文档库 最新最全的文档下载
当前位置:文档库 › 航天产品部件可靠性分析简介

航天产品部件可靠性分析简介

航天产品部件可靠性分析简介
航天产品部件可靠性分析简介

航天电连接器的可靠性分析

电连接器及其组件是航天系统工程重要的配套接口元件,散布在各个系统和部位,负责着信号和能量的传输。其连接好坏,直接关系到整个系统的安全可靠运行。由电连接器互连组成各种电路,从高频到低频、从圆形到矩形、从通过上百安培的大电流连接器到通过微弱信号的高密度连接器、从普通印制板连接器到快速分离脱落等特种连接器,几乎所有类型品种的电连接器在航天系统工程中都得到了大量应用。

例如某型号地面设备就使用了各种电连接器400套。任何一个电连接器接点失灵,都将导致航天器的发射和飞行失败。战术导弹弹体内的导引头、战斗机、发动机、自动驾驶仪等关键部件,都是通过由电连接器为基础器件,使成百上千个接点的电缆网组成一个完整的武器互连系统,一个接点出现故障,即会导致整个武器系统的失效。

一、航天电连接器的可靠性分析

电连接器的可靠性包括固有可靠性和使用可靠性两方面。图1列出了影响电连接器可靠性的主要因素。

1.固有可靠性

电连接器的固有可靠性一般是指电连接器制造完成时所具有的可靠性,它取决于电连接器的设计、工艺、制造、管理和原材料性能等诸多因素。电连接器制作完成后,其失效模式和失效机理已固定,因此只有在可靠性设计的基础上,保证生产线上严格采取可靠性技术措施(如生产工艺的严格控制、生产环境条件的控制、各工序过程中的质量检测等),才能保证电连接器的固有可靠性。

(1)设计可靠性

①合理选材

选材是保证电连接器电性能和可靠性的重要前提,电连接器所用材料决定了工作温度上限,而起决定作用的是绝缘材料、环境密封电连接器所用的密封材料、胶粘材料、壳体和接触件所用材料等。材料选用涉及连接器的力学、电气、环境等性能要求和材料本身的理化性能等。其中材料热学性能(耐热温度、热导率、高温强度及热变形等)是设计必须考虑的主要因素。电连接器绝缘体选用不同的绝缘材料,其绝缘耐压等电气性能也有明显差异。电连接器壳体和接触件选用时,除考虑导电、导热和结构刚度外,还应考虑相互配合和接触材料的电化学相容性和硬度匹配性。

②结构型式

结构型式是决定产品可靠性的重要因素,合理的结构型式既避免了误插,又提高了结构的稳定性。

(2)工艺可靠性

壳体的加工工艺、绝缘体的注塑和胶接工艺、接触件的成型和镀金工艺、电连接器总装工艺和与线缆的端接工艺等,对产品固有可靠性至关重要。

镀金接触件用手工滚镀,往往导致个别插孔内壁局部没有膜层,呈氧化色,而引进超声波镀金生产线,并用仪器严格监控镀金层厚度,使内壁形成均匀膜层,提高了接触可靠性。

(3)检验可靠性

电连接器在各关键工序加强检验,通过严格的工艺筛选,剔除失效产品。交收试验时,除检查常规电性能指标外,还应百分之百进行外观质量检查,特别是多余物检查十分重要,除目视和借助放大镜外,必要时可用体视显微镜判定缺陷性质。在交收试验和二次补充筛选过程中,必须按标准规定的质量水平严格控制。当超过不合格率时,应对每批

产品进行失效分析,查清失效原因,并采取有效的改进措施。

2.使用可靠性

电连接器在使用过程中会遇到电、热、机械和化学等应力的作用,如忽视了正确选型和贮存使用等情况,即使使用经二次补充筛选的产品,仍会出现失效。特别是随着近年来许多小型化、高密度、多功能等新型电连接器的不断出现,许多设计工艺人员还未正确掌握这些新型电连接器的使用方法,导致由于使用不当造成的失效案例在整个电连接器失效统计中占有较大比例。

(1)选型可靠性

应根据现场使用实际要求选择最适当的电连接器型号,主要考虑以下几点因素。

①电气参数:工作电压(取耐电压值的三分之一)、额定电流、内导体和外导体的接触电阻、特性阻抗、电压驻波比、屏蔽性能及抗干扰性能等。

②机械参数:振动冲击、碰撞机械寿命、单孔分离和总分离力等。

③环境参数:温度、湿度、振动、冲击、盐雾、灰尘、辐射、电磁干扰及密封性能(包括漏率、水压、淋雨)等。

④安全参数:接点间和接点与外壳间的绝缘电阻、耐电压、阻燃性、质量等。

⑤端接方式:焊接、压接、绕接、刺破连接、螺钉连接等。

⑥结构形式:接触件的可拆卸性、接触件的种类和结构形式等。

⑦连接、锁紧方式:卡口式、直插式式、螺纹连接式、中心螺纹杆式等。

⑧安装方式:面板式、电缆式、螺母式、穿墙式等。

⑨操作适宜性:操作空间大小、防误操作结构、连接到位指示等。

⑩尾部附件形式。

⑾外形尺寸。

⑿应根据在整机系统中的作用和地位,选择适宜的质量等级。

⒀界面型谱的选择。应根据实际使用的芯数,查取接触件额定电流下降Q值(见表1)。

表1 接触件额定电流下降Q值表

根据接触件承载电流通过以下公式计算接触件额定电流

单个接触件额定电流≥单个接触件承载电流/(1-Q)(1)

