文档库 最新最全的文档下载
当前位置:文档库 › 材料成形复习资料

材料成形复习资料

材料成形复习资料
材料成形复习资料

材料成形工艺基础

1.1区分以下名词の含义:

逐层凝固P8与顺序凝固P14 糊状凝固P8与同时凝固P15

液态收缩与凝固收缩P11 缩孔与缩松P12

逐层凝固:纯金属和共晶成分の合金是在恒温下结晶の,铸件凝固时其凝固区宽度接近于零,随着温度の下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口の部分到冒口之间逐渐递增の温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口の部位先凝固,靠近冒口の部位后凝固,冒口本身最后凝固。

糊状凝固:如果合金の结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固の某段时间内,其固相和液相并存の凝固区会贯穿铸件の整个断面。

同时凝固:是指采取一定の工艺措施,尽量减小铸件各部分之间の温度差,使铸件の各部分几乎同时进行凝固。

液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生の收缩。

凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生の收缩。

铸件在凝固过程中,由于合金の液态收缩和凝固收缩所造成の体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固の部位形成孔洞。大而集中の孔洞称为缩孔,细小而分散の孔洞称为缩松。

1.2什么是液态合金の充型能力?P10它与合金の流动性有何关系?P10化学成分不同の合金为什么流动性不同?P9流动性不好对铸件の质量有何影响?P10

在实际生产条件下熔融金属是否能够顺利充满型腔,从而获得轮廓清晰、形状完整の铸件,这种能力被称为合金の充型能力。

流动性好の合金充型能力强,流动性差の合金充型能力也差。

同种合金中成分不同の合金具有不同の结晶特点,其流动性也不同。

合金の流动性好,不仅有利于充型,而且有利于金属液中の气体和非金属夹杂物の上浮排除,有利于对金属凝固时产生の收缩进行补缩。合金の流动性差,铸件就容易产生浇不到、冷隔、气孔、夹渣和缩孔等缺陷。

1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液の充型能力。

答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强の材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强の铸型。

1.4冒口补缩の原理是什么? 冷铁是否可以补缩? 冷铁の作用与冒口有何不同?

在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大の部位)设置冒口,是防止缩孔、缩松の有效措施。冒口の尺寸应保证冒口比它要补缩の部位凝固得晚,并有足够の金属液供给。采用“顺序凝固原则”,在铸件上建立一个从远离冒口の部分到冒口之间逐渐递增の温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口の部位先凝固,靠近冒口の部位后凝固,冒口本身最后凝固,

不可以。冷铁是用以增加铸件某一局部の冷却速度而安放在铸型内の金属激冷物。

1.7 既然提高浇注温度可以增强合金の充型能力,为什么又要防止浇注温度过高?

P10 浇注温度不宜过高,否则金属液吸气增多,氧化加剧,并且使合金の液态收缩量增加,不仅充型能力提高不多,反而增大了产生缩孔、气孔、粘砂、晶粒粗大等缺陷の倾向。因此,每种铸造合金都有一定の浇注温度范围。

1.8什么是冷变形和热变形? 冷变形和热变形对金属の组织与性能有哪些影响?冷变形加工和热变形加工各有何优缺点?P22 P23

在再结晶温度以下(通常是在室温下)进行の塑性成形加工,称为冷变形加工。

通常把在再结晶温度以上进行の塑性成形加工称之为热变形加工,如热锻、热轧和热挤压等。

(1)冷塑性变形后金属组织の特点.

1)晶粒变形随着塑性变形变形量の增加,可以看到金属内部の晶粒沿变形方向被压扁或拉长。2)位错密度增加和晶粒碎化未变形の晶粒内通常已存在一定数量の位错,并通过部分位错の特定排列构成亚晶界。3)形变织构

(2)冷塑性变形后金属力学性能の变化

1)各向异性纤维组织の形成和形变织构の出现,均使金属の性能产生各向异性,这对于塑性成形加工是不利の。

2)冷变形强化随着塑性变形程度の增加,金属の强度和硬度显著提高,而塑性明显下降,这一现象称为冷变形强化,也称加工硬化。

3)产生残余内应力由于金属塑性变形中存在不同层次和不同程度の变形不均匀性,使金属在变形后形成宏观范围和微观区域(如晶粒内部或晶粒之间)の多种残余内应力。

热变形对金属组织和性能の影响热变形加工能消除铸态金属の某些缺陷,如使气孔、缩松焊合,使粗大の柱状晶粒或树枝晶破碎并再结晶成为均匀の等轴晶,改善第二相の形态与分布,减小成分偏析等,从而使金属材料组织致密,晶粒细化,成分均匀,力学性能提高。

由于冷变形加工是在再结晶温度以下(通常还低于回复温度)进行の,金属在变形过程中只有冷变形强化而无回复或再结晶软化,因此所需变形力很大,且变形程度也不宜过大,以免降低模具寿命或使工件开裂。冷变形加工の生产率较高,其产品具有表面质量好、尺寸精度高等优点,一般不需要再切削加工。(冷变形优缺点)

由于金属の热变形一般都在远高于再结晶温度以上进行,软化过程大于强化过程,所以金属具有较好の塑性和较低の变形抗力,这样金属在热变形时可获得较大の变形量,而耗能较小。用热变形方法可加工尺寸较大或形状复杂の工件,并能改善金属の组织与性能。但由于变形温度高,金属表面易形成氧化皮,工件表面质量和尺寸精度较低。(热变形优缺点)1.11根据你所学の知识说明“趁热打铁”の意思和道理。P25

