文档库 最新最全的文档下载
当前位置:文档库 › 聚合物锂离子高倍率电池知识介绍(1)

聚合物锂离子高倍率电池知识介绍(1)

聚合物锂离子高倍率电池知识介绍(1)
聚合物锂离子高倍率电池知识介绍(1)

聚合物锂离子电池使用操作说明

聚合物锂离子电池使用操作说明 尊敬的客户: 请仔细阅读并遵照以下注意事项正确使用和操作本公司产品,不正确的使用和操作方法会降低电池的性能,并可能导致电池发热、气胀、破裂、冒烟或者着火等。 1.电池操作注意事项 1)铝塑膜包装材料 1.1由于电芯外包材料铝塑膜容易受尖锐物刺破,必须小心操作。 1.2禁止用尖锐部件碰撞或刮擦电池表面。 1.3安装位置与电芯接触面不可以有尖角,凸起。 1.4避免导电体(包括极耳,引线,电子元件等)与电芯铝塑膜的断口接触。 2)极耳 电池极耳的机械强度并非十分坚固,弯折容易断裂,尤其是正极耳,禁止多次弯折极耳。 3)折边 折边已在电池生产过程中完成,不能随意翻折,随意翻折电芯的折头尤其容易损伤电池,禁止打开或破坏电池的折边和折头。 4)机械 4.1 禁止用硬物敲打、用力踩踏或其它方式对电池进行撞击。 4.2禁止坠落,抛掷或者随意弯折电池。 5)短路 5.1短路会导致电芯严重损坏,任何时候禁止短路电芯。 5.2禁止正负极耳直接接触或同时与金属物体接触。 5.3禁止用金属导线将电池正负极直接相连。 6)保护板焊接 6.1使用小于100W恒温烙铁在极耳焊锡,温度控制在350℃以下。 6.2烙铁头在极耳上连续停留的时间不能超过3秒,焊接次数不能连续超过3次。 6.3禁止电烙铁头接触电池表面。 6.4焊接位置距离极耳根部1厘米以上,若达不到此要求则不允许连续焊接。 6.5电芯极耳最好通过导线与保护板相连。 6.6如果镍片表面不干净,焊接时先用刮片把镍片表面刮干净,然后上锡,再焊了、导线或保护板 6.7 必须在极耳冷却后才能再进行二次焊接。 2电池使用注意事项 1)充电 1.1充电时,充电电流电压及充电温度不得超过规定的标准如果超过定值可能会对电芯的充放电性能, 机械性能及安全性能造成破坏,进而可能导致电池发热、气鼓及泄漏甚至起火。 1.2充电电压:充电电压不得超过本产品规格书中规定的充电电压4.20±0.05V 1.3充电电流:充电电流不得超过本产品规格书中规定的最大充电电流。 1.4充电温度:充电时必须在本产品规格书中规定的温度范围内充电。 1.5禁止反向充电:正确连接电池的正负极,严禁反向充电,若电池正负极接反,将无法对电芯进行充 电。同时。反向充电会降低电芯的充放电性能,安全性,并会导致发热、泄漏。