再根据计算出的接触件额定电流值查出接触件插配直径(见表2)。

表2 接触件插配直径表

最后选择所需要的电连接器型谱。注意应使电缆线芯与接触件接线孔直径匹配,避免过粗的线芯损伤接触件端接处。

(2)贮存可靠性

贮存环境的温度、湿度、清洁度和腐蚀性气体都将影响电连接器的性能参数,特别是湿度对绝缘电阻尤为敏感。如H2S、SO2等气体,会使接触件镀层表面生成一层氧化物或硫化物绝缘膜,在潮湿环境中反应速度更快,生成更厚的绝缘膜,严重影响电连接器的接触可靠性。为此,对航天等高可靠电连接器的贮存环境条件要求十分严格。特别是经二次筛选的电连接器,必须十分重视贮存环境条件。根据QJ2227“航天用电子元器件贮存和超期复验要求”,电连接器的贮存环境条件分为三类,见表3。

表3 贮存环境条件分类表

(3)安装可靠性

安装人员应首先了解电连接器的技术特性,不得过负荷、过应力使用,应按操作使用方法正确连接和分离,避免烧坏或损伤电连接器。连接前检查是否存在多余物,是否有外壳锈蚀、针孔异样、锁紧机构不灵活等现象,避免尾罩受力松动和电缆线芯受力损伤。使用过程中应小自轻放,不能乱丢乱放,防止接触件受力弯曲和受污染。连接不具备防误操作电连接器前,必须认真核实电连接器型号和标识是否相对应,并应正确定位,防止反插或误插。电连接器长期分离时,应盖上防护罩,否则容易发生插针碰歪、变形或多余物掉人等问题。对电连接器进行性能测试时,应使用合格和新的插头(座)或模拟插针,不能用探针或铜棒插人插孔进行测量,否则会造成插孔松弛导致接触不良。为保证端接后电连接器的可靠性,应严格按规范选用型号规格适的连接导线和接线工具,掌握正确的焊接、压接、绕接等工艺。防止虚焊、虚压、端接脱落、断裂和污染等事故。特别是焊接后应及时清理焊瘤、残渣等。分解电连接器时必须按要求拆装和检查,应特别注意有无漏装、是否到位、接点序号是否准确、橡胶件有无绞结等。装配后应进行相应的试连接,以保证互换性。拆装时应妥善保管零件,防止松散失效。

二、保证航天电连接器可靠性的措施

1.选用列入国防科工委军用元器件管理中心公布的合格产品清单中的电连接器。

2.选用列入航天系统工程“各型号电子元器件优选目录”中的电连接。

3.合理选用质量等级。

4.优先选用标准或通用型电连接器,慎用非标准或新型号电连接器。

5.做好交收试验和二次补充筛选。

6.重视电连接器的使用可靠性。

三、航天电连接器的可靠性预计

对国产电连接器的失效率可采用国军标GJB/Z299B-98“电子设备可靠性预计手册”进行预计,可根据下式求出。

λp=λb×πE×πQ×πP×πK×πC

式中:λp—工作失效率;

λb—基本失效率;

πE一环境系数;

πQ—质量系数;

πP—接触件系数;

πK—插拔系数;

πC—插孔结构系数。

对进口电连接器的失效率可采用美军标MIL-HDBK-217E“电子设备可靠性预计”进行预计,可根据下式求出。

λp=λb×πE×πP×N λcyc(3)

式中:N—工作插脚数,对于插拔率≤40次/1000h的电连接器,λcyc项可忽略不计。

四、结论

大量的统计数据表明,在航天产品的质量缺陷中,属于电连接器问题部分约占70%,剩下的30%才属于制造、装运等其它问题。航天产品的设计开发是航天产品质量的源头。因此,在航天产的设计工作中有效进行电连接器的可靠性分析工作,以提高航天产品的质量就显得尤为迫切。

不断提高航天产品质量是装备部门、军工企业和各科研院所不可推卸的责任。开展航天电连接器的可靠性分析工作对识别并消除航天产品潜在的质量缺陷有着举足轻重的作用。事先很好地进行电连接器的可靠性分析工作,能够容易地对航天产品进行设计更改,从而减少或消除因设计带来更大损的机会。适时进行航天电连接器的可靠性分析工作,将极大地提高航天产品的质量。

参考文献:

[1]杨奋为.航天用电连接器的可靠性研究[J].上海航天,1997,(1).

[2]杨奋为.航天用电连接器的选用[J].电子元件,2001,(2).

[3]杨奋为.航天电连接器的可靠性分析与试验[J].质量与可靠性,2005,(5).

[4]国军标GJB/Z299B-98“电子设备可靠性预计手册”[K].

[5]美军标MIL-HDBK-217E“电子设备可靠性预计”[K].