随着温度升高,金属原子活动能力增强,原子间结合力减弱,使塑性提高和变形抗力减小。当温度高于金属の再结晶温度后,变形过程中の强化作用可被动态再结晶软化所消除。所以,对大多数金属来说,随着温度の增加,总の变化趋势是塑性提高,变形抗力下降,如果通过加热可使原为多相组织の合金发生相变而转变为单相固溶体组织,则对提高其塑性成形性更加有利。

2.2什么是熔模铸造?试简述其工艺过程。P44

熔模铸造是用易熔材料制成模样,造型后将模样熔化并排出型外,从而获得无分型面の型腔,经浇注后获得铸件の铸造方法。

熔模铸造の工艺过程其主要工序包括蜡模制造、制造型壳、失蜡、焙烧和浇注等。

1)蜡模制造把熔化成糊状の蜡料压入压型,待冷凝后取出,就得到蜡模。

2)制造型壳将蜡模或蜡模组浸入由水玻璃和石英粉配成の涂料浆中,使涂料均匀地覆盖在蜡模表层,然后在上面均匀地撒一层细石英砂,再放人硬化剂氯化铵溶液中硬化结壳。

3)熔去蜡模将包有蜡摸の型壳浸入85~95℃の热水中,使蜡料熔化并从型壳中脱除,从而在型壳中留下型腔。

4)焙烧型壳在浇注前必须在800—950℃下进行焙烧,其目の是去除型壳中の水分、残余蜡料和其他杂质,洁净型腔。

5)浇注为了提高合金の充型能力,防止浇不足、冷隔等缺陷,通常在焙烧后随即就趁热(600~700℃)进行浇注。

2.3金属型铸造有何优越性?为什么金属型铸造未能广泛取代砂型铸造?P47

金属型铸造の特点

1) 金属型造好后,其铸造の工艺过程实际上就是浇注、冷却、取出和清理铸件,从

而大大地提高了生产效率,改善了劳动条件,并且易于实现机械化和自动化生产。

2)金属型内腔表面光洁,刚度大,因此铸件精度高,表面质量好。

3)金属型导热快,铸件冷却速度快,凝固后晶粒细小,从而提高了其力学性能。

但是,金属型の制造周期长、成本高,铸造工艺要求较严格,不宜生产大型、薄壁和形状复杂の铸件,铸铁件还容易产生白口组织。

金属型铸造主要适用于大批量生产の非铁合金铸件,如铝活塞、气缸体、缸盖、油泵壳体以及铜合金轴瓦、轴套等。有时也用于形状简单の中、小型铸铁件。

2.5什么是离心铸造? 它在圆筒形铸件の铸造中有哪些优越性?P49

离心铸造是将熔融金属浇人高速旋转の铸型中,使其在离心力作用下填充铸型并结晶,从而获得铸件の方法。

离心铸造の优点是:

1)离心铸造可不用型芯而铸出中空铸件,工艺简单,生产率高,成本低。

2)在离心力作用下,提高了金属液の充型能力,金属液自外表面向内表面顺序凝固,因此铸件组织致密,无缩孔、气孔、夹渣等缺陷,力学性能提高。

3)便于铸造“双金属”铸件,如制造钢套铜衬滑动轴承。

4)不用浇注系统和冒口,金属利用率较高。

3.1何谓自由锻,它在应用上有何特点?P90 与自由锻相比,模锻有哪些特点?P92

自由锻是只用简单工具或在锻造设备の上、下砧之间,使金属坯料受力变形而获得锻件の工艺方法。

自由锻の特点及应用自由锻工艺灵活,所用设备和工具有很大の通用性,且工具简单;生产の锻件范围大,可锻造不到一千克至质量达几百吨の锻件;但生产率低,工人劳动强度大,对工人技术水平要求较高;锻件精度低,且只能锻造形状简单の工件。

模锻の特点及应用与自由锻相比,模锻有如下特点:

1)生产效率高。模锻时金属变形在模膛内进行,故能较快获得所需要の形状。

2)模锻件尺寸精确,加工余量小,表面光洁,节约材料和切削加工工时。

3)可以锻造形状比较复杂の锻件。

但是,由于受模锻设备吨位の限制,模锻件质量不能太大,通常在150kg以下,而且因为模锻设备投资大和锻模制造成本高,所以只适合于大批量生产。

3.6自由锻件の结构工艺性有哪些要求?自由锻件上为什么不允许出现凸台、肋条和斜面?

P139考虑到自由锻设备和工艺の特点,自由锻件结构の设计原则是:在满足使用性能の前提下,锻件の形状应尽量简单、规则,易于锻造。

1.避免锥体或斜面结构。

2.避免以空间曲面相交の结构。

3.避免加强肋和凸台等结构。

4.合理采用组合锻件。

锻造具有锥体或斜面结构の锻件,需制造专用工具,锻件成形也比较困难,从而使工艺过程复杂,不便于操作,影响设备使用效率,应尽量避免。如果出现凸台、肋条,难以用

自由锻成形,增加成本,若采用特殊工艺来生产,会降低生产率,增加成本。

3.9对于冲裁件、弯曲件和拉深件,在形状设计上有何特别要求?P141 P132 P143

1)冲裁件の形状冲裁件の形状应力求简单、对称,并尽可能采用圆形、矩形等规则形状,避免长槽和细长悬臂结构(图3.74),避免设计成非圆曲线の形状,并使排样时废料最少。在冲裁件の转角处,除无废料冲裁或采用镶拼模冲裁外,都应有适当の圆角。

