文档库 最新最全的文档下载
当前位置:文档库 › (新)高考中数学不等式经典题型

(新)高考中数学不等式经典题型

(新)高考中数学不等式经典题型
(新)高考中数学不等式经典题型

高考不等式经典题型研学总结

研学背景:作为一名高中生高考是我们必经的阶段,也是人生的重要一步。我们有必要为此作准备。由于我们对数学的不

等式比较有兴趣,因此确定了这样的研究性学习专题。

研学目的:我们想通过这次的研学,接触更多的高考不等式题型,学习更多有关不等式的知识。提高我们的数学水平,分

析未来高考不等式的命题趋势,为将来的高考打好基

础。

研学小组成员:指导老师:杨志明

组员:马是哲刘思源俞泽坤吴逸飞李业铿1、高考与不等式

纵观近年来的高考试题,有关不等式的试题占的分值相当大,约占总分的12%,已经成为高考必考的热点内容,不仅考查不等式的基本知识,基本技能,而且注重考查学生的运算能力,逻辑思维能力,以及分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,有时还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。单独考不等式的考题占分不多,但涉及不等式的知识、方法、技巧的问题往往占有较大的比例,其中不等式常常与下列知识相结合考查:

①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般

多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大;

②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题;

③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查.

2、 命题趋势及典型例题解释

(1)不等式的性质考查会与函数性质相结合起来,一般多以选择题出现,填空题出现,也有可能与充要条件、逻辑知识结合起来. 例1:设命题甲:x 和y 满足2403x y xy <+

<

A 充分但不必要条件

B 必要但不充分条件

C 充要条件

D 既不充分也不必要条件

[思路]

根据同向不等式的可加性,从乙?甲和甲?乙两个方面进行推导,再结合充要条件相关概念进行分析。

[破解]易知0123x y <

x y <

故甲?乙 不成立。从而甲是乙的必要但不充分条件 。故选B

[收获]

本题将不等式的可加性与充要条件的相关概念进行了有机结合。做题时不要将充分不必要条件与必要不充分条件混淆起来。

例2:已知0>c .设

:P 函数x c y =在R 上单调递减.

:Q 不等式1|2|>-+c x x 的解集为R .

如果P 和Q 有且仅有一个正确,求c 的取值范围.

[思路]

此题虽是一道在老教材之下的高考试题,但揭示了“解不等式”一类高考试题的命题方向.在新教材中,绝对值不等式的解法和二次不等式的解法与集合运算、命题判断都有一定联系,属于对于学生提出的基本要求内容的范畴,本题将这几部分知识内容有机地结合在一起,在考查学生基础知识、基本方法掌握的同时,考查了学生命题转换,分类讨论等能力,在不同的方法下有不同的运算量,较好地体现出了“多考一点想,少考一点算”的命题原则. [破解]:函数x

c y =在R 上单调递减10<-+c x x 的解集为R ?

函数|2|c x x y -+=在R 上恒大于1,∵,,,,c x c x c c x c x x 22222|2|<≥???-=-+∴函数|2|c x x y -+=在R 上的最小值为c 2,∴不等式1|2|>-+c x x 的解集为R ?12>c ,即21>c ,若P 正确,且Q 不正确,则2

10≤

10(∞+,, . [收获]

“解不等式”一类的命题可以有形式上的更新和内容上的变化.结合简易逻辑的概念和集合的语言来命题,借助集合的运算性质和四个命题的关系来作答,是这个命题的基本特征,在求解时则主要以化归思想为破解切入点.复习中对于此类问题要引起足够的重视.

(2)解不等式的题常以填空题和解答题的形式出现,此类题主要以一元二次不等式,分式不等式,含绝对值不等式为主,在解答题中含字母参数的不等式较多,需要对字母进行分类讨论.

例3:解关于x 的不等式2

680kx x k ++-<。 分析 本例涉及了两个讨论点:二次项系数和判别式的符号.

解 364(8)4(9)(1)k k k k ?=--=--+

(1)当0k >时:若k ≥9,则0?≤,不等式解集为?;若09k <<,则0?>,

解集为x ??<

. (2)当0k =时:不等式为680x -<,解集为43x x ??

?. (3)当0k <时:若10k -<<,则0?>,解集为

x x x ??<>?????

. 若1k =-,不等式为2690x x -+-<,解集为x ∈R 且3x ≠.

若1k <-,则0?<,解集为R .

点拨 由于分类的原因有两个,为了避免逻辑混乱,本例采取了“二级分类”方法:第一级以二次项系数的符号作为划分的依据;第二级依判别式的符号进行划分.