航天电子元器件可靠性设计与分析

航天电子元器件可靠性设计与分析 摘要:电子元器件作为航天产品基础组成部分,其质量与可靠性是影响航天产 品研发成败的重要因素之一。提高航天型号产品可靠性,必须提高电子元器件的 可靠性。本文概述了国内外电子元器件可靠性的研究进程,同时对电子元器件的 固有可靠性设计和使用可靠性设计进行分析并制定措施,进一步提高电子元器件 的可靠性,从根本上保证今后航天型号产品的高可靠性。 关键词:航天电子元器件;可靠性设计;分析 1国内电子元器件可靠性研究情况 20世纪70年代,航天部门率先提议严格电子元器件筛选。1978年,鉴于型 号任务的需要,航天工业部编制了《电子元器件优选手册》。1993年,由于通信卫星工程及武器型号研制的需要,航天工业总公司编制了《电子元器件选用目录》。1997年,根据载人航天工程和型号任务的需要,航天工业总公司编制了新版的《电子元器件选用目录》。2000年1月6日,中国航天科技集团公司元器件可靠性专家组在北京召开成立大会。该专家组的成立,促进了元器件可靠性的发展,对今后元器件的高可靠性具有深远意义。为了编制新的适应当前型号任务需 要的电子元器件选用目录,通过调研各院所和生产单位,收集并分析大量资料和 手册,于2003年7月2日,航天科技集团公司发布《航天型号电子元器件选用 目录》。在源头上将元器件的选用规范化落到实处,提高型号质量及可靠性。 2航天对电子元器件的特殊要求 2.1高可靠性 根据元器件环境试验的数据,如果某批电子元器件在实验室条件下出现故障 的可能性为1,那么在飞机使用条件下的可能性则为6.5,而在火箭使用条件下则为80。正是这种使用条件的不同,对电子元器件失效率要求也不同,家用电视机 要求器件失效率为100非特~500非特,地面通讯设备要求器件失效率为20非特~200非特,而航天飞行器按照长期、中期、短期工作寿命而要求器件失效率 分别为1非特,10非特,100非特。因此,实现元器件的高可靠性,是航天工程 和国防建设的需要。 2.2多品种、小批量、更新换代快 近代航天技术发展较为迅速,导弹、卫星不断更新换代。所用电子元器件也 要随航天产品更新。但是航天产品与其它工业品相比,所用电子元器件品种甚多,使用量却不大,这就很难调动电子元器件生产单位的积极性,同时也为采购管理 带来了一定的困难,这一点在市场经济的条件下表现得尤为突出。 2.3重量轻、体积小、功耗低 为了减少航天产品发射和运行时消耗的能量,要求航天用电子元器件尽可能 重量轻、体积小和功耗低。因此航天产品上经常采取集成度高、功耗低的电子元 器件。其质量保证难度很大,这些电子元器件往往用于关键部位,直接影响了航 天产品的质量和研制进度。 2.4特殊的环境适应性 航天产品要在恶劣的环境下工作或贮存,要求电子元器件具有相应的环境适 应性。在组成航天器的零部件中,电子元器件是相对比较脆弱的,而其使用条件 却是比较苛刻的。由于它们要经受各种高低温、潮热、高低气压、振动冲击、加 速度、辐射等环境的影响,所以对元器件可靠性的要求也越来越高。例如卫星对 电子元器件由不同的抗辐射要求,不同用途的导弹还有抗湿热、烟雾等特殊要求。

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

质量和可靠性报告

×密 产品名称(产品代号) 质量和可靠性报告 编制:日期: 校对:日期: 审核:日期: 标审:日期: 会签:日期: 批准:日期: 第 1 页共 15 页

目次 1 概述 (3) 1.1 产品概况 (3) 1.2 工作概述 (3) 2 质量要求 (3) 2.1 质量目标 (3) 2.2 质量保证原则 (3) 2.3 产品质量保证相关文件 (3) 3 质量保证控制 (3) 3.1 质量管理体系控制 (4) 3.2 研制过程质量控制 (4) 4 可靠性、维修性、测试性、保障性、安全性情况 (9) 4.1 可靠性 (9) 4.2 维修性 (10) 4.3 测试性 (10) 4.4 保障性 (11) 4.5 安全性 (11) 5 质量问题分析与处理 (12) 5.1 重大和严重质量问题分析与处理 (12) 5.2 质量数据分析 (12) 5.3 遗留质量问题及解决情况 (13) 5.4 售后服务保证质量风险分析 (13) 6 质量改进措施及建议 (13) 7 结论意见 (13) 第 2 页共 15 页

产品名称(产品代号) 质量和可靠性报告 1 概述 1.1 产品概况 主要包括: a)产品用途; b)产品组成。 1.2 工作概述 主要包括: a) 研制过程(研制节点); b) 研制技术特点; c) 产品质量保证特点; d) 产品质量保证概况; e) 试验验证情况; f) 配套情况; g) 可靠性维修性测试性保障性安全性工作组织机构及运行管理情况; h) 可靠性维修性测试性保障性安全性文件的制定与执行情况。 i) 其它情况。 2 质量要求 2.1 质量目标 说明通过产品质量工作策划对实现顾客产品的要求,承制方需要满足期望的质量并能持续保持该质量的能力。 2.2 质量保证原则 简要通过产品质量工作策划对实现顾客产品的要求的原则。如:用户至上,持续改进,过程控制,激励创新,一次成功等。 2.3 产品质量保证相关文件 简要说明产品质量保证大纲的要求及质量保证相关文件。 3 质量保证控制 第 3 页共 15 页

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

可靠性、维修性设计报告

XX研制 可靠性、维修性设计报告 编制: 审核: 批准: 工艺: 质量会签: 标准化检查: XX 2015年4月

目录 1 概述 (2) 2维修性设计 (2) 2.1 设计目的 (2) 2.2设计原则 (2) 2.3 维修性设计的基本容 (2) 2.3.1 简化设计 (2) 2.3.3 互换性 (2) 2.3.5 防差错设计 (3) 2.3.6 检测性 (3) 2.7 维修中人体工程设计 (3) 3 维修性分析 (3) 3.1 产品的维修项目组成 (3) 3.2 系统平均故障修复试件(MTTR)计算模型 (4) 3.3 MTTR值计算 (4) 4可靠性设计 (5) 4.1可靠性设计原则 (5) 4.2 可靠性设计的基本容 (5) 4.2.1简化设计 (6) 4.2.2降额设计 (6) 4.2.3缓冲减振设计 (6) 4.2.4抗干扰措施 (6) 4.2.5热设计 (6) 5 可靠性分析 (6) 5.1可靠性物理模型(MTBF) (6) 5.2可靠性计算 (7)