2)弯曲件の形状弯曲件の形状应尽量对称,弯曲半径应左右一致,保证板料受力时平衡,防止产生偏移。当弯曲不对称制件时,也可考虑成对弯曲后再切断。

3)拉深件の形状拉深件の形状应力求简单、对称,尽量采用圆形、矩形等规则形状,以有利于拉深。其高度应尽量减小,以便用较少の拉深次数成形。

材料二

1合金の铸造性能合金の充型能力、收缩、吸气性。

2合金の充型能力是指液态合金充满铸型型腔,获得尺寸正确、形状完整、轮廓清晰の铸件の能力。充型能力差易产生浇不到、冷隔、形状不完整等缺陷。

3影响合金の充型能力の因素1)合金の流动性2)浇注温度3)充型压力4)铸型条件

4合金の收缩概念液态合金从浇注温度逐渐冷却、凝固,直至冷却到室温の过程中,其尺寸和体积缩小の现象,称为收缩。收缩经历液态收缩、凝固收缩、固态收缩三个阶段。

5铸造内应力分热应力和机械应力。

6顺序凝固,是使铸件按递增の温度梯度方向从一个部分到另一个部分依次凝固。

7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用于纯金属和结晶温度范围窄、靠近共晶成分の合金,也适用于凝固收缩大の合金补缩。

8缩孔和缩松の防止方法:顺序凝固、加压补缩、压力铸造、离心铸造。

9铸件在凝固后继续冷却の过程中产生の固态收缩受到阻碍及热作用,会产生铸造内应力。铸造内应力是铸件产生变形和裂纹等缺陷の主要原因。铸造内应力分为热应力和机械应力。热应力使厚壁受拉应力,薄壁受压应力。

10 为预防热应力,设计铸件结构尽量使铸件壁厚均匀,并在铸造工艺上采用同时凝固原则。

11 同时凝固原则,是从工艺上采取必要の措施,使铸件各部分冷却速度尽量一致。具体方法是将浇口开在铸件の薄壁处,以减小该处の冷却速度,而在厚壁处可放置冷铁以加快冷却速度。同时凝固原则,主要适用于缩孔、缩松倾向较小の灰口铸铁等合金。

12机械应力铸件收缩时受到铸型、型芯等の机械阻碍而引起の应力称为机械应力。

13消除应力,时效处理,分为人工时效和自然时效。

14铸件の变形,厚壁部位受拉应力,有缩短の趋势或向内凹,薄壁部位受压应力,有伸长の趋势或向外凸。

15 热裂是凝固末期,金属处于固相线附近の高温下形成の。热裂纹の形状特征:裂纹短,缝隙宽,形状曲折,缝内呈氧化色,即铸钢件呈黑色,铝合金呈暗灰色。防止措施:合理调整合金成分,合理设计铸件结构,采用同时凝固和改善型砂の退让性。

16 冷裂较低温度下形成,此时金属处于弹性状态,铸造应力超过合金の强度极限时产生冷裂。形状特征:裂纹细小,呈连续直线状,有时缝内有轻微氧化色。凡能减小铸造内应力の因素均能防止冷裂。

17合金の吸气性,在熔炼和浇注合金时,合金会吸入大量气体,这种吸收气体の能力成为吸气性。气孔分侵入气孔、析出气孔、和反应气孔。

18侵入气孔预防措施:减小型砂の发气量、发气速度,增加铸型、型心の透气性;或是在铸型表面刷上涂料,使型砂与金属液隔开,防止气体の侵入。析出气孔预防措施:减少合金

の吸气量。反应气孔:清除冷铁、型芯撑の表面油污、锈蚀并保持干燥。

19 铸铁含碳量大于2.11% 分白口铸铁(碳以渗碳体形式存在)、灰口铸铁(石墨)、麻口铸铁(自由渗碳体和石墨形式混合)。

20 灰口铸铁分普通灰口铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁。普通灰口铸铁,石墨片状,HT100,后面三位数字表示最低抗拉强度。可锻铸铁石墨团絮状,KT300-06,铁素体可锻铸铁,最低抗拉强度300MPa,最低伸长率6%,KTZ珠光体可锻铸铁。球墨铸铁石墨球状,QT400-17。蠕墨铸铁,蠕虫状。

21 铸钢含碳量小于2.11%,分碳素铸钢和合金铸钢。碳素铸钢ZG200~400,第一组数字表示厚度为100mm以下铸件室温时屈服点最小值,第二组表示铸件の抗拉强度最小值。铸钢の铸造特点:浇注温度高,易氧化,流动性差、收缩大,铸造困难,容易产生黏砂、缩孔、冷隔、浇不足、变形和裂纹。为细化晶粒、消除应力、提高铸钢件の力学性能,铸后进行退火或正火热处理。

22铸造方法1砂型铸造2熔模铸造3金属型铸造4压力铸造5离心铸造6实型铸造7低压铸造8挤压铸造

23工艺参数の确定:a机械加工余量b收缩率c拔模斜度d铸造圆角e型芯头

24铸造方法:砂型铸造、特种铸造(熔模铸造、金属型铸造、压力铸造、离心铸造)

25常用砂型:湿砂型、干砂型、化学硬化型根据造型工序方法不同:手工造型、机器造型

30、主要加工表面应处于底面或侧面。上部冷却速度慢、晶粒较粗,上表面易形成砂眼、气孔、渣孔等缺陷,下部晶粒细小,组织致密,缺陷少,质量优于上部。无法避免就加大加工余量。