例4:若不等式|x -4|+|3-x |

[思路]

此不等式左边含有两个绝对值符号,可考虑采用零点分段法,即令每一项都等于0,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集,这是按常规去掉绝对值符号的方法求解,运算量较大。若仔细观察不等式左边的结构,利用绝对

值的几何意义用数形结合方法或联想到绝对值不等式|a +b |≤|a |+|b |,便把问题简化。

[破解]

解法一 (1)当a ≤0时,不等式的解集是空集。

(2)当a >0时,先求不等式|x -4|+|3-x |

令x -4=0得x =4,令3-x =0得x =3

① 当x ≥4时,原不等式化为x -4+x -3

≥?+?≤1 ② 当31

③ 当x ≤3时,原不等式化为4-x +3-x

,∴a >1 综合①②③可知,当a >1时,原不等式有解,从而当0

由(1)(2)知所求a 取值范围是a ≤1

解法二:由|x -4|+|3-x |的最小值为1得当a >1时,|x -4|+|3-x |

解法三: ∵a >|x -4|+|3-x |≥|x -4+3-x |=1∴当a >1时,|x -4|+|3-x |

[收获]

1)一题有多法,破解时需学会寻找最优解法。

2)()f x a ≤有解()min a f x ?≥;()f x a ≤解集为空集()min a f x ?<;这两者互

补。()f x a ≤恒成立()max a f x ?≥。()f x a <有解()min a f x ?>;()f x a <解

集为空集()min a f x ?≤;这两者互补。()f x a <恒成立()max a f x ?>。()f x a

≥有解()max a f x ?≤;()f x a ≥解集为空集()max a f x ?>;这两者互补。()f x a

≥恒成立()min a f x ?≤。()f x a >有解()max a f x ?<;()f x a >解集为空集

()max a f x ?≤;这两者互补。()f x a >恒成立()min a f x ?≤。

(3)证明不等式一般同函数知识相结合,综合性较强,灵活性较大,具有较好的区分度.

例5:若二次函数()y f x =的图象经过原点,且()112f ≤-≤,()314f ≤≤,

求()2f -的范围.

[思路]要求()2f -的取值范围,只需找到含()2f -的不等式(组).由于()y f x =是二

次函数,所以应先将()y f x =的表达形式写出来.即可求得()2f -的表达式,然后依题设条件列出含有()2f -的不等式(组),即可求解.

[破解]因为()y f x =的图象经过原点,所以可设()2y f x ax bx ==+.于是()()()11212131434f a b f a b ≤-≤?≤-≤?????≤≤≤+≤???

解法一(利用基本不等式的性质)不等式组(1)变形得()2224642106210426a b a b f a ≤-≤??≤-≤?≤-≤?≤≤?

其中等号分别在21a b =??=?与31a b =??=?时成立,且21a b =??=?与31

a b =??=?也满足(1)所以()2f -的取值范围是[]6,10.

解法二(数形结合)建立直角坐标系aob ,作出不等式组(1)所表示的区域,

如图中的阴影部分.因为()242f a b -=-,所以()4220a b f ---=表

示斜率为2的直线系.如图6,当直线()4220a b f ---=过点()2,1A ,()3,1B 时,分别取得()2f -的最小值6,最大值10.即()2f -的取值范围是:[]6,10.

解法三(利用方程的思想)因为()()11f a b f a b =+???-=-??所以()()()()11121112a f f b f f ?=+-????????=--???

???又()()()242311f a b f f -=-=-+,而

()112f ≤-≤,()314f ≤≤, ①

所以 ()3316f ≤-≤. ②

①+②得()()631110f f ≤-+≤即()6210f ≤-≤。

[收获]

1)在解不等式时,要求作同解变形.要避免出现以下一种错解:将不等式组(1)变形得

234261312322

a a

b b ≤≤?≤≤?????≤≤≤≤???,而()242f a b -=-,8412,321,a b ≤≤-≤-≤-所以

()

≤-≤

f

5211

f-的数学结构,然后依其数学结构特征,

2)对这类问题的求解关键一步是,找到()2

揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.

f-的数学结构。

3)本题灵活地考查了同向不等式的可加性,但要注意()2

3、我们的收获

通过这次的研究性学习,我们懂得了很多有关不等式的知识,并得出以下心得。

(1)重视数学思想方法的复习

从命题趋向来看,我们应该加强对数学思想方法的复习.

①在复习不等式的解法时,加强等价转化思想的训练力度,由于解不等式的过程实质就是一个等价转化的过程,通过等价转化可以简化不等式(组),以快速、准确求解.

