文档库 最新最全的文档下载
当前位置:文档库 › 2013年南通市中考数学试卷(解析版)

2013年南通市中考数学试卷(解析版)

2013年南通市中考数学试卷(解析版)
2013年南通市中考数学试卷(解析版)

江苏省南通市2013年中考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2013?南通)下列各数中,小于﹣3的数是()

A.2B.1C.﹣2 D.﹣4

考点:有理数大小比较

分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.

解答:解:A、2>﹣3,故本选项错误;

B、1>﹣3,故本选项错误;

C、∵|﹣2|=2,|﹣3|=3,

∴﹣2>﹣3,故本选项错误;

D、∵|﹣4|=4,|﹣3|=3,

∴﹣4<﹣3,故本选项正确;

故选D.

点评:本题考查了有理数的大小比较法则的应用,注意:理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.

2.(3分)(2013?南通)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()

A.8.5×104B.8.5×105C.0.85×104D.0.85×105

考点:科学记数法—表示较大的数

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于85000有5位,所以可以确定n=5﹣1=4.

解答:解:85 000=8.5×104.

故选A.

点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.

3.(3分)(2013?南通)下列计算,正确的是()

A.x4﹣x3=x B.x6÷x3=x2C.x?x3=x4D.(xy3)2=xy6

考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方

专题:计算题.

分析:A、本选项不能合并,错误;

B、利用同底数幂的除法法则计算得到结果,即可做出判断;

C、利用同底数幂的乘法法则计算得到结果,即可做出判断;

D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.

解答:解:A、本选项不能合并,错误;

B、x6÷x3=x3,本选项错误;

C、x?x3=x4,本选项正确;

D、(xy3)2=x2y6,本选项错误.

故选C.

点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.

4.(3分)(2013?南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数

是()

A.4B.3C.2D.1

考点:中心对称图形;轴对称图形

分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可.

解答:解:第一个图形是轴对称图形,不是中心对称图形;

第二个图形是轴对称图形,不是中心对称图形;

第三个图形是轴对称图形,也是中心对称图形;

第四个图形是轴对称图形,不是中心对称图形;

第五个图形是轴对称图形,也是中心对称图形;

综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.

故选B.

点评:本题考查了轴对称图形与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

5.(3分)(2013?南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()

A.1B.2C.3D.4

考点:三角形三边关系

分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.

解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;

只有3,6,8和6,8,9;3,8,9能组成三角形.

故选:C.

点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.

6.(3分)(2013?南通)函数中,自变量x的取值范围是()

A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2

考点:函数自变量的取值范围

分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.

解答:解:根据题意得:x﹣1>0,

解得:x>1.

故选A.

点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.

7.(3分)(2013?南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()

A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆

C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆

考点:作图—基本作图

分析:根据作一个角等于已知角的作法进行解答即可.

解答:解:作∠OBF=∠AOB的作法,由图可知,

①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;

②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;

③以点E为圆心,以CD为半径画圆,交射于点N,连接BN即可得出∠OBF,则

∠OBF=∠AOB.

故选D.

点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.

8.(3分)(2013?南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()

A.3cm B.5cm C.6cm D.8cm

考点:圆锥的计算

分析:首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.

解答:解:∵底面周长是6πcm,

∴底面的半径为3cm,

∵圆锥的高为4cm,

∴圆锥的母线长为:=5

∴扇形的半径为5cm,

故选B.

点评:本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.

9.(3分)(2013?南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:

(1)他们都行驶了20km;

(2)小陆全程共用了1.5h;

(3)小李与小陆相遇后,小李的速度小于小陆的速度;

(4)小李在途中停留了0.5h.

其中正确的有()

A.4个B.3个C.2个D.1个

考点:一次函数的应用

专题:压轴题.

分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程÷时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.

解答:解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;

(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;

(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;

(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.

故选A.

点评:此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.

10.(3分)(2013?南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()

A.4B.3.5 C.3D.2.8

考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.

专题:压轴题.

分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.

解答:解:连接DO,交AB于点F,

∵D是的中点,

∴DO⊥AB,AF=BF,

∵AB=4,

∴AF=BF=2,

∴FO是△ABC的中位线,AC∥DO,

∵BC为直径,AB=4,AC=3,

∴BC=5,

∴DO=2.5,

∴DF=2.5﹣1.5=1,

∵AC∥DO,

∴△DEF∽△CEA,

∴=,

∴==3.

故选C.

点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.

二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)

11.(3分)(2013?南通)若反比例函数y=的图象经过点A(1,2),则k=2.

考点:反比例函数图象上点的坐标特征

专题:压轴题.

分析:根据反比例函数图象上点的坐标特点可得k=1×2=2.

解答:

解:∵反比例函数y=的图象经过点A(1,2),

∴k=1×2=2,

故答案为:2.

点评:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

12.(3分)(2013?南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE 等于70度.

考点:垂线;对顶角、邻补角

分析:根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.