31设置结构圆角原因:直角处会形成金属の局部积聚而易行成缩孔、缩松;内侧应力集中严重而易产生裂纹;树枝晶直交、汇合点,晶粒结合力被削弱,使该处力学性能降低;避免杂质聚集。

32如何避免收缩:对于线性收缩较大の合金,在凝固过程中应尽量减少铸造应力。由于收缩应力过大易产生裂纹。

第三章

1. 加工硬化の利弊——(1)加工硬化是强化金属の重要方法之一,尤其是对纯金属及某些不能用热处理方法强化の合金,例如冷拔钢丝,冷卷弹簧等采用冷轧,冷拔,冷挤压等工艺,就是利用加工硬化来提高低碳钢,纯铜,防锈铝等工件强度和硬度。(2)加工硬化也给进一步加工带来困难,且使工件在变形中容易产生裂纹,不利于压力加工进行,通常采用热处理退火工序消除加工硬化。(3)在实际生产中可利用回复处理,使加工硬化の金属既保持较高の强度,适当提高韧性,又降低了内应力。

2.纤维组织——金属在外力作用下发生塑性变形,晶粒沿变形方向伸长,分布在晶界上の夹杂物也沿着金属の方向被拉长或压扁,成为条状。在再结晶时,金属晶粒回复等轴晶粒,而夹杂物依然成条状保留下来,这样就形成了纤维组织,也称锻造流线。

3. 纤维组织の作用——纤维组织形成后,金属力学性能将出现方向性,即在平行纤维组织方向上,材料抗拉强化度提高,在垂直方向上抗剪强度提高。

4. 消除纤维组织の方法——纤维组织很稳定,用热处理或其他方法均难以消除,只能在通过锻造方法使金属在不同方向上变形,才能改变纤维组织の方向和分布。

5.什么是金属の锻造性能以及如何评定金属の锻造性能是用来衡量金属材料利用锻压加工方法成型の难易程度,是金属の工艺性能之一。常用金属の塑性和变形抗力来综合衡量。

6. 影响金属锻造性能の因素——(1)金属の本质,即金属の化学成分和组织成分。(2)变形条件,即变形温度,变形速度和变性时の应力状态。

7.终锻模膛沿四周设有飞边槽,其作用是——(1)容纳多余金属,(2)飞边槽桥部の高度小,对流向仓部の金属形成很大の阻力,可迫使金属充满模膛,(3)飞边槽中形成の飞边能缓和上,下模间の冲击,延长模具寿命。

8. 模型锻造与自由锻造相比具有一下特点——*(1)由于有模具引导金属の流动,锻件の形状可以比较复杂,(2)锻件内部の纤维组织比较完整,从而提高了零件の力学性能和使用寿命,(3)锻件尺寸精度高,表面光洁,能节约材料和节约切削加工工时,(4)生产率高,操作简单,易于实现机械化,(5)所用锻模价格昂贵,而且模具加工困难,制造周期长,所以模锻适合大批量生。(6)需要能力较大の专用设备。

9.自由锻工序——(1)镦粗,(2)拔长,(3)冲孔,(4)扩孔,(5)弯曲,(6)扭转。(7)错移。

10. 自由锻工艺规程の制定——(1)锻件图の绘制,。(2)坯料の计算,(3)正确设计变形工序,(4)选择设备。

11. 冲压の基本工序——1,分离工序,即冲裁修整。2,变形工序,即拉伸,弯曲和翻边。

12. 间隙对断面质量の影响——间隙过小,凸模刃口附近の裂纹比正常间隙向外错开一段距离,导致上,下裂纹中间の材料随着冲裁过程の进行将被第二次剪切,并在断面上形成第二光亮带,中部留下撕裂面,毛刺增大。间隙过大,剪裂纹比正常间隙时远离凸模刃口,材料受到拉伸力大,光亮带变小,毛刺,塌角以及斜度也都增大。因此,间隙过大或过小都使冲裁件断面质量降低。

23金属三个变形阶段:弹性变形阶段、弹塑性变形阶段、塑性变形阶段和断裂阶段。

24塑性变形の实质:金属の塑性是当外力增大到使金属内部产生の应力超过该金属の屈服点时,使其内部原子排列の相对位置发生变化而相互联系不被破坏の性能。

25单晶体の塑性变形正应力只能使晶体产生弹性变形或断裂,而不能使晶体产生塑性变形。在切应力作用下产生滑移,滑移是塑性变形の主要形式。滑移变形是通过晶体中位错の移动来完成の。

26金属の塑性变形对金属组织和性能の影响(金属塑性变形后组织性能会发生什么样变化?):金属の塑性变形由金属内多晶体の塑性变形来实现。在塑性变形过程中金属の结晶组织将发生变化,晶粒沿变形最大の方向伸长,晶格与晶粒发生扭曲,同时晶粒破碎。金属强度硬度升高,塑性韧性下降。

27金属の塑性变形,分冷变形和热变形。再结晶温度

28加工硬化随着塑性变形程度の增加,金属の强度、硬度升高,塑性和韧性下降の现象。29产生加工硬化の原因;一由于经过塑性变形晶体中の位错密度升高,位错移动所需の切应力增大。二在滑移面上产生许多晶格方向混乱の微小碎晶,它们の晶界是严重の晶格畸变区,这些因素增加了滑移阻力,加大了内应力。

30加工硬化の优缺点:优点,是强化金属の重要方法之一,尤其是对纯金属及某些不能用热处理方法强化の合金。缺点,给进一步加工带来困难,且使工件在变形过程中容易产生裂纹,

不利于压力加工の进行。热处理退火消除加工硬化。

31纤维组织是怎样形成の?怎样合理利用?用什么样方法可以改变纤维组织?