1 概述 XX是集音视频无缝切换、实时字幕叠加、采集、存储、传输、显示于一体的综合性集成设备。在平台上集成了视频编辑、图片编辑、文稿编辑软件,编辑后的视频、图片能通过平台播放出去。系统配置2-4部4G手机,置专用软件,通过云平台与本处理平台连接,把手机视频、图片、草图、短消息、位置实时上传到处理平台上,处理平台可以实时将手机视频无缝切播出去,在手机上可以在地图上看到相互的轨迹与位置,平台的地图窗口也可以看到手机的位置与轨迹。也可通过联网远程对本平台上的实时视频流或存储的视频资料进行选择读取播放、存储、编辑。使用专门定制的带拉杆的高强度安全防护箱,外形尺寸56x45x26cm, 重量小于20kg, 便于携带。 2维修性设计 2.1 设计目的 维修性工程是XX研制系统工程的重要部分,为了提高XX的可维修性,XX 在研制过程中必须进行有效的维修性设计,提出设计的目标,以便在随后的试制、试验等环节中严格贯彻设计要求,保证XX的维修性达到设计的要求。 2.2设计原则 设计遵循可达性、互换性、防差错性、标准化的原则;严格参照GJB368A-94《装备维修性通用大纲》的规定执行。 2.3 维修性设计的基本容 2.3.1 简化设计 2.3.1.1不少于2部4G手机,远程采集音频视频图片,绘制草图,短消息,手机实时运动轨迹,发送到平台上显示。手机与平台通信应适当加密。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

可靠性、有效性、可维护性和安全性(RAMS)

1 目的 为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。 2 适用范围 适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制。 3 定义 RAMS:可靠性、有效性、可维护性和安全性。 R——Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量亦称可靠度。 A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。 M——Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。维修性的概率度量亦称维修度。 S——Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员 的人身安全。 FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。 MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。 MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。 数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。 4 职责 4.1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。 4.2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。 4.3 工程技术部负责确定能保证实现设计可靠性的工艺方法。 4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。 4.5制造部负责严格按产品图样、工艺文件组织生产。 4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

机械产品可靠性设计综述

机械产品可靠性设计综述 一、可靠性设计的基本概念 可靠性设计的定义: 定义1:对系统和结构进行可靠性分析和预测,采用简化系统和结构、余度设计和可维修设计等措施以提高系统和结构可靠度的设计。 定义2:为了满足产品的可靠性要求而进行的设计。 可靠性设计即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。设计水平是保证产品可靠性的基础。 可靠性设计是产品的一个重要的性能特征,产品质量的主要指标之一,是随产品所使用时间的延续而在不断变化的。可靠性设计的任务就是确定产品质量指标的变化规律,并在其基础上确定如何以最少的费用以保证产品应有的工作寿命和可靠度,建立最优的设计方案,实现所要求的产品可靠性水平。 可靠性问题的研究是因处理电子产品不可靠问题于第二次世界大战期间发展起来的。可靠性设计用在机械方面的研究始于20世纪60年代,首先应用于军事和航天等工业部门,随后逐渐扩展到民用工业。 可靠性设计的一个重要内容是可靠性预测,即利用所得的资料预报一个零件、部件或系统实际可能达到的可性,预报这些零部件或系统在规定的条件下和在规定时间内完成规定功能的概率。在产品设计的初期阶段,及时完成可靠性预测工作,可以了解产品各零部件之间可靠性的相互关系,找出提高产品可靠性的有效途径。 二、可靠性设计的基本原理 (1)选择设计方案时尽量不采用还不成熟的新系统和零件,尽量采用已有经验并已标准化的零部件和成熟的技术。 (2)结构简化,零件数削减。如日本横河记录仪表10年中无件数削减30%,大大提高了可靠性。 (3)考虑功能零件的可接近性,采用模块结构等以利于可维修性。 (4)设置故障监测和诊断装置,保证零件部设计裕度(安全系数/降额)。 (5)必要时采用功能并联、冗余技术。如日本的液压挖掘机等,采用双泵、双发动机的冗余设计。 (6)失效安全设计(Failure Safe),系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。 (7)安全寿命设计(Safe Life),保证使用中不发生破坏而充分安全的设计。例如对一些重要的安全性零件如汽车刹车,转向机构等要保证在极限条件下不能发生变形、破坏。 (8)加强连接部分的设计分析,例如选定合理的连接、止推方式。考虑防振,防冲击,对连接条件的确认。 (9)可靠性确认试验,在没有现成数据和可用的经验时,这是唯一的手段。尤其机械零部件的可靠性预测精度还很低。主要通过试验确认。 三、可靠性设计的基本方法 为了使设计时能充分地预测和预防故障,把更多的失效经验设计到产品中,因而必须邦助设计人员掌握充分的故障情报资料和设计依据。采取以下措施:

可靠性软件评估报告

可靠性软件评估报告 目前,关于可靠性分析方面的软件产品在市场上出现的越来越多,其中比较著名的有以下3种产品:英国的ISOGRAPH、广五所的CARMES和美国Relex。总体上来说,这些可靠性软件都是基于相同的标准,因此它们的基本功能也都十分类似,那么如何才能分辨出它们之间谁优谁劣呢?根据可靠性软件的特点和我厂的实际情况,我认为应主要从软件的稳定性、易用性和工程实用性三个方面进行考虑,现从这几个方面对上述软件进行一个简单的论证,具体内容如下。 稳定性 要衡量一个可靠性软件的好坏,首先是要看该软件的运行是否稳定。对一个可靠性软件来说,产品的稳定性十分重要。一个没有经过充分测试、自身的兼容性不好、软件BUG很多、经常死机的软件,用户肯定是不能接受的。当然,评价一个可靠性分析软件是否具有良好的稳定性,其最好的证明就是该产品的用户量和发展历史。 ISOGRAPH可靠性分析软件已将近有20年的发展历史,目前全球已有7000多个用户,遍布航空、航天、铁路、电子、国防、能源、通讯、石油化工、汽车等众多行业以及多所大学,其产品的每一个模块都已经过了isograph的工程师和广大用户的充分测试,因而其产品的稳定性是毋庸置疑的。而广五所的CARMES和美国Relex软件相对来说,其用户量比较少,而且其产品的每一个模块的发布时间都比isograph软件的相应模块晚得多,特别是一些十分重要的模块。 例如,isograph的故障树和事件树分析模块FaultTree+是一个非常成熟的产品,它的发展历史已经有15年了。Markov模块和Weibull模块也具有多年的发展历史,这些模块目前已经拥有一个十分广泛的用户群,它们已经被Isograph的工程师和大量的客户广泛的测试过,产品的稳定性值得用户信赖。而Relex的故障树和事件树相对比较新,它大约在2000年被发布,而Markov模块和Weibull模块2002年才刚刚发布,这些模块还没有经过大量用户的实际使用测试,其功能的稳定性和工程实用性还有待于时间的考验。广五所的CARMES软件的相应模块的发布时间就更晚了,有些甚至还没有开发出来,而且其用户主要集中在国内,并没有经过国际社会的广泛认可。 易用性 对一个可靠性分析软件产品来说,其界面是否友好,使用是否方便也十分重要,这关系到工程师能否在短时间内熟悉该软件并马上投入实际工作使用,能否充分发挥其作用等一系列问题。一个学习十分困难、使用很不方便的软件,即使其功能十分强大,用户也不愿使用。 ISOGRAPH软件可以独立运行在Microsoft Windows 95/98/Me/2000/NT/XP平台及其网络环境,软件采用大家非常熟悉的Microsoft产品的特点,界面友好,十分容易学习和使用。该软件提供了多种编辑工具和图形交互工具,便于用户在不同的模块间随时察看数据和进行分析。你可以使用剪切、复制、粘贴等工具,或者直接用鼠标“托放”来快速的创建各种分析项目,你还可以将标准数据库文件,如Microsoft Access数据库、Excel电子表格以及各种格式的文本文件作为输入直接导入到isograph软件中,使项目的建立变得非常简单。另外,Isograph 各软件工具都提供了功能强大的图形、图表和报告生成器,可以用来生成符合专业设计要求的报告、图形和表格,并可直接应用到设计分析报告结果中。 ISOGRAPH软件的一个显著特性就是将各软件工具的功能、设计分析信息、分析流程等有机地集成在一起,其全部的分析模块可以在同一个集成界面下运行,这既可以保证用户分析项目的完整性,还可以使用户在不同的模块间共享所有的信息,不同模块间的数据可以实时链接,而且还可以相互转化。例如,你可以在预计模块和FMECA模块之间建立数据链接,当你修改预计模块中的数据时,FMECA模块中对应的数据会自动修改,这既可以节省

厂房建筑结构可靠性鉴定报告材料完整版

厂房建筑结构可靠性鉴定报 告 委托单位: 建筑地址: 鉴定日期: 报告编写人: 报告审核人: 报告签发人: xxxx有限公司 xx年 xx月 xx日

目录 建筑结构可靠性鉴定报告 (1) 一、建筑物概况 (3) 二、鉴定目的、内容、依据及检测仪器 (3) 2.1 鉴定目的 (3) 2.2 检测鉴定内容和方法 (3) 2.3 主要依据 (4) 2.4 检测仪器设备 (4) 三、建筑使用历史及图纸资料调查 (4) 3.1 建筑使用历史、现状和使用环境调查 (4) 3.2 建筑资料调查 (5) 四、结构构件工作状态检查 (5) 4.1 地基基础检查情况 (5) 4.2 上部结构变形、损伤检查情况 (5) 4.2.1 上部承重结构 (5) 4.2.2 围护构件 (6) 五、建筑主体结构构件检测 (6) 5.1 结构平面布置图测绘 (6) 5.2构件尺寸检测 (6) 5.3钢筋配置检测 (8) 5.4 材料强度检测 (9) 5.4.1混凝土强度检测 (9) 5.4.2钢材的强度检测 (11) 5.5钢结构构件焊缝检测 (11) 六、结构承载力验算 (11) 6.1 计算参数 (12) 6.2 结构分析模型 (13) 6.3 柱承载力验算及安全性评定 (13) 6.3.1柱承载力验算 (13)

6.3.2框架柱的轴压比验算 (14) 6.4 梁承载力验算及安全性评定 (15) 6.5 屋桁架杆件验算及安全性评定 (15) 七、结构系统的鉴定评级 (16) 八、结构可靠性鉴定结论 (17) 九、处理建议 (18) 评级解释 (20) 附图一:结构平面布置图............................... 错误!未定义书签。附件1 部分现场工作照片及部分缺陷照片................. 错误!未定义书签。附件2 混凝土芯样抗压强度检验报告..................... 错误!未定义书签。附件3 钢材力学及工艺性能检验报告..................... 错误!未定义书签。附件4 焊缝质量检测报告............................... 错误!未定义书签。