解答:解:∵∠BOD=20°,

∴∠AOC=∠BOD=20°,

∵OE⊥AB,

∴∠AOE=90°,

∴∠COE=90°﹣20°=70°,

故答案为:70.

点评:本题考查了垂直定义,对顶角的应用,关键是求出∠AOE和∠AOC的大小.

13.(3分)(2013?南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.

考点:由三视图判断几何体

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.

解答:解:球的主视图、左视图、俯视图都是圆,故答案为:球体.

点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.

14.(3分)(2013?南通)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,

则sinB的值是.

考点:锐角三角函数的定义;直角三角形斜边上的中线

分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.

解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=2,

∴AC=2CD=4,

则sinB==.

故答案为:.

点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.

15.(3分)(2013?南通)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 2.8.

考点:方差;众数

分析:根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.

解答:解:∵一组数据5,8,10,x,9的众数是8,

∴x是8,

∴这组数据的平均数是(5+8+10+8+9)÷5=8,

∴这组数据的方差是:

[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.

故答案为:2.8.

点评:此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n的

平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].

16.(3分)(2013?南通)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.

考点:一次函数与一元一次不等式

分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b 与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x 轴下方的部分对应的x的取值即为所求.

解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),

又∵当x<﹣1时,4x+2<kx+b,

当x>﹣2时,kx+b<0,

∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.

故答案为﹣2<x<﹣1.

点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.

17.(3分)(2013?南通)如图,在?ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC 于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5 cm.

考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质专题:压轴题.

分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;

然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.

解答:解:∵AE平分∠BAD,

∴∠DAE=∠BAE;

又∵AD∥BC,

∴∠BEA=∠DAE=∠BAE,

∴AB=BE=6cm,

∴EC=9﹣6=3(cm),

∵BG⊥AE,垂足为G,

∴AE=2AG.

在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,

∴AG==2(cm),

∴AE=2AG=4cm;

∵EC∥AD,

∴====,

∴=,=,

解得:EF=2(cm),FC=3(cm),

∴EF+CF的长为5cm.

故答案为:5.

点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.

18.(3分)(2013?南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m ﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.

考点:二次函数的性质

专题:压轴题.

分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n 时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可

求出当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6的值.

解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,

∴二次函数y=x2+4x+6的对称轴为直线x==,

又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,

∴=﹣2,

∴3m+3n+2=﹣4,m+n=﹣2,

∴当x=3(m+n+1)=3(﹣2+1)=﹣3时,

x2+4x+6=(﹣3)2+4×(﹣3)+6=3.

故答案为3.

点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.

三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

19.(11分)(2013?南通)(1)计算:;

(2)先化简,再求代数式的值:,其中m=1.

考点:分式的化简求值;零指数幂;二次根式的混合运算

分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;

(2)先通分,然后进行四则运算,最后将m=1代入.

解答:

解:(1)

=÷÷1﹣3

=﹣3;

(2)

=?

=,

当m=1时,原式=﹣.

点评:(1)主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、二次根式等考点的运算;

(2)解答此题的关键是把分式化到最简,然后代值计算.

20.(9分)(2013?南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.

(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).

(2)求(1)中的△A′B′C′的面积.

考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标

分析:(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横

坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;

(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.

解答:解:(1)∵A(﹣1,5),

∴点A关于原点O的对称点A′的坐标为(1,﹣5).

∵B(4,2),

∴点B关于x轴的对称点B′的坐标为(4,﹣2).

∵C(﹣1,0),

∴点C关于y轴的对称点C的坐标为(1,0).

故答案分别是:(1,﹣5),(4,﹣2),(1,0).

(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).

∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,

∴S△A′B′C′=A′C′?B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.

点评:本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.

21.(8分)(2013?南通)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.

回答下列问题:

(1)这批苹果总重量为4000kg;

(2)请将条形图补充完整;

(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.

考点:条形统计图;扇形统计图

分析:(1)根据A等级苹果的重量÷A等级苹果的重量占这批苹果总重量的30%,求得这批苹果总重量;

(2)求得C等级苹果的重量,补全统计图;

(3)求得C等级苹果的百分比,然后计算其所占的圆心角度数.

解答:解:(1)1200÷30%=4000(kg).

故这批苹果总重量为4000kg;

(2)4000﹣1200﹣1600﹣200=1000(kg),

将条形图补充为:

(3)×360°=90°.

故C等级苹果所对应扇形的圆心角为90度.

故答案为:4000,90.

点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

22.(10分)(2013?南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.

小明画出树状图如图所示:

小华列出表格如下:

1 2 3 4

第一次

第二次

1 (1,1)(2,1)(3,1)(4,1)

2 (1,2)(2,2)①(4,2)

3 (1,3)(2,3)(3,3)(4,3)

4 (1,4)(2,4)(3,4)(4,4)

回答下列问题:

(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;

(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);

(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?

考点:列表法与树状图法

分析:(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;

(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;

(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.