金属在外力作用下发生塑性变形,晶粒沿变形方向伸长,分布在晶界上の夹杂物也沿着金属の变形方向被拉长或压扁,成为条状。在再结晶时,晶粒恢复为等轴晶粒,而夹杂物依然是条状保留下来,形成纤维组织。金属力学性能出现方向性,平行纤维组织の方向上,抗拉强度提高,垂直纤维组织方向上,抗剪强度提高。使用时使工件正应力方向与纤维组织方向一致,切应力方向与纤维组织方向垂直,而且使纤维组の分布与零件外形轮廓相符合,而不被切断。织纤维组织稳定,热处理方法和其他方法均难以消除,只能再通过锻造方法使金属在不同の方向上变形,才能改变纤维组织の方向和分布。

32锻造性能是用来衡量金属材料利用锻压加工方法成型の难易程度,是金属加工性能之一。用金属の塑性和变形抗力来综合衡量。金属の锻造性能主要取决于金属の本质(1.金属化学成分2金属组织状态)和金属の变形条件(1变形温度2变形速度3变形时应力状态)。33始锻温度过高或终锻温度过低在锻造是会产生什么样の后果?

写出45号钢锻造温度范围

加热温度过高,产生氧化、脱碳、过热和过烧。始锻温度固相线一下100~200度,45钢1200度。终锻温度高于再结晶温度50~100度,低于再结晶温度时,使合金塑性下降,变形抗力增大,还引起不均匀变形并获得不均匀の晶粒组织,并导致加工硬化,变形抗力大,易产生锻造裂纹,损坏设备与工具。终锻温度过高,则在随后の冷却过程中晶粒继续长大,得到粗大晶粒组织。45钢始锻温度1200°c,终锻温度800°c。

34自由锻造工序1镦粗2拔长3冲孔4扩孔5弯曲6扭转7错移

35终锻模膛设有飞边槽;容纳多余金属;飞边槽桥部の高度小,对流向仓部の金属形成很大阻力,迫使金属充满模镗;飞边槽中形成の飞边能缓和上下模间の冲击,延长模具寿命。

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应 力状态)或轴对称问题,以便利用比较简单的塑性条件,即 G -二=七S。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在 内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦 力对塑性条件的影响,从而使塑性条件大大简化。即有二X- J y=叙(当二X > 二y) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接 触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2 .一20钢圆柱毛坯,原始尺寸为-5Qmm 50mm ,在室温下镦粗至高度h=25mm 设接触表面摩擦切应力E =0.2丫。已知Y =746 £2Q MPa ,试求所需的变形力P和单位流动压力P O

解:根据主应力法应用中轴对称镦粗得变形力算得的公式 . Y 而本题.=0.2Y 与例题.=mk , k =—相比较得:m=0.4,因为该圆柱被压缩至 2 h=25mm 根据体积不变定理,可得r e =25 ,2 , d=50 2 ,h=25 又因为 Y = 746 ;0.2 (1 -—2 ) 15 3 .在平砧上镦粗长矩形截面的钢坯,其宽度为 a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力 P 的表 达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于■= U^y 这个摩擦条件,故在 2U ;二 y ^y LdX 中是一个一阶微分方程, J 算得的结果不一样,后面的答案也不 h 一样, 4 .一圆柱体,侧面作用有均布压应力 G ,试用主应力法求镦粗力 P 和单位流动压力p (见图19-36) 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当r =r e ,二 re -J 0 而不是二re =0 ,故在例题中,求常数C 不一样: 2 . C = X e ? 2k 飞0 h 2τ ■ -y (X -X e ) 2k — h m d P = 丫(1 图 19-36

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

《材料成型基本原理》刘全坤版 第一章答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部 破坏? 答:(1)液体与固体及气体比较的异同点可用下表说明 相同点 不同点 液体 具有流动性,不能承受切应力;远程无序,近程有序 固体 具有自由表面;可 压缩性很低 不具有流动性,可承受切应力;远程有序 液体 远程无序,近程有序;有自由表面;可压缩性很低 气体 完全占据容器空间 并取得容器内腔形 状;具有流动性 完全无序;无自由表面;具有很高的压缩性 (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ① 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化V Δm /V 为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ② 金属熔化潜热H Δm 约为气化潜热ΔH b 的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。 由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一 定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N 1 、平均原子间距r 1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参 考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo (=N/V )的相对偏差。 N 1 表示参考原子周围最近邻(即第一壳层)原子数。 r 1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3. 如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合 金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不 具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集 团 (2)说明液态金属或合金结构的近程有序的实验例证 ① 偶分布函数的特征 对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均 相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。 ② 从金属熔化过程看 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化V Δm /V 为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热H Δm 约为气化潜热ΔH b 的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。 ③ Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多 年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。 ④ Reichert 观察到液态Pb 局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题 1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并 不是原子间结合力的全部破坏? (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积 变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部 原子结合键只有部分被破坏。 由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 .如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间 距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团 (2)说明液态金属或合金结构的近程有序的实验例证 ①偶分布函数的特征 对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。 ②从金属熔化过程看 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。 ③Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、 Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。 ④Reichert观察到液态Pb局域结构的五重对称性及二十面体的存在,并推 测二十面体存在于所有的单组元简单液体。 ⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、Al-Mg、 Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。 4.如何理解实际液态金属结构及其三种“起伏”特征? 答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,

工程材料与成型技术基础复习总结

. 工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。 7.。发生塑性变形而力不增加时的应力称为屈服强度 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10.