②加强分类讨论思想的复习.在解不等式或证不等式的过程中,如含有参数等问题,这时可能要对参数进行分类讨论.其中在讨论的过程中,要明白引起讨论的原因,同时要合理分类,要做到不重不漏.

③加强函数与方程思想在不等式中的应用训练,不等式、函数、方程三者密不可分,相互联系,互相转化,如求参数的取值范围问题,函数与方程思想是解决这类问题的重要方法.

④在不等式的证明中,要加强化归思想的复习,证明不等式的过程是一个把已知条件向要证结论的一个转化过程,这既可考查学生的基础知识,又可考查学生分析问题和解决问题的能力,正因为证明不等式是高考考查学生代数推理能力的重要素材,所以在复习中应特别加以关注.

(2)强化不等式的应用

由于不等式单独命题较少,常在函数、数列、立几、解几和实际应用问题的试题中涉及不等式的知识,加强不等式应用能力,是提高解综合问题能力的关键,因此,在复习时应加强这方面知识和能力的训练,提高应用意识,总结不等式的应用规律,才能提高解决问题的能力,如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,在求最值时要注意等号成立的条件,避免不必要的错误,同时还要注意实际情况的限制.

4、展望

未来的学习和生活中我们会继续与不等式打交道,不等式的美我们在日后也能继续欣赏。希望会有等多的人重视不等式,也希望不等式领域能继续扩大。

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高中数学 典型例题 子集、全集、补集·典型例题 新课标

高中数学新课标典型例题:子集、全集、补集·典型例题 例1 判定以下关系是否正确 (1){a}{a}? (2){1,2,3}={3,2,1} (3){0}??≠ (4)0∈{0} (5){0}(6){0} ??∈= 分析 空集是任何集合的子集,是任何非空集合的真子集. 解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的. 说明:含元素0的集合非空. 例2 列举集合{1,2,3}的所有子集. 分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个. 解含有个元素的子集有:; 0? 含有1个元素的子集有{1},{2},{3}; 含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个. 说明:对于集合,我们把和叫做它的平凡子集.A A ? 例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ?? ________. 分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}. 答 共3个. 说明:必须考虑A 中元素受到的所有约束. 例设为全集,集合、,且,则≠ 4 U M N U N M ?? [ ] 分析 作出4图形. 答 选C . 说明:考虑集合之间的关系,用图形解决比较方便.

点击思维 例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是 [ ] A A B B A B C A B D A B .=...≠≠ ??? 分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1, y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A . 说明:要注意集合中谁是元素. M 与P 的关系是 [ ] A .M =U P B .M =P C M P D M P ..≠?? 分析 可以有多种方法来思考,一是利用逐个验证(排除 )的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

2019高考数学不等式真题汇总

(2019?上海7)若x ,y R +∈,且 123y x +=,则y x 的最大值为 . 【解答】 解:132y x = +… ∴298 y x =?; 故答案为:98 (2019?上海5)已知x ,y 满足002x y x y ????+? ……?,则23z x y =-的最小值为 . 【解答】解:作出不等式组002x y x y ????+? ……?表示的平面区域,由23z x y =-即23x z y -=,表示直线在y 轴上的截距的相反数的13 倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-,故答案为:6-. (2019?浙江3)若实数x ,y 满足约束条件340,340,0,x y x y x y -+??--??+? …?…则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+??--??+? …?…作出可行域如图,联立340340x y x y -+=??--=?,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122 y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10. 故选:C .

(2019?天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03 x x +-<; 由一元二次不等式的解法“小于取中间,大于取两边” 可得:213 x -<<; 即:2{|1}3x x -<<;或2(1,)3 -; 故答案为:2(1,)3 -; (2019?天津文理13)设0x >,0y >,25x y += 的最小值为 . 【解答】解:0x >,0 y >,25x y +=, 则===; 由基本不等式有: = 当且仅当=时,即:3xy =,25x y +=时,即:31x y =??=?或232x y =???=??时;等号成立, 故答案为:

高中数学必修一集合经典题型总结(高分必备)

慧诚教育2017年秋季高中数学讲义 必修一第一章复习 知识点一集合的概念 1.集合 一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示. 2.元素 构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示. 3.空集 不含任何元素的集合叫做空集,记为?. 知识点二集合与元素的关系 1.属于 如果a是集合A的元素,就说a________集合A,记作a________A. 2.不属于 如果a不是集合A中的元素,就说a________集合A,记作a________A. 知识点三集合的特性及分类 1.集合元素的特性 ________、________、________. 2.集合的分类 (1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示 名称非负整数集(自然数集)整数集实数集 符号N N*或N+Z Q R 知识点四集合的表示方法 1.列举法 把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法.