解答:解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,

∴小明的实验是一个不放回实验,

(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,

(3)理由如下:

∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,

∴概率为:=;

∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,

∴概率为:=,

∵>

∴小明获胜的可能性大.

故答案为不放回;(3,2).

点评:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.

23.(8分)(2013?南通)若关于x的不等式组恰有三个整数解,

求实数a的取值范围.

考点:一元一次不等式组的整数解

分析:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.解答:

解:解+>0,得x>﹣;

解3x+5a+4>4(x+1)+3a,得x<2a,

∴不等式组的解集为﹣<x<2a.

∵关于x的不等式组恰有三个整数解,

∴2<2a≤3,

解得1<a≤.

点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

24.(8分)(2013?南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.

求证:四边形BCDE是矩形.

考点:矩形的判定;全等三角形的判定与性质

专题:证明题.

分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.

解答:证明:∵∠BAD=∠CAE,

∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,

∴∠BAE=∠CAD,

∵在△BAE和△CAD中

∴△BAE≌△CAD(SAS),

∴∠BEA=∠CDA,BE=CD,

∵DE=BC,

∴四边形BCDE是平行四边形,

∵AE=AD,

∴∠AED=∠ADE,

∵∠BEA=∠CDA,

∴∠BED=∠CDE,

∵四边形BCDE是平行四边形,

∴BE∥CD,

∴∠CDE+∠BED=180°,

∴∠BED=∠CDE=90°,

∴四边形BCDE是矩形.

点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.

25.(8分)(2013?南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P,若PA=cm,求AC的长.

考点:切线的性质

分析:根据直径求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等边三角形,得出∠AOC=60°,OA=AC,

在Rt△OAP中,求出OA,即可求出答案.

解答:解:∵AB是⊙O直径,

∴∠ACB=90°,

∵∠BAC=2∠B,

∴∠B=30°,∠BAC=60°,

∵OA=OC,

∴△AOC是等边三角形,

∴∠AOC=60°,AC=OA,

∵PA是⊙O切线,

∴∠OAP=90°,

在Rt△OAP中,PA=6cm,∠AOP=60°,

∴OA===6,

∴AC=OA=6.

点评:本题考查了圆周角定理,切线的性质,解直角三角形,等边三角形的性质和判定的应用,主要考查学生的推理能力.

26.(8分)(2013?南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:

信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系

y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.

信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;

(1)求二次函数解析式;

(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?

考点:二次函数的应用

分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;

(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.

解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,

∴,

解得,

所以,二次函数解析式为y=﹣0.1x2+1.5x;

(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,

则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,

∵﹣0.1<0,

∴当m=6时,W有最大值6.6,

∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.

点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.

27.(13分)(2013?南通)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC 上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.

(1)求证:点E到AC的距离为一个常数;

(2)若AD=,当a=2时,求T的值;

(3)若点D运动到AC的中点处,请用含a的代数式表示T.

考点:相似形综合题

分析:

(1)解直角三角形,求得点E到AC的距离等于a,这是一个定值;

(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;

(3)可能存在三种情形,需要分类讨论:

①若0<a≤,△DEF在△ABC内部,如答图3所示;

②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示;

③若<a<3,点E、F均在△ABC外部,如答图5所示.

解答:

解:(1)由题意得:tanA===,

∴∠A=60°.

∵DE∥AB,

∴∠CDE=∠A=60°.

如答图1所示,过点E作EH⊥AC于点H,

则EH=DE?sin∠CDE=a?=a.

∴点E到AC的距离为一个常数.

(2)若AD=,当a=2时,如答图2所示.

设AB与DF、EF分别交于点M、N.

∵△DEF为等边三角形,∴∠MDE=60°,

由(1)知∠CDE=60°,

∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,

又∵∠A=60°,

∴△ADM为等边三角形,

∴DM=AD=.

过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,

∴△DMG为等边三角形,

∴DG=MG=DM=.

∴GE=DE﹣DG=2﹣=.

∵∠MGD=∠E=60°,∴MG∥NE,

又∵DE∥AB,

∴四边形MGEN为平行四边形.

∴NE=MG=,MN=GE=.

∴T=DE+DM+MN+NE=2+++=.

(3)若点D运动到AC的中点处,分情况讨论如下:

①若0<a≤,△DEF在△ABC内部,如答图3所示:

∴T=3a;

②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示:

设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.

与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.∴DM=DG=NE=AD=,MN=GE=DE﹣DG=a﹣,

∴T=DE+DM+MN+NE=a++(a﹣)+=2a+;

③若<a<3,点E、F均在△ABC外部,如答图5所示:

设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.

在Rt△PCD中,CD=,∠CDP=60°,∠DPC=30°,

∴PC=CD?tan60°=×=.

∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.

由(1)知,点E到AC的距离为a,∴PQ=a﹣.

∴QE=PQ?tan30°=(a﹣)×=a﹣,PE=2QE=a﹣.

由②可知,四边形MDEN的周长为2a+.

∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+)﹣(a﹣)﹣(a﹣)+(a ﹣)=a+﹣.