维修性设计与分析

可靠性设计准则 可靠性设计准则是设计人员在长期的设计实践中积累起来的、能提高产品可靠性的行之有效的经验和方法,并归纳、总结形成 具有普遍适用价值的设计原则。它是设计人员进行产品设计时必须遵 循的准则,以避免重复发生过去已发生过的故障或设计缺陷。 可靠性设计准则一般是针对某个具体产品制定的。但也可以将产品的可靠性设计准则的共性部分上升为某类产品的可靠性设计 准则。如:HB7251-95《直升机可靠性设计准则》、HB7232-95《军用 飞机可靠性设计准则》、GJB2635-96《军用飞机腐蚀防护设计和控制 要求》等。 维修性设计与分析 1.维修性模型的建立 维修性模型用来表达系统与各单元维修性的关系,维修性参数与各种设计及保障要素参数之间的关系,供维修性分配、预计及评定用。 建立维修性模型的一般程序可如图1所示。首先明确分析的目的和要求,对分析对象进行描述,找出对欲分析参数有影响的因素,并确定其参数。然后建立数学模型,通过收集数据和参数估计,不断对模型进行修改完善。 图1 建立维修性模型的一般程序 2.维修性分配 维修性分配是为了把产品的维修性定量要求按给定准则分配给各组成单元而进行的工作。 (1)维修性分配的一般程序 1)进行系统维修职能分析,确定每一个维修级别需要行使的维修保障的职能和流程。 2)进行系统功能层次分析,确定系统各组成部分的维修措施和要素。

3)确定系统各组成部分的维修频率。 4)将系统维修性指标分配到各单元,研究分配方案的可行性,进行综合权衡。 (2)维修性分配方法常用方法见表1。 表1 维修性分配的常用方法 3.维修性预计 维修性预计是为了估计产品在给定工作条件下的维修性而进行的工作。它的目的是预先估计产品的维修性参数,了解其是否满足规定的维修性指标,以便对维修性工作实施监控。 (1)维修性预计的一般程序 1)收集资料。首先要收集并熟悉所预计产品设计资料和可靠性数据。还要收集有关维修与保障方案及其尽可能细化的资料。 2)系统的职能与功能层次分析。 3)确定产品设计特征与维修性参数的关系。 4)预计维修性参数值。利用各种预计模型,估算各单元和系统的维修性参数值。 (2)维修性预计方法维修性预计的方法有多种,常用的维修性预计方法要点见表2。 表2 常用的维修性预计方法 (3)工程应用中注意事项 1)预计的组织实施。低层次产品的维修性估计与产品设计过程结合紧密,通常由设计人员进行。系统、设备的正式维修性预计,涉及面宽且专业性强,应由维修性专业人员进行。 2)预计的方法和模型的选用。要根据产品的类型、所要预计的参数、研制阶段等因素,选择适用的方法。同时,对各种方法提供的模型进行考察,分析其适用性,可作局部修正。

电子产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性的质量 要求。 2.范围 本文件适用本公司所有产品。 3.内容 3.1 实验顺序 除客户特殊要求外,试验样品进行试验时,一般按下表的顺序进行: 3.2实验条件 3.2.1 实验条件:

3.2.2 试验机台误差: a.温度误差:高温为+/-2℃,低温为+/-3℃. b.振动振幅误差:+/-15%. c.振动频率误差:+/-1Hz. 3.2.3 落地试验标准 3.2.3.1 落地试验应以箱体四角八边六面(任一面底部相连之四角、与此四角相连之八边, 六面为前、后、左、右、上、下这六个面)按规定高度垂直落下的方式进行。 重量高度 0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 3.2.3.2 注意事项: 5.2.3.2.1 箱内样品及包材在每个步骤后进行外观与功能性检验。 5.2.3.2.2 跌落表面为木板。 3.2.4 推、拉力试验方法和标准 3.2. 4.1、目的:为了评定正常生产加工下焊锡与焊盘或焊盘与基材的粘结质量。 3.2. 4.2、DIP类产品,需把元件用剪钳剪去只留下元件脚部分(要求留下部分 可以自由通过元件孔),且须把该焊盘与所连接的导线分开,然后固定 在制具上用拉力机以垂直于试样的力拉线脚(如下图),直到锡点或焊 盘拉脱为止,然后即可在拉力计上读数。 拉力方向 焊锡 焊盘

(图1) 3.2. 4.3、SMT类产品,片式元件用推力计以如下图所示方向推元件。推至元件或焊盘脱落后在推 拉力计上读数。并把结果记录在报告上。 三极管推力方向如下图所示,推至元件或焊盘脱落后在推拉力计上读数,并记录。 3.2. 4.4、压焊类产品,夹住排线(FFC或FPC)以如下图所示方向做拉力,拉至FFC或FPC 断或焊锡与焊盘脱离(锡点脱离)或焊盘与基材脱离(起铜皮),把结果记录在报告 上。 3.2. 4.5、产品元器件抽样需含盖全面规格尺寸。产品各抗推、拉力标准为;

可靠性分析报告..

