论

第五章、材料性质与塑件设计 5-1 材料性质与塑件设计 5-1-1 应力--应变行为 5-1-2 潜变与应力松弛 5-1-3 疲劳 5-1-4 冲击强度 5-1-5 热机械行为 5-2 塑件强度设计 5-2-1 短期负荷 5-2-2 长期负荷 5-2-3 反复性负荷 5-2-4 高速负荷及冲击负荷 5-2-5 极端温度施加负荷 5-3 塑件肉厚 5-4 肋之设计 5-5 组合之设计 5-5-1 压合连接 5-5-2 搭扣配合连接 5-5-3 固定连接组件 5-5-4 熔接制程 第六章模具设计 6-1 流道系统 6-1-1 模穴数目之决定 6-1-2 流道配置 6-1-3 竖浇道尺寸之决定 6-1-4 流道截面之设计 6-1-5 流道尺寸之决定 6-1-6 热流道系统 6-2 流道平衡 6-2-1 流道设计规则 6-3 浇口设计 6-3-1 浇口种类 6-3-2 浇口设计原则 6-4 设计例 6-4-1 阶段一:C-mold Filling EZ 简易充填模拟分析

如何看懂一份模流分析报告 产品设计要确保所设计的零件是可以开模的,现在可以借助CAE软件(Moldflow、C-Mold、Z-Mold等),对塑料件的注塑、保压、冷却以及翘曲等工艺过程进行有限元模拟。开模检讨时,模具厂商一般都会提供模流分析报告,作为产品设计工程师,我们要如何去解读一份模流分析报告呢?首先要理解结果的定义,并知道怎样使用结果,下面将列出常用结果的定义及怎样使用。工艺过程参数的设置:工艺过程参数(Process Setting)包括了整个注塑周期内有关模具、注塑机等所有相关设备及其冷却、保压、开合模等工艺的参数。因此,过程参数的设定实际上是将现实的制造工艺和生产设备抽象化的过程。过程参数的设定将直接影响到产品注塑成型的分析结果。1.充填分析(1)充模时间(Fill Time)充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,使用云纹图更容易解释结果。云纹图以等值线形式显示结果,等值线间距比较均匀,稀疏的等值线表示流速缓和,密集的等值红表示流速湍急。产品上的任意位置,都可以显示熔体到达该位置的时间。对大多数分析,充模时间是一个非常重要的关键结果。较为均衡的填充过程主要体现在:熔体基本上在同一时刻到达型腔各个远程。利用充模时间结果可以发现以下一些注塑过程中出现的问题:1)短

射(Short Shot)和迟滞(Hesitation),短射部位以灰色显示,非常明显,还有一种情况,当等值线密集在一个很小的区域内时往往会发生迟滞现象,从而导致短射。2)过保压(Overpacking),如果熔体在某一个方向的流路中上首先充满型腔,就有可能发生过保压的情况,过保压可能会导致产品不均匀的密度分布,从而使产品超出设计重量,浪费材料,更为严重的是导致翘曲发生。(2)熔接线(Weld lines)当两股熔体的流动前沿汇集到一起,或一股流动前沿分开后又合到一起时,就会产生熔接线,如熔体沿一个孔流动。当有明显的流速差时,也会形成熔接线,如厚壁处的材料流得快,薄壁处流得慢,在厚薄交界处就可能形成熔接线。熔接线可与充模时间一起显示,也可与温度图和压力图一起显示。减少水口的数量可以消除掉一些熔接线,改变水口位置或改变产品的壁厚可以改变熔接线的位置。(3)包风(Air traps)当材料从各个方向流向同一个节点时就会形成包风。包风显示在其真正出现的位置,当包风位于分型面时,气体可以排出,存在包风的位置应该在模具上设置排气槽。产品上的包风应该消除,改变产品的壁厚、水口位置和注射时间都有助于消除包风。(4)流动前沿温度(Temperature at flow front)流动前沿温度是聚合物熔体充填一个节点时的中间流温度。因为它代表的是截面中心的温度,因此其变化不大。流动前沿温度图可与熔接线图结合使用。熔接线形成时熔体的温度

目录 第1章模流分析的概述 ---- 错误!未定义书签。 模流分析的原理 ----------------------------------- 错误!未定义书签。 第2章塑件的工艺性分析--- 错误!未定义书签。 原材料分析 ----------------------------------------- 错误!未定义书签。 结构分析 -------------------------------------------- 错误!未定义书签。 成形工艺分析 -------------------------------------- 错误!未定义书签。 第3章成形方案的设计与分析错误!未定义书签。 成形方案的设计 ----------------------------------- 错误!未定义书签。 初始方案的分析 ----------------------------------- 错误!未定义书签。 侧浇口的特点---------------- 错误!未定义书签。 工艺参数的设置-------------- 错误!未定义书签。 网格模型的划分-------------- 错误!未定义书签。 流动+翘曲的分析------------- 错误!未定义书签。 冷却分析-------------------- 错误!未定义书签。 优化方案的分析 ----------------------------------- 错误!未定义书签。 点浇口的特点---------------- 错误!未定义书签。 冷却分析-------------------- 错误!未定义书签。 第4章方案对比----------------- 错误!未定义书签。 浇口位置对比 -------------------------------------- 错误!未定义书签。 工艺条件设定 -------------------------------------- 错误!未定义书签。 实验结果对比 -------------------------------------- 错误!未定义书签。

相关文档