综上所述,若点D运动到AC的中点处,T的关系式为:

T=.

点评:本题考查了运动型综合题,新颖之处在于所求是重叠部分的周长而非面积.难点在于第(3)问,根据题意,可能的情形有三种,需要分类讨论,避免漏解.

28.(13分)(2013?南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,

y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.

(1)求b的值;

(2)求证:点(y1,y2)在反比例函数的图象上;

(3)求证:x1?OB+y2?OA=0.

考点:二次函数综合题

专题:压轴题.

分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;

(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1?y2=64,即点(y1,y2)在反比例函数的图象上;

(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)

2,由(2)得y

1?y2=64,又易得x1?x2=﹣64,则OA 2+OB2=AB2,根据勾股定理的逆

定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两

南通市2018年中考数学试题含答案word版

南通市2018年初中毕业、升学考试试卷 数 学 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.4的值是 A .4 B .2 C .±2 D .﹣2 2.下列计算中,正确的是 A .235a a a ?= B .238()a a = C .325a a a += D .842 a a a ÷= 3.若3x -在实数范围内有意义,则x 的取值范围是 A .x ≥3 B .x <3 C .x ≤3 D .x >3 4.函数y =﹣x 的图象与函数y =x +1的图象的交点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列说法中,正确的是 A .—个游戏中奖的概率是 1 10 ,则做10次这样的游戏一定会中奖 B .为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C .一组数据8,8,7,10,6,8,9的众数是8 D .若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小 6.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队共进行了6场比赛,得了12分,该队获胜的场数是 A .2 B .3 C .4 D .5 7.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于 1 2 EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠CMA 的度数为 A .30° B .35° C .70° D .45°

2013年云南中考数学试题及解析

云南省八地市2013年中考数学试卷 一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分) 1.(3分)(2013?云南)﹣6的绝对值是() A.﹣6 B.6C.±6 D. 2.(3分)(2013?云南)下列运算,结果正确的是() A.m6÷m3=m2B.3mn2?m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n2 3.(3分)(2013?云南)图为某个几何体的三视图,则该几何体是() A.B.C.D. 4.(3分)(2013?云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为() A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元5.(3分)(2013?云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是() A.S?ABCD=4S △AOB B.A C=BD C.A C⊥BD D.?ABCD是轴对称图形 6.(3分)(2013?云南)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是() A.相离B.外切C.相交D.内切 7.(3分)(2013?云南)要使分式的值为0,你认为x可取得数是() A.9B.±3 C.﹣3 D.3 8.(3分)(2013?云南)若ab>0,则一次函数y=ax+b和反比例函数y=在同一坐标系数中的大致图象是()

A. B.C.D. 二、填空题(本大题共6个小题,每小题3分,满分18分) 9.(3分)(2013?云南)25的算术平方根是. 10.(3分)(2013?云南)分解因式:x3﹣4x=. 11.(3分)(2013?云南)在函数中,自变量x的取值范围是. 12.(3分)(2013?云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π). 13.(3分)(2013?云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=. 14.(3分)(2013?云南)下面是按一定规律排列的一列数:,,,,…那么第n 个数是. 三、解答题(本大题共9个小题,满分58分) 15.(4分)(2013?云南)计算:sin30°+(﹣1)0+()﹣2﹣. 16.(5分)(2013?云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个). (1)你添加的条件是. (2)添加条件后,请说明△ABC≌△ADE的理由. 17.(6分)(2013?云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上. (1)把“鱼”向右平移5个单位长度,并画出平移后的图形. (2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

江苏省南通市2019年中考数学试题含答案解析

江苏省南通市2019年中考数学试题(解析版) 注 意 事 项 考生在答题前请认真阅读本注意事项 1. 本试卷共6页,满分150分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置。 3. 答案必须按要求填涂、书写在答题卡上,在草稿纸、试卷上答题一律无效。 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的的四个选项中,恰有一项是符合题目要求的) 1.下列选项中,比—2℃低的温度是( ) A .—3℃ B .—1℃ C .0℃ D .1℃ 2.化简12的结果是( ) A .34 B .32 C .23 D .62 3.下列计算,正确的是( ) A .632a a a =? B .a a a =-22 C .326a a a =÷ D . 6 32a a =)( 4.如图是一个几何体的三视图,该几何体是( ) A .球 B .圆锥 C .圆柱 D .棱柱 5.已知a 、b 满足方程组?? ?=+=+,632,423b a b a 则a+b 的值为( ) A .2 B .4 C .—2 D .—4 6.用配方法解方程0982=++x x ,变形后的结果正确的是( ) A .()942-=+x B .()742-=+x C .()2542=+x D .()742 =+x 7.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间 8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 读数为( ) A .110° B .125° C .135° D .140° 9.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图像,其中曲线段AB 是以B 为顶点的抛物线一部分。下列说法不正确的是( ) A .25min~50min ,王阿姨步行的路程为800m B .线段CD 的函数解析式为) (502540032≤≤+=t t s C .5min~20min ,王阿姨步行速度由慢到快 D .曲线段AB 的函数解析式为)()(20512002032 ≤≤+--=t t s 10.如图,△ABC 中,AB=AC=2,∠B=30°,△ABC 绕点A 逆时针旋转α(0<α<120°) 得到''C AB ?,''C B 与BC ,AC 分别交于点D ,E 。设x DE CD =+,'AEC ?的面积为y ,则y 与x 的函数图像大致为( )