可靠性工程结课论文 题目:混频器组件可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201100384216 学生姓名:郭守鑫 指导教师:尚会超 2014年6月

目录 摘要 (3) 关键词 (3) 1. 元器件清单 (3) 2. 可靠性预测 (4) 3. 可靠性分析 (6) 3.1可靠性数据分析 (7) 3.2故障模式影响 (7) 3.3 危害性分析 (8) 4. 结论和建议 (10) 参考文献 (10)

混频器组件可靠性分析 郭守鑫 (中原工学院机电学院河南郑州 451191) 【摘要】变频,是将信号频率由一个量值变换为另一个量值的过程。具有这种功能的电路称为变频器(或混频器)。输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。混频器通常由非线性元件和选频回路构成。 【关键词】混频器,变频,组件 【Abstract】frequency conversion, is to signal frequency by a value transform into another process of the value. Which has the function of the circuit is called inverter (or mixers). The output signal frequency is equal to the sum of two input signal frequency, or for both other combination of the circuit. Mixer is usually composed of nonlinear components and frequency selective circuit. 【keywords】mixer, frequency conversion, components

航天产品部件可靠性分析简介

航天电连接器的可靠性分析 电连接器及其组件是航天系统工程重要的配套接口元件,散布在各个系统和部位,负责着信号和能量的传输。其连接好坏,直接关系到整个系统的安全可靠运行。由电连接器互连组成各种电路,从高频到低频、从圆形到矩形、从通过上百安培的大电流连接器到通过微弱信号的高密度连接器、从普通印制板连接器到快速分离脱落等特种连接器,几乎所有类型品种的电连接器在航天系统工程中都得到了大量应用。 例如某型号地面设备就使用了各种电连接器400套。任何一个电连接器接点失灵,都将导致航天器的发射和飞行失败。战术导弹弹体内的导引头、战斗机、发动机、自动驾驶仪等关键部件,都是通过由电连接器为基础器件,使成百上千个接点的电缆网组成一个完整的武器互连系统,一个接点出现故障,即会导致整个武器系统的失效。 一、航天电连接器的可靠性分析 电连接器的可靠性包括固有可靠性和使用可靠性两方面。图1列出了影响电连接器可靠性的主要因素。

1.固有可靠性 电连接器的固有可靠性一般是指电连接器制造完成时所具有的可靠性,它取决于电连接器的设计、工艺、制造、管理和原材料性能等诸多因素。电连接器制作完成后,其失效模式和失效机理已固定,因此只有在可靠性设计的基础上,保证生产线上严格采取可靠性技术措施(如生产工艺的严格控制、生产环境条件的控制、各工序过程中的质量检测等),才能保证电连接器的固有可靠性。 (1)设计可靠性 ①合理选材 选材是保证电连接器电性能和可靠性的重要前提,电连接器所用材料决定了工作温度上限,而起决定作用的是绝缘材料、环境密封电连接器所用的密封材料、胶粘材料、壳体和接触件所用材料等。材料选用涉及连接器的力学、电气、环境等性能要求和材料本身的理化性能等。其中材料热学性能(耐热温度、热导率、高温强度及热变形等)是设计必须考虑的主要因素。电连接器绝缘体选用不同的绝缘材料,其绝缘耐压等电气性能也有明显差异。电连接器壳体和接触件选用时,除考虑导电、导热和结构刚度外,还应考虑相互配合和接触材料的电化学相容性和硬度匹配性。 ②结构型式 结构型式是决定产品可靠性的重要因素,合理的结构型式既避免了误插,又提高了结构的稳定性。 (2)工艺可靠性 壳体的加工工艺、绝缘体的注塑和胶接工艺、接触件的成型和镀金工艺、电连接器总装工艺和与线缆的端接工艺等,对产品固有可靠性至关重要。 镀金接触件用手工滚镀,往往导致个别插孔内壁局部没有膜层,呈氧化色,而引进超声波镀金生产线,并用仪器严格监控镀金层厚度,使内壁形成均匀膜层,提高了接触可靠性。 (3)检验可靠性 电连接器在各关键工序加强检验,通过严格的工艺筛选,剔除失效产品。交收试验时,除检查常规电性能指标外,还应百分之百进行外观质量检查,特别是多余物检查十分重要,除目视和借助放大镜外,必要时可用体视显微镜判定缺陷性质。在交收试验和二次补充筛选过程中,必须按标准规定的质量水平严格控制。当超过不合格率时,应对每批

LED可靠性分析报告

可靠性分析报告 品质是设计出来而不是制造出来,广义的品质除了外观、不良率外、还需兼长期使用下的可靠性,因此,在开发新产品前之可靠性预估及开发的实验推断相互印证是很重要的,本篇即针对可靠性分析的一般术语,如何事前预估,事后实验推断以及如何做加速试验及寿命试验做个说明. 1. 概论: (1) 何谓可靠性(Reliability)? 可靠性系指某种零件或成品在规定条件下,且于指定时间内,能依要求发挥功能的 概率,即 时间t 时的可靠性R(t)= (例) 假设开始时有100件物品参与试验,500小时后剩80件,则500小时后的可靠性R(t=500)为80/100=0.8简单地说,可靠性可看为残存率. (2) 何谓瞬间故障率(Hazard Rate ,Failure Rate), 时间t 时每小时之故障数 瞬间故障率h (t )= 时间t 时之残存数 上例中,若500小时后剩80件,若当时每小时故障数为两件,则第500小时之瞬间故障为2/80=2.5%换句话说,瞬间故障率系指时间t 时,尚未发生故障的物件,其单位时间内发生故障之概率. 时间t 时残存数 开始时试验总数