软包装锂离子电池的高倍率放电性能

软包装锂离子电池的高倍率放电性能 ■<1.河南师范大学化学与环境科学学院常照荣吕豪杰 ■<2.新乡学院化学与环境工程学院付小宁 ■<3.河南新飞科隆电源有限公司尹正中 摘 要:以额定容量为1100mAh的063465型软包装锂离子电池为研究对象,研究了电池结构,正极活性物质与导电剂、粘结剂的配比,极板的面密度、压实密度等因素对锂离子电池高倍率放电性能的影响。制备的实验电池以15C大电流放电,电压平台为3.5V,循环220次(15C放电),容量保持率为87.0%。 关键词:软包装; 锂离子电池; 高倍率放电 锂离子电池具有能量密度高、循环寿命长、开路电压高及污染小等优点[1],已用于小电流放电的移动通讯、笔记本和数码相机等领域,但高倍率放电性能有待提高[2-4]。程建聪等[5]通过提高导电剂含量,采用薄正极和中间相炭微球(MCMB),并使用功能电解液,改善了电池的大电流性能;V.Subramanian 等[6]以气相法烧制的纳米纤维碳为负极制备的锂离子电池,可进行10C放电;M.Okuho等[7]通过水热法制备纳米级(17 nm)的LiCoO2,l00C放电容量达到1C时的65%,可满足电动汽车等大功率放电要求,但是制备工艺苛刻。 本文作者采用工业化的正负极材料,通过优化电池结构,调整配比参数,制备软包装电池,并测试了相关性能。 1 实验 1.1 极板制备 将正极活性物质LiCoO2(北京产,≥99.4%)、导电炭黑SP(Timcal公司产,≥99.75%)和导电石墨KS6(Timcal公司产,≥99.4%)按不同的比例混合后,以PVDF(美国产,≥99.9%)作为粘结剂,配制成浆料;将负极活性材料人工石墨(深圳产,≥99.9%)、导电炭黑SP、分散剂SBR(河南产,≥99.0%)和粘结剂CMC(德国产,≥99.9%)按质量比90.5:1.5:4:4混合后,配制成浆料。用涂布机将正极浆料均匀涂覆于铝箔(江苏产,≥99.8%)上,负极浆料均匀涂覆于铜箔(湖南产,≥99.8%)上,在80℃下真空(-0.1 MPa)干燥12h后,辊压,制成正、负极片。电解液为1mol/L LiPF6/ DMC+EMC+EC(体积比1:1:1,张家港产),隔膜为0.025 mm厚的聚丙烯微孔膜(日本产)。 1.2 测试仪器 采用BS-8802二次电池检测装置(广州产)对电池进行化成;BS-V高电压大电流动力电池检测设备(广州产)进行倍率测试;BS-VR3内阻测试仪(广州产)检测内阻。 1.3 电极及电池设计 以额定容量为1100mAh的063465型液态软包装锂离子电池为研究对象。采用真空热封机封口,经过防短路处理、干燥,然后注入电解液,经化成分容后,测试电池的性能。 实验电池的参数见表1。 2结果与讨论 2.1 电池结构的影响 电池技术 < 2008年9月73

锂离子电池基本知识

一.电池常规知识 目录 1.什么是电池? 2.一次电池和二次电池有什么区别? 3、充电电池是怎样实现它的能量转换? 4、什么是Li-ion电池? 5、Li-ion电池的工作原理? 6、Li-ion电池的主要结构。 7、Li-ion电池的优缺点。 8、Li-ion电池安全特性是如何实现的? 9、什么是充电限制电压?额定容量?额定电压?终止电压? 10、Li-ion铝壳和钢壳电池比较它的区别有哪些? 11、目前常见的各种可充电电池之间有什么区别? 1、什么是电池? 电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池

电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它 们的电化学成分和电极的结构可知,可充电电池的内部结构之 间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会 在电极的体积和结构上引起可逆的变化,那么可充电电池的内 部设计就支持这种变化。而一次电池在给定的电池环境中两个 电极之间的电化学反应是不可逆的,因此,不可以将一次电池 拿来充电,这种做法很危险也很不经济。如果需要反复使用, 应选择真正的循环次数在1000次左右的充电电池,这种电池又 称为二次电池。 ?另一明显的区别就是它们具有较高的比能量和负载能力,以及 自放电率。一次电池能量密度远比一次电池高。然而他们的负 载能力相对要小。 ?二次电池具有相对较高的负载能力,可充电电池Li-ion,随着 近几年的发展,具有高能量容量。 ?不管何种一次电池的电化学系统属于哪种,所有的一次电池的 自放电率都很小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转 换成电能。就二次电池而言(另一术语也称可充电便携式电池),