2013年中考数学试题

数学试题 第1页(共4页) 2013年十堰市初中毕业生学业考试 数学试题 注意事项: 1.本卷共有4页,共有25小题,满分120分,考试时限120分钟. 2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码. 3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.2-的值等于( ) A .2 B .1 2- C .12 D .-2 2.如图,AB ∥CD ,CE 平分∠BCD ,∠DCE =18°,则∠B 等于( A .18° B .36° C .45° D .54° 3.下列运算中,正确的是( ) A .235a a a += B .6 3 2a a a ? C .426()a a = D .235a a a = 4.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是( ) 5.已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( ) A .4 B .-4 C .1 D .-1 6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知 AC =5cm ,△ADC 的周长为17cm ,则BC 的长为( ) A .7cm B .10cm C .12cm D .22cm 7.如图,梯形ABCD 中,AD ∥BC ,AB=DC=3,AD=5,∠C=60°,则下底BC 的长为( ) A .8 B .9 C .10 D .11 A . B . C . D . 第6题 B 第2题 第7题 正面

2019年南通市中考数学试题及答案

南通市2019年初中毕业、升学考试试卷 数 学 注 意 事 项 考生在答题前请认真阅读本注意事项 1. 本试卷共6页,满分150分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置。 3. 答案必须按要求填涂、书写在答题卡上,在草稿纸、试卷上答题一律无效。 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的的四个选项中,恰有一项是符合题目要求的) 1.下列选项中,比—2℃低的温度是( ) A .—3℃ B .—1℃ C .0℃ D .1℃ 2.化简12的结果是( ) A .34 B .32 C .23 D .62 3.下列计算,正确的是( ) A .632a a a =? B .a a a =-22 C .326a a a =÷ D . 6 32a a =)( 4.如图是一个几何体的三视图,该几何体是( ) A .球 B .圆锥 C .圆柱 D .棱柱 5.已知a 、b 满足方程组? ??=+=+,632, 423b a b a 则a+b 的值为( ) A .2 B .4 C .—2 D .—4 6.用配方法解方程0982 =++x x ,变形后的结果正确的是( ) A .()942 -=+x B .()742 -=+x C .()2542 =+x D .()742 =+x 7.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表

示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间 8.如图,AB ∥CD ,A E 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 读数为( ) A .110° B .125° C .135° D .140° 9.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图像,其中曲线段AB 是以B 为顶点的抛物线一部分。下列说法不正确的是( ) A .25min~50min ,王阿姨步行的路程为800m B .线段CD 的函数解析式为)(502540032≤≤+=t t s C .5min~20min ,王阿姨步行速度由慢到快 D .曲线段AB 的函数解析式为)()(20512002032 ≤≤+--=t t s 10.如图,△ABC 中,AB=AC=2,∠B=30°,△ABC 绕点A 逆时针旋 转α(0<α<120°)得到' ' C AB ?,' ' C B 与BC ,AC 分别交于点 D , E 。设x DE CD =+,' AEC ?的面积为y ,则y 与x 的函数图像大致为( ) 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程) 11.计算:=-- 2132)( . 12.5G 信号的传播速度为300000000m/s ,将300000000用科学记数法表示为 . 13.分解因式:=-x x 3 . 14.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF= 度.

最新江苏省南通市中考数学试卷(解析版)

江苏省南通市2018年中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)的值是() A.4 B.2 C.±2 D.﹣2 2.(3分)下列计算中,正确的是() A.a2?a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2 3.(3分)若在实数范围内有意义,则x的取值范围是() A.x≥3 B.x<3 C.x≤3 D.x>3 4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在() A.第一象限B.第二象限C.第三象限D.第四象限 5.(3分)下列说法中,正确的是() A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖 B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据8,8,7,10,6,8,9的众数是8 D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小 6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是() A.2 B.3 C.4 D.5 7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为() A.30°B.35°C.70°D.45°

8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是() A.πcm2B.3πcm2C.πcm2D.5πcm2 9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为() A.B.C. D. 10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为() A.B.﹣1 C.D.