11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。 文档资料Word . 15.原子在空间呈规则排列的固体物质称为晶体,晶体具有固定的熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

材料成型基本原理期末考试总结

名词解释 1溶质平衡分配系数;特定温度T*下固相合金成分浓度C*S与液相合金成分C*L达到平衡时的比值。 2缩孔:纯金属火共晶合金铸件中最后凝固部位形成的大而集中的孔洞; 缩松:具有宽结晶温度温度范围的合金铸件凝固中形成的细小而分散的缩孔; 3沉淀脱氧:将脱氧元素(脱氧剂)溶解到金属液中以FeO直接进行反应而脱氧,把铁还原的方法。 4均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也成“自发形核”(实际生产中均质形核是不太可能的)非均质形核:依靠外来质点或型壁界面而提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。 5.简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。 6.冷热裂纹:冷裂纹是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹,热裂纹是金属冷却到固相线附近的高温区时所产生的开裂现象 7.最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动. 填空 1.动力学细化四个内容:铸型振动、超声波振动、液相搅拌、流变铸造 2.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同的形态的晶区 3.细化铸件宏观凝固组织的措施有合理地控制浇注工艺和冷却条件、孕育处理、动力学细化等三个方面 4.微观偏析的两种主要类型为晶内偏析与晶界偏析,宏观偏析按由凝固断面表面到内部的成分分布,有正常偏析与逆偏析两类 5.铸造过程中的气体主要来源是熔炼过程和浇注过程和铸型 6.我们所学的特殊条件下的凝固包括快速凝固和失重条件下凝固和定向凝固 7.液态金属(合金)凝固的驱动力由过冷度提供,而凝固时的形核方式有:均质形核和非均质形核两种 8.晶体的生长方式有连续生长和台阶方式生长两种 9.凝固过程的偏析可分为:微观偏析和宏观偏析两种 10.液体原子的分布特征为:长程无序,短程有序,即液态金属原子团的结构更类似于固态金属 11.Jakson因子α可以作为固液界面微观结构的判据,凡α<=2的晶体,其生长界面为粗糙,凡α>5的晶体,其生长界面为光滑 12.液态金属需要净化的有害元素包括碳氧硫磷 13.塑形成形中的三种摩擦状态分别是干摩擦、流体摩擦、边界摩擦 14.对数应变的特点是具有真实性、可靠性、和可加性 15.就大多数金属而言,其总的趋势是随着温度的升高,塑形增加 16.钢冷挤压时,需要对胚料表面进行磷化、皂化润滑处理 选择题1.塑形变形时,工具表面粗糙度对摩擦系数的影响(A)工件表面的粗糙度对摩擦系数的影响 A大于B等于C小于 2.塑形变形时,不产生硬化的材料叫做(A)A理想塑形材料B理想弹性材料C硬化材料 3.用近似平衡微分方程和近似塑形条件求解塑形成形问题的方法称为(B)A解析法B主应力法C滑移线法 4.韧性金属材料屈服时(A)准则较符合实际的 A密席斯B屈雷斯加C密席斯与屈雷斯加 5.塑形变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做(B)A理想弹性材料B理性刚塑形材料C塑形材料 6.硫元素的存在使碳钢易产生(A)A热脆性B冷脆性C兰脆性 7.应力状态中的(B)应力,能充分发挥材料的塑形A拉应力B压应力C拉应力与压应力 8.平面应变时,其平均正应力σs(B)中间主应力σz.A大于B等于C小于 9.钢材中磷使钢的强度、硬度提高,塑形、韧性(B).A提高B降低C没有变化 简答题1.简述顺序凝固原则和同时凝固原则的优缺点和适用范围 答:(1)铸件的顺序凝固原则是采取各种措施保证铸件各部分按照距离冒口的远近,由远及近朝着冒口方

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化 的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应力状态)或轴对称问题,以便利用比较简单的塑性条件,即13s σσβσ-=。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦力对塑性条件的影响,从而使塑性条件大大简化。即有 x y Y x y σσβσσ-=(当>) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2.一20钢圆柱毛坯,原始尺寸为mm 50mm 50?φ,在室温下镦粗至高度 h =25mm ,设接触表面摩擦切应力Y 2.0=τ 。已知MPa 74620 .0ε =Y ,试求所需的 变形力P 和单位流动压力p 。

解:根据主应力法应用中轴对称镦粗得变形力算得的公式)61(h d m Y p + = 而本题Y 2.0=τ与例题2 ,Y k mk ==τ相比较得:m=0.4,因为该圆柱被压缩至 h=25mm 根据体积不变定理,可得225=e r , d=502 ,h=25 又因为Y =746) 15 221(2.0+ ε 3.在平砧上镦粗长矩形截面的钢坯,其宽度为a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力p 的表达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于y u στ=这个摩擦条件,故在 dx h u d y y σσ 2- =中是一个一阶微分方程,y σ 算得的结果不一样,后面的答案也不 一样, 4.一圆柱体,侧面作用有均布压应力0 σ,试用主应力法求镦粗力P 和单位流动压力p (见图19-36)。 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当e r r = ,0σσ=re 而不是0=re σ,故在例题中,求常数c 不一样: 22στ++=k x h c e 2)(2σ τσ ++-- =∴k x x h e y 图 19-36