2.描述法 用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系 1.子集与真子集 定义符号语言图形语言(Venn图) 子集如果集合A中的________元素 都是集合B中的元素,我们就 说这两个集合有包含关系,称 集合A为集合B的子集 ________(或 ________) 真子集如果集合A?B,但存在元素 ________,且________,我们 称集合A是集合B的真子集 ________(或 ________) 2.子集的性质 (1)规定:空集是____________的子集,也就是说,对任意集合A,都有________. (2)任何一个集合A都是它本身的子集,即________. (3)如果A?B,B?C,则________. (4)如果A?B,B?C,则________. 3.集合相等 定义符号语言图形图言(Venn图) 集合相等如果集合A是集合B的子集 (A?B),且 ________________,此时, 集合A与集合B中的元素是 一样的,因此,集合A与集 合B相等 A=B 4.集合相等的性质 如果A?B,B?A,则A=B;反之,________________________.

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

高中数学集合总结+题型分类+完美解析

集合 【知识清单】 1.性质:确定性、互易性、无序性. 2.元素和集合的关系:属于“∈”、不属于“?”. 3.集合和集合的关系:子集(包含于“?”)、真子集(真包含于“≠ ?”). 4.集合子集个数=n 2;真子集个数=12-n . 5.交集:{}B x A x x B A ∈∈=且| 并集:{}B x A x x B A ∈∈=或| 补集:{}A x U x x A C U ?∈=且| 6.空集是任何非空集合的真子集;是任何集合的子集. 题型一、集合概念 解决此类型题要注意以下两点: ①要时刻不忘运用集合的性质,用的最多的就是互易性; ②元素与集合的对应,如数对应数集,点对应点集. 【No.1 定义&性质】 1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2- ②集合{} R x x y y ∈-=,1|2 与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素 A.0 B.1 C.2 D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构 成的集合,而是x 和y 的值的集合,也就是一个点. 答案:A

详解:在①中方程022=++-y x 等价于? ??=+=-020 2y x ,即???-==22y x 。因此解集应为 (){}2,2-,错误; 在②中,由于集合{} R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理, {}R x x y y ∈-=,1|中R y ∈,错误; 在③中,集合{}01|<-x x 即1,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A. 2.下列命题中, (1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素; (2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素; (4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等. 错误的命题的个数是( ) A .0 B .1 C .2 D .3 分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数. 答案:C 详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确; (2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确; (4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C . 3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( ) A.9 B.8 C.7 D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性. 答案:B 详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6; 当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8; 当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

最新高考数学总复习经典练习题--集合·(理)

课时作业1 §1.1集合 对应学生用书P 261 一、选择题 1.下列集合中恰有2个元素的集合是( ) A .{x 2-x =0} B .{y |y 2-y =0} C .{x |y =x 2-x } D .{y |y =x 2-x } 解析:A 选项集合表示只有一个方程x 2-x =0的集合.B 中,∵ y 2-y =0,∴y =0或y =1,∴{y |y 2-y =0}={0,1},恰有两个元素; C 中集合表示函数y =x 2-x 的定义域,为R ; D 中集合表示的是y = x 2 -x 的值域为???? ?? -14,+∞. 答案:B 2.(2013·浙江卷)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(?R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞) 解析:?R S ={x |≤-2},又T ={x |-4≤x ≤1},故(?R S )∪T ={x |x ≤1}. 答案:C 3.(2013·广州测试)已知全集U =A ∪B 中有m 个元素,(?U A )∪(?U B )中有n 个元素,若A ∩B 非空,则A ∩B 的元素个数为( ) A .mn B .m +n C .m -n D .n -m 解析:作出韦恩图,可知m >n ,且A ∩B 的元素个数肯定比m 小,只有C 符合要求.

答案:C 4.设集合A ={3,log 2(a 2-3a +4)},集合B ={2,a,6},若A ∩B ={1},则集合A ∪B 的真子集个数是( ) A .15 B .12 C .7 D .3 解析:依题意,log 2(a 2-3a +4)=1,所以a 2-3a +4=2,即a 2 -3a +2=0,解得a =1或a =2,而B ={2,a,6},所以a =2舍去.所以A ∪B ={1,2,3,6},因此集合A ∪B 的真子集的个数是24-1=15. 答案:A 5.(2013·天津调查)若实数a ,b ,c 满足a 2+a +b i<2+c i(其中i 2=-1),集合A ={x |x =a },B ={x |x =b +c },则A ∩?R B 为( ) A .? B .{0} C .{x |-22,x ∈R },若A ?B ,则实数a ,b 必满足( )

相关文档
相关文档 最新文档