2013年中考数学试题(含答案)

2014 年中考数学试题 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2的值等于 ( ) A 、2 B 、-2 C 、2 D 、2 2、函数31+-= x y 中,自变量x 的取值范围是 ( ) A 、1>x B 、1≥x C 、1≤x D 、1≠x 3、方程 03 12=--x x 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x 4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,16 5、下列说法中正确的是 ( ) A 、两直线被第三条直线所截得的同位角相等 B 、两直线被第三条直线所截得的同旁内角互补 C 、两平行线被第三条直线所截得的同位角的平分线互相垂直 D 、两平行线被第三条直线所截得的同旁内角的平分线互相垂直 20. 已知圆柱的底面半径为 3cm ,母线长为 5cm ,则圆柱的侧面积是 ( ) A 、30cm 2 B 、30πcm 2 C 、15cm 2 D 、15πcm 2 7、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A 、35° B 、140° C 、70° D 、70°或 140° 8、如图,梯形 ABCD 中,AD ∥BC ,对角线 A C 、BD 相交于 O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、 21 B 、41 C 、81 D 、16 1 1、如图,平行四边形 A BCD 中,AB :BC=3:2,∠DAB=60°,E 在 A B 上,且 A E :EB=1:2,F 是BC 的中点,过 D 分别作 D P ⊥AF 于 P ,DQ ⊥CE 于 Q ,则 D P ∶DQ 等于 ( ) A 、3:4 B 、3:52 C 、13:62 D 、32:13 10、已知点 A (0,0),B (0,4),C (3,t +4),D (3,t ). 记 N (t )为□ABCD 内部(不含边界) 第7题图 第8题图 第9题图

中考数学试卷含答案

扬州市初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、 选择题:(本大题共8个小题,每小题3分,共24分.) 二、 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4a 的是( ) A .4a a ? B .()22a C .33a a + D .4a a ÷ 3.一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数21y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >- 第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= .

南通市中考数学试卷及答案

2008年南通市初中毕业、升学考试 数学 (满分150分,考试时间120分钟) 一、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过 程,请 把最后结果填在题中横线上. 1.计算: 0-7 =. 2.=. 3.已知∠A=40°,则∠A的余角等于度. 4.计算:3 (2)a=. 5.一个长方体的主视图和左视图如图所示(单位:cm),则其俯 视图的面积是cm2. 6.一组数据2,4,x,2,3,4的众数是2,则x= . 7.函数y x的取值范围是. 8.如图,共有12个大小相同的小正方形,其中阴影部分的5个 小正方形是一个正方体的表面展开图的一部分.现从其余的小 正方形中任取一个涂上阴影,能构成这个正方体的表面展开图 的概率是. 9.一次函数(26)5 y m x =-+中, y随x增大而减小,则m的取值 范围是. 10.如图,DE∥BC交AB 、AC于D、E两点,CF为BC的延长线, 若∠ADE=50°,∠ACF=110°,则∠A=度. 11.将点A( 0)绕着原点顺时针方向旋转45°角得到点B, 则点B的坐标是. 12.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克元. (第8题) A C F E D (第10题) (第5题)

13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则 ∠AEB = 度. 14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法: 方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和 三角形的面积的和与差. 方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = . 二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选 项中,恰有一项.... 是符合题目要求的,请将正确选项的代号填入题后括号内. 15.下列命题正确的是 【 】 A .对角线相等且互相平分的四边形是菱形 B .对角线相等且互相垂直的四边形是菱形 C .对角线相等且互相平分的四边形是矩形 D .对角线相等的四边形是等腰梯形 16.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象 (如图所示),则所解的二元一次方程组是 【 】 A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=?, C .2103250x y x y --=??+-=? , D .20210x y x y +-=??--=? , 17.已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2, 周长是△ABC 的一半.AB =8cm ,则AB 边上高等于 【 】 A .3 cm B .6 cm C .9cm D .12cm 18.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <, 2130 x x -<,则 【 】 A .1,2m n >??>? B .1, 2m n >??

2013年广州市中考数学试卷及答案(解析版)

2013年广州市初中毕业生学业考试 第一部分 选择题(共30分) 一、选择题: 1.(2013年广州市)比0大的数是( ) A -1 B 1 2- C 0 D 1 分析:比0 的大的数一定是正数,结合选项即可得出答案 解:4个选项中只有D 选项大于0.故选D . 点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数 2.(2013年广州市)图1所示的几何体的主视图是( ) (A ) (B) (C) (D)正面 分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解:从几何体的正面看可得图形. 故选:A . 点评:从几何体的正面看可得图形. 故选:A .. 3.(2013年广州市)在6×6方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是( ) A 向下移动1格 B 向上移动1格 C 向上移动2格 D 向下移动2格 分析:根据题意,结合图形,由平移的概念求解 解:观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D . 点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置. 4.(2013年广州市)计算: () 2 3m n 的结果是( ) A 6 m n B 62 m n C 52 m n D 32 m n