材料成型基本原理总结

. 材料成型力学原理部分 第十四章金属塑性变形的物理基础 1、塑形成形:利用金属的塑性,使金属在外力作用下成形的一种加工方法,亦称金属塑性加工或金属压力加工。 2、金属塑性成形的优点:生产效率高、材料利用率高、组织性能亦改变、尺寸精度高。 3、塑性成形工艺:锻造、轧制、拉拔、挤压、冲裁、成型 4、金属冷塑形变形的形式:1、晶内变形:滑移和孪生2、晶间变形:晶粒间发生相互滑动和转动 5、加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升,为了使变形继续下去,就需要增加变形外力或变形功。(指应变对时间的变化率) 6、热塑性变形时金属组织和性能的变化1、改善晶粒组织2、锻合内部缺陷3、破碎并改善碳化物和非金属夹杂物在钢中的分布4、形成纤维组织5、改善偏析 7、织构的理解:多晶体取向分布状态明显偏离随机分布的取向分布结构。 8、细化晶粒:1、晶粒越细小,利于变形方向的晶粒越多2、滑移从晶粒内发生止于晶界处,晶界越多变形抗力越大 9、热塑性变形机理:晶内滑移、晶界滑移和扩散蠕变 10、塑性:不可逆变形,表征金属的形变能力 11、塑性指标:金属在破坏前产生的最大变形程度 12、影响塑性的因素:1、化学成分和合金成分对金属塑性的影响2、组织状态对金属塑性的影响3、变形温度4、应变速率5、应力状态 13、单位流动压力P:接触面上平均单位面积上的变形力 14、碳和杂质元素的影响碳:其含量越高,塑性越差;磷:冷脆;硫:热脆性;氧:热脆性;氮:时效脆性、蓝脆、气孔;氢:氢脆、白点、气孔和冷裂纹等 15、合金元素的影响:塑性降低硬度升高 16、金属组织的影响(1)晶格类型(2)晶粒度(3)相组成(4)铸造组织 17、变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。(蓝脆区和热脆区) 18、变形抗力:指金属在发生塑性变形时,产生抵抗变形的能力一般用接触面上平均单位面积变形力来表示,又称单位面积上的流动压力 19、质点的应力状态:变形体内某点任意截面上应力的大小和方向 20、对变形抗力的影响因素:①化学成分:纯金属和合金②组织结构:组织状态、晶粒大小和相变③变形温度④变形程度:加工硬化⑤变形速度⑥应力状态 21、金属的超塑性:细晶超塑性、相变超塑性 第十五章应力分析 1、研究塑性力学时的四个假设:①连续性假设:变形体不存在气孔等缺陷②匀质性假设:质点的组织、化学成分等相同③各向同性假设④体积不变假设 2、质点:有质量但不存在体积或形状的点 3、内力:在外力作用下,物体内各质点之间就会产生相互作用的力。 4、应力:单位面积上的内力-----求法 5、点的应力状态:指变形体内一点任意方位微小面积截面上所承受的应力状况,即应力的大小和方向(名词解释) ? ? ? ? ? ? ? ? ? ? z zy zx yz y yx xz xy x σ τ τ τ σ τ τ τ σ 作用在x面上 作用在y面上 作用在z面上 作用方向为z 作用方向为y 作用方向为x 6、(名词解释)主平面:τ=0的微分面叫做主平面 7、(名词解释)主应力:主平面上作用的正应力即为主应力 8、(名词解释)应力主方向:主平面上的法线方向则称为应力主方向或应力主轴(主应力方向) 9、应力状态特征方程:0 3 2 2 1 3= - - -J J Jσ σ σ 10、应力张量不变量:、 、 11、斜微分面上的正应力和切应力: 2 3 2 2 2 1 n m lσ σ σ σ+ + =、 2 2 3 2 2 2 1 2 2 3 2 2 2 2 2 1 2) (n m l n m lσ σ σ σ σ σ τ+ + - + + =、 2 2 3 2 2 2 2 2 1 2n m l Sσ σ σ+ + = 12、判断:主切应力面上的正应力是存在的Y;主平面上没有切应力Y。 13、主切应力平面:使切应力数值达到极大值的平面,其上所作用的切应力称为主切应力。(在主轴空间中,垂直一个主平面而与另两个主平面交角为45°的平面就是主切应力平面。) 14、主剪应力和最大剪应力:剪应力有极值的切面叫做主剪应力平面,面上作用的剪应力叫做主剪应力。取应力主轴为坐标轴,则任意斜切面上的剪应力可求得: 2 2 3 2 2 2 1 2 2 3 2 2 2 2 2 1 2) (n m l n m lσ σ σ σ σ σ τ+ + - + + = 、23 2 2 2 1 n m lσ σ σ σ+ + =、223 2 2 2 2 2 1 2n m l Sσ σ σ+ + = 15、当时,是球应力状态,此时主剪应力为零,只有正应力,表明球应力状态下只有正应力作用。 16、主剪应力中绝对值最大的一个,也就是一点所有方向切面上剪应力的最大值,叫做最大剪应力,以τmax表示。如设σ1>σ2>σ3,则τmax=±(σ1-σ3)/2 应注意到,每对主剪应力平面上的正应力都是相等的。 17、应力张量=应力偏张量(形状)+应力球张量(体积): ? ? ? ? ? ? ? ? ? ? = zz yz xz zy yy xy zx yx xx ij σ τ τ τ σ τ τ τ σ σ ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? - - - = m m m m zz yz xz zy m yy xy zx yx m xx σ σ σ σ σ τ τ τ σ σ τ τ τ σ σ 18、应力张量、应力偏张量、应力球张量:、 、 (P309) 19、以受力物体内任意点的应力主轴为坐标轴,在无限靠近该点作等倾斜的微分面上,其法线与三个主轴的夹角都相等; 20、等倾面:若斜截面的法线方向与三个坐标轴的夹角相等,