(3)浴缸曲线(Bath Tub Curve) 瞬 间 故 障 率 h(t) h(t)=常数= 耗竭期 Period period A.早期故障期:a.设计上的失误(线路稳定度Marginal design) b.零件上的失误(Component selection & reliability) c.制造上的失误(Burn-in testing) d.使用上失误。 一般产品之Burn-in 即要消除早期故障(Infant Mortality)使客户接到手时已经是恒定故障率h(t)= B、恒定故障率期:此时故障为random,为真正有效使用此段时期越长越好。 C、耗竭故障期;零件已开始耗竭,故障率急剧增加,此时维护重置成本为高。(4)平均故障间隔时间(Mean Time Between Failure,MTBF)当故障率几乎为恒定时(若0.002/小时),此时进行10000小时约有0.002/小时*10000小时=20个故障,即平均500小时会发生一次故障,故MTBF 为500小时,为0.002/小时的倒数,即MTBF=1/λ.λ可看成频率(Frequency),MTBF即代表周期(Period)

航天一组可靠性试卷_(1)

航天一组试卷 一.选择题。(15小题,每小题2分,共计30分) 1.已知一个设备的风险率函数 如果t<10小时;为0.001如果t>10小时,则为0.010)在12小时内,这个设备的可靠度是多少? A、0.970 B、0.980 C、0.988 D、0.990 正确答案:A 2.一种电子元器件恒定失效率为4×10-7/小时。一个系统需要使用64个这种器件,并且所有器件在系统工作时正常运行,则系统失效率是多少? A、2.56×10-5/小时 B、3.91×10-5/小时 C、2.56×10-4/小时 D、3.91×10-4/小时 正确答案:A 3.一百个器件在500小时内进行可靠性试验。在试验期间,有2个器件发生失效,分别发生在T1=110小时和在T2=300小时。失败的器件没被替换。基于该样本,在单侧95%置信下限条件下,这些器件运行600小时的可靠度是多少? A、0.858 B、0.926

C、0.976 D、0.988 正确答案:B 4.一个系统的可靠度是95%,当MTBF是500小时和平均修理时间是多少? A、22小时 B、26小时 C、133小时 D、167小时 正确答案:B 5.浴盆曲线的x和y轴分别代表什么? A、时间、可靠度 B、可靠度、时间 C、时间、风险率 D、风险率、时间 正确答案:C 1-5王勃(答疑请找王勃同学) 6、为了验证开发的产品的可靠性是否与规定的可靠性要求一致,用具有代表性的产品在规定条件下所作的试样叫()试验。 A、环境应力筛选 B、可靠性增长 C、可靠性鉴定 D、可靠性测定

正确答案:C 7、产品可靠性与()无关。 A、规定概率 B、规定条件 C、规定时间 D、规定功能 正确答案:D 8、设t=0时,投入工作的1000只灯泡,并以天作为度量时间的单位,当t=365天时,有8只灯泡坏了,假设在第366天时,又发现有2只灯泡坏了,则该种灯泡的故障概率约为()。 A、0.998 B、0.002 C、0.004 D、0.996 正确答案:B 9、在进行机械设计时,常用来描述材料疲劳失效、轴承失效寿命的分布是() A、指数分布 B、均匀分布 C、威布尔分布 D、正态分布 正确答案:C 10、开展可靠性设计,首先应规定定性定量的可靠性要求,最常用的可靠性指标是()

可靠性报告

基于可靠性和控制性能对电机类型的选择 无刷直流电动机是随着电动机控制技术、电力电子技术和微电子技术发展而出现的一种新型电动机,它的最大特点就是以电子换向线路替代了由换向器和电刷组成的机械式换向结构,同时保持了调速方便的特点,有着功率密度高、特性好、无换向火花及无线电干扰等优点。近年来,DSP在其控制电路中的应用使得无刷直流控制系统的综合性能大为提高,其强大的数据处理能力使得复杂算法数字化得以实现,其单周期乘、加运算能力,可以优化与缩短反馈回路,控制策略得到优化,且它的面向电动机控制的片内外设,使控制系统硬件结构得到简化,有助于实现闭环控制,整个系统的抗负载扰动能力强、频响高、动态性能、稳态精度得到显著提高。 正是考虑到无刷直流电机既具有直流电机效率高、调速性能好等优点,又具有交流电机的结构简单、运行可靠、寿命长、维护方便等优点,其转子惯量小,响应快,同时无刷电动机绕组在定子上,容易散热,也容易做成隔槽嵌放式双余度绕组,并且其以电子换相代替直流电机的机械换相,易做到大容量、高转速,高可靠性的快响应伺服控制系统,因此,舵机系统采用无刷直流电动机作为驱动电机。 采用多余度技术是当前高性能高可靠性要求系统为了提高安全可靠性和任务可靠性的一种重要的工程设计方法。于余度技术是提高系统安全性与可靠性的一种手段,因而在需要高可靠性或超高可靠性的系统,如航空航天飞行控制、通信系统的计算机管理等工程应用领域得到广泛应用。舵机作为飞控系统的执行部件, 它的故障将直接影响飞行器系统的正常工作, 因此多余度舵机是改进飞行控制系统性能, 提高飞行器可靠性、安全性的关键技术。 对于舵机系统,电机绕组、功率逆变器、转子位置传感器在当今技术条件下仍为系统的薄弱环节,在航空航天等高可靠性领域,采用单通道设计往往不能满足要求。因此,在电机定子中隔槽嵌放两套独立绕组,采用两套独立的功率逆变器和两套独立的转子位置传感器构成双余度无刷直流电动机控制系统可以提高整机可靠性。双余度系统通常工作在热备份方式,当一个电气通道发生故障,另一个通道仍能继续工作,系统可靠性大为提高。

相关文档