分析:根据幂的乘方的性质和积的乘方的性质进行计算即可 解:(m 3n )2=m 6n 2 .故选:B . 点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题 5、(2013年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 抽样调查,24 分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可 解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D . 点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据 6.(2013年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( ) A 1032x y y x +=??=+? B 1032x y y x +=??=-? C 1032x y x y +=??=+? D 1032x y x y +=??=-? 分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得: .故选:C . 点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键. 7.(2013年广州市)实数a 在数轴上的位置如图4所示,则 2.5 a -=( ) A 2.5a - B 2.5a - C 2.5a + D 2.5a -- 分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案 解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B . 点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大. 8.(2013年广州市)若代数式1x x -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且 分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 解:根据题意得: ,解得:x≥0且x ≠1.故选D . 点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数 9.(2013年广州市)若5200k +<,则关于x 的一元二次方程2 40x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断 分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况 解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选A 点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 10.(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且 ,4,6,AB AC AB AD ⊥==则tan B =( )

中考数学试卷含解析 (8)

湖北省恩施州中考数学试卷 一、选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,恰有一项是符合要求的。) 1.(3分)(?恩施州)的相反数是() A.B. ﹣ C.3D.﹣3 考 点: 相反数. 分 析: 根据只有符号不同的两个数互为相反数求解后选择即可. 解 答: 解:﹣的相反数是. 故选A. 点 评: 本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键. 2.(3分)(?恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)() A.3.93×104B.3.94×104C.0.39×105D.394×102 考 点: 科学记数法与有效数字. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4. 有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关. 解答:解:39360=3.936×104≈3.94×104.故选:B. 点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法. 3.(3分)(?恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()

A.70°B.80°C.90°D.100° 考 点: 平行线的判定与性质. 分析:首先证明a∠b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4. 解答:解:∠∠1+∠5=180°,∠1+∠2=180°,∠∠2=∠5, ∠a∠b, ∠∠3=∠6=100°, ∠∠4=100°. 故选:D. 点 评: 此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等. 4.(3分)(?恩施州)把x2y﹣2y2x+y3分解因式正确的是() A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2 考 点: 提公因式法与公式法的综合运用. 分 析: 首先提取公因式y,再利用完全平方公式进行二次分解即可. 解答:解:x2y﹣2y2x+y3 =y(x2﹣2yx+y2)=y(x﹣y)2. 故选:C. 点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 5.(3分)(?恩施州)下列运算正确的是() A.x3?x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1D.(a3)4=a7 考 点: 多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:根据乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项的运算法则分别进行计算,即可得出答案.

江苏省南通市2015年中考数学试卷含答案

江苏省南通市2015年中考数学试卷 一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的) 1.(3分)(2015?南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作() A.﹣3m B.3m C.6m D.﹣6m 2.(3分)(2015?南通)下面四个几何体中,俯视图是圆的几何体共有() A.1个B.2个C.3个D.4个 3.(3分)(2015?南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为() A.0.77×107B.7.7×107C.0.77×106D.7.7×106 4.下列图形中既是轴对称图形又是中心对称图形的是() A.B.C.D. 5.(3分)(2015?南通)下列长度的三条线段能组成三角形的是() A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0) 6.(3分)(2015?南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是() A.B.C.D.2

7.(3分)(2015?南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为() A.12 B.15 C.18 D.21 8.(3分)(2015?南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是() A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 9.(3分)(2015?南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有() A.1个B.2个C.3个D.4个 10.(3分)(2015?南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为() A.2.5 B.2.8 C.3 D.3.2 二.填空题(每小题3分,共24分) 11.(3分)(2015?南通)因式分解4m2﹣n2=(2m+n)(2m﹣n). 12.(3分)(2015?南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.

深圳市2013年中考数学试题独立试题

2013年深圳市中考数学试卷 说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位 置上,将条形码粘贴好。 2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。考试时间90分钟,满分100分。 3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律 无效。答题卡必须保持清洁,不能折叠。 4、考试结束,请将本试卷和答题卡一并交回 第一部分 选择题 (本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的) 1.-3的绝对值是( ) A.3 B.-3 C.-31 D.3 1 2.下列计算正确的是( ) A.2 2 2 )(b a b a +=+ B.2 2 )ab (ab = C.5 2 3)(a a = D.32a a a =? 3.某活动中,共募得捐款32000000元,将32000000用科学记数法表示为( ) A.81032.0? B.6102.3? C.7102.3? D.61032? 4.如下图,是轴对称图形但不是中心对称图形的是( ) 5.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A.最高分 B.中位数 C.极差 D.平均数 6.分式2 42+-x x 的值为0,则( ) A.x =-2 B.x =2± C.x =2 D.x =0 7.在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则b a +的值为( ) A.33 B.-33 C.-7 D.7 8.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。已知爸爸比小朱的速度快100米/分,求小朱的速度。若设小朱速度是x 米/分,则根据题意所列方程正确的是( ) A. 1014401001440=--x x B. 101001440 1440++=x x C. 1010014401440+-=x x D. 1014401001440=-+x x 9.如图1,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后, 将两部分拼成一个四边形,所得四边形的周长是( ) A.8或32 B.10或324+ C.10或32 D.8或324+ 10.下列命题是真命题的有( ) ①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直 角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。 A..1个 B.2个 C.3个 D.4个