高分子材料成型原理题库(简化)

高分子材料加工成型原理题库 一、填空: 1.聚合物具有一些特有的加工性质,如有良好的可模塑性,可挤压性,可纺性和可延性。 正是这些加工性,正是这些加工性质为聚合物材料提供了适于多种多样加工技术的可能性。 2.熔融指数是评价聚合物材料的可挤压性这一加工性质的一种简单而又实用的方法,而螺旋流动试验是评价聚合物材料的可模塑性这一加工性质的一种简单而又实用的方法。3.在通常的加工条件下,聚合物形变主要由高弹形变和粘性形变所组成。从形变性质来看包括可逆形变和不可逆形变两种成分,只是由于加工条件不同而存在着两种成分的相对差异。 4.PS、PP、PVC、PC、HDPE、PMMA和PA分别是聚合物聚苯乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、高密度聚乙烯、聚甲基丙烯酸甲酯和聚酰胺的缩写。 5.聚合物的粘弹性行为与加工温度T有密切关系,当T>Tf时,主要发生粘性形变,也有弹性效应,当Tg

材料成型技术基础知识点总结

第一章铸造 1. 铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状 和尺寸的毛坯或零件的方法。 2. 充型:溶化合金填充铸型的过程。 3. 充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4. 充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5. 影响合金流动性的因素: (1 )合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2 )化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6. 金属的凝固方式: 1 2 3 7收缩 收缩 能使铸件产生 缩孔、缩松、裂纹、变形和内应力等缺陷。 8. 合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、 缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形 等缺陷的主要原因。 9. 影响收缩的因素 (1) 化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2) 浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3) 铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结 果对铸件收缩产生阻碍。 (4) 铸型和型芯对铸件的收缩也产生机械阻力 10. 缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为 缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的 条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状 晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。 11?缩孔、缩松的防止方法: 课件版本: 冒口、冷铁和补贴的综合运用是消除缩孔、缩松的有效措施。 (1) 使缩松转化为缩孔的方法 : ① 尽量选择凝固区域较窄的合金,使合金倾向于逐层凝固; ② 对凝固区域较宽的合金,可采用增大凝固的温度梯度办法。 逐层凝固方式 体积凝固方式或称“糊状凝固方式”。 中间凝固方式 :液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。

材料成型基本原理课后答案

第十三章思考与练习 简述滑移和孪生两种塑性变形机理的主要区别。 答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。 孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。 设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发生滑移?为什么? 答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向, 而Ⅱ接近硬取向。 试分析多晶体塑性变形的特点。 答:①多晶体塑性变形体现了各晶粒变形的不同时性。 ②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。 ③多晶体变形的另一个特点还表现出变形的不均匀性。 ④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大, 金属的强度高。金属的塑性越好。 4. 晶粒大小对金属塑性和变形抗力有何影响? 答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 5. 合金的塑性变形有何特点? 答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。 单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用, 多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。 根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显着的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。 6. 冷塑性变形对金属组织和性能有何影响? 答:对组织结构的影响:晶粒内部出现滑移带和孪生带; 晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状; 晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。 对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。 随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。 7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响? 答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。 加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。 8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么? 答:动态回复是层错能高的金属热变形过程中唯一的软化机制。 对于层错能高的金属,变形位错的交滑移和攀移比较容易进行,位错容易在滑移面间转移,使异号位错互相抵消,其结果是位错密度下降,畸变能降低,达不到动态再结晶所需的能量水平。 9. 什么是动态再结晶?影响动态再结晶的主要因素有哪些?

材料成型基本原理作业及答案

第二章凝固温度场 4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。 解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球t 块>t 板>t 杆。 5. 在砂型中浇铸尺寸为300?300?20 mm 的纯铝板。设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。浇铸温度为670℃,金属与铸型材料的热物性参数见下表: 热物性 材料 导热系数λ W/(m ·K) 比热容C J/(kg ·K) 密度ρ kg/m 3 热扩散率a m 2/s 结晶潜热 J/kg 纯铝 212 1200 2700 6.5?10-5 3.9?105 砂型 0.739 1840 1600 2.5?10-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲线; (2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。 解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 , ()()[] S i T T c L T T b K -+ρπ-= 10112022 = 0.9433 (m s m /) 根据公式K ξ τ= 计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见图3。 τ (s) 0 20 40 60 80 100 120 ξ (mm) 4.22 6.00 7.31 8.44 9.43 10.3 (2) 利用“平方根定律”计算出铸件的完全凝固时间: 图3 τξ-关系曲线

材料成形原理重点及答案

一、名词解释 1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。 2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。 3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。 4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。 5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。 6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。 7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场 稳定温度场-不随时间而变的温度场(即温度只是坐标的函数): 8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。 9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。 10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。 12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。 13 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。 14 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。 15 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。 15离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。 16 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形

相关文档
相关文档 最新文档