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

江苏南通中考数学试卷版

江苏南通中考数学试卷 版 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

2018年江苏省南通市中考数学试卷 试卷满分:150分教材版本:人教版 一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.) 1.(2018·南通市,1,3) 6的相反数是 A.-6 B.6 C.-1 6 D.1 6 2.(2018·南通市,2,3)计算x2·x3结果是 A.2x5 B.x5C.x6 D.x8 3.(2018·南通市,3,3)x的取值范围是A.x<1 B.x≤1 C.x>1 D.x≥1 4.(2018·南通市,4,3)2017年国内生产总量达到827 000亿元,稳居世界第二,将数827 000用科学记数法表示为 A.×104B.×105C.×106 D.×106 5.(2018·南通市,5,3)下列长度的三条线段能组成直角三角形的是 A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 6.(2018·南通市,6,3)如图,数轴上的点A,B,O,C,D分别表示数-2,- 1,0,1,2.则表示数2的点P应落在 A.线段AB上B.线段BO上C.线段OC上 D.线段CD上

7.(2018·南通市,7,3)若一个凸多边形的内角和为720°,则这个多边形的边数为A.4 B.5 C.6 D.7 8.(2018·南通市,8,3)一个圆锥的主视图是边长为4 cm的正三角形,则这个圆锥的侧面积等于 A.16π cm2B.12π cm2C.8π cm2 D.4π cm2 9.(2018·南通市9,3)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图. 步骤1:分别以点C和点D为圆心,大于1 2 CD的长为半径作弧,两弧相交于M,N两点; 步骤2:作直线MN,分别交AC,BC于点E,F; 步骤3:连接DE,DF. 若AC=4,BC=2,则线段DE的长为 A.5 3 B.3 2 C D.4 3 10. (2018·南通市,10,3)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻 折,点B落在点F处,tan∠DCE=4 3 .设AB=x,△ABF的面积为y,则y与x的函数图象大致为 -2-10123

山西省2013年中考数学试题及解析

山西省2013年中考数学试题 第Ⅰ卷 选择题(共24分) 一.选择题 (本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算2×(-3)的结果是( ) A. 6 B. -6 C. -1 D. 5 答案:B 考点:实数的计算 解析:异号相乘,得负,2×(-3)=-6 2.不等式组错误!未找到引用源。的解集在数轴上表示为( ) 答案:C 考点:解不等式、不等式组及解集在数轴上表示 解析:解(1)得:2x ≥,解(2)得:X <3,所以解集为23x ≤< 3.如图是一个长方体包装盒,则它的平面展开图是( ) 答案:A 考点:几何体展开图 解析:长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B 、C 中两个小的与两个大的相邻,错,D 中底面不符合,只有A 符合 4.某班实行每周量化考核制学期末对考核成绩进行统计,结果显示甲、乙的平均成绩相同,方 差是甲362=甲 s ,302=乙s ,则两组成绩的稳定性:( ) A.甲组比乙组的成绩稳定; B. 乙组比甲组的成绩稳定; C. 甲、乙组成绩一样稳定; D.无法确定。 答案:B 考点:数据的分析 解析:方差小的比较稳定 5.下列计算错误的是( ) A .3 3 3 2x x x =+ B.2 3 6 a a a =÷ C.3212= D.3311 =? ? ? ??- 答案:B 考点:整式的运算

解析:a 6 ÷a 3 =633a a -= 6.解分式方程 31212=-++-x x x 时,去分母后变形为( ) A.2+(x+2)=3(x-1); B.2-x+2=3(x-1); C.2-(x+2)=3(1-x); D.2-(x+2)=3(x-1). 答案:D 考点:分式方程的化简 解析:原方程化为:22 311 x x x +-=--,去分母时,两边同乘以x -1,得:2-(x +2)=3(x -1) A.27oC ,28oC ; B.28oC ,28oC ; C. 27oC ,27oC , D. 29oC ,29oC 。 答案:B 考点:数据的分析 解析:28出现4次,最多,所以众数为28,由小到大排列为:27,27,27,28,28,28,28,29,30,30,31,所以,中位数为28 8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )条。 A. 1 B. 2 C.4 D. 8. 答案:C 考点:对称轴判定 解析:这是一个正八边形,对称轴有4条 9.王先生先到银行存了一笔三年的定期存款,年利率是4.25%,如果到期后取出的本息和(本金+利息)为33825元,设王先生存入的本金为x 元,则下面所列方程正确的是( ) A.x+3×4.25%x=33825; B.x+4.25%x=33825; C. 3×4.25%x=33825; D.3(x+4.25%x )=33825. 答案:A 考点:方程的应用 解析:一年后产生的利息为4.25%x ,三年后产生的利息为:3×4.25%x ,再加上本金,得到33825元 10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一 水平面上),为了测量B 、C 两地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30o,则BC 两地间的距离为( )m 。 A.1003; B.502 ; C. 503; D. 3 3100 答案:A 考点:三角函数

相关文档
相关文档 最新文档