影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素 由技术编辑archive1 于星期四, 2014-10-16 13:51 发表 影响锂离子电池高倍率充放性能的因素很多,包括电池设计、电极组装、电极材料的结构、尺寸、电极表面电阻以及电解质的传导能力和稳定性等。为了探究其原因和机理,本文主要从正极、负极和电解质材料三方面对它们在高倍率充放电时各自的影响因素进行了综述和分析,并讨论了利于高倍率充放的电极和电解质材料的发展方向。 锂离子电池具有工作电压高、比能量大、无记忆效应且对环境友好等优点,广泛应用于手机、相机、笔记本电脑等小 型电器的同时,在电动车、卫星、战斗机等大型电动设备方面的应用也备受青睐[1-2]。美国Lawrence LiVermore 国家实验室早在1993 年就对日本SONY 公司的20500 型锂离子电池进行了全面的技术分析,考察其用于卫星的可能 性[3];我国中科院物理所也早在1994 年承担福特基金项目时就开始了动力型锂离子电池的研发[4];国内外一些知名企业进行了动力型锂离子电池的研制和生产,如德国瓦尔塔公司研发的方型锂离子电池,容量为60 Ah,比能量为115 Wh/kg,日本索尼公司生产的高功率型锂离子电池80%DOD 的比功率高达800 W/kg [5],国内深圳的比亚迪、雷天、天津力神、河南金龙、湖南晶鑫等公司也研制生产出容量在10 Ah 以上的动力型锂离子电池。 尽管在全世界科技和工业界的共同努力下,动力型锂离子电池的研发和生产已取得了长足进展,并逐步走上了实用的轨道,但其价格较高,而且循环性能、安全性能及其高倍率充放电性能都有待于进一步提高(如目前锂离子电池用于电动车时,其动力仍不能与传统燃油机的动力相比,这影响着电动车的行程、最高时速、加速性能及爬坡性能等)。为了动力型锂离子电池更快的发展,有必要对其高倍率性能的影响因素进行系统研究和分析,找出根本原因。

聚合物锂离子电池使用注意事项

聚合物锂离子电池使用注意事项 一、电芯操作注,他说:想发财就去万通商联找优质表带供货商!注意事项 由于电芯属于软包装,为保证电芯的性能不受损害,必须小心对电芯进行操作。 1.铝箔包装材料 铝箔包装材料易被尖锐部件刺损,诸如镍片、尖针。 禁止用尖锐部件碰撞电池 应清洁工作环境,避免有尖锐部件存在 禁止用钉子及其它利器刺穿电池 禁止将电池与金属物,如项链、发夹等一起运输或贮存 2.顶封边 顶封边非常容易受到损害 禁止弯折顶封边 3.折边 折边在电池生产过程中已完成,并通过了密封测试。 禁止打开或破坏折边 4.极耳 极耳的机械强度并非异常坚固,特别是铝片。 禁止弯折极耳 5.机械撞击 禁止坠落、冲击、弯折电芯 禁止用锤子敲击或踩踏电池 禁止敲击或抛掷电池。 6.短路

任何时候禁止短路电芯,它会导致电芯严重损坏 禁止用金属物如电线短路连接电池正负极 二、聚合物锂离子电池测试标准环境 环境温度: 20±5℃ 相对湿度: 45~85% 在测试前电池都要先放完电 三、聚合物锂离子电范充放电注意事项 1.充电 充电电流及充电电压不得超过以下标准,如超过规定值可能会对电芯的充放电性能、机械性能及安全性造成造成损坏,进可能导致发热及泄漏。 电池充电器必须能恒流恒压充电; 充电时的单体电池充电电流必须在1C5A以下; 充电时温度范围在0~+45℃; 充电时电压不能超过4.23V。 2.放电 放电电流不得超过以下标准,放电必须在本标准范围内进行。 单体电池放电电流必须小于2C5A; 放电时温度范围在-20~+60℃; 单体电池放电终止电压不小于2.75V。 3.过放电 需要注意的是,在电芯长期未使用期间,它可能会用其自放电特性而处于某种过放电状态。为防止过放电的发生不能过放电使单体电池低于2.5V。 4.具体应用时要求加合格保护电路板。

锂离子电池高倍率放电性能研究

图1 双极耳电池电极片示意图 Fig.1Schematicdiagramofelectrodepatch 收稿日期:2005-08-21 作者简介:唐致远(1946—),男,安徽省人,教授,博士生导师,主要研究方向为应用电化学。 Biography:TANGZhi-yuan(1946—),male,professor. 锂离子电池高倍率放电性能研究 唐致远1,谭才渊1,陈玉红1,崔燕1,薛建军2 (1.天津大学化工学院应用化学系,天津300072;2.广州鹏辉电池有限公司,广东广州511483) 摘要:对锂离子电池高倍率放电性能进行了研究。发现电池设计对锂离子电池放电性能具有较大的影响,设计了一种新型的锂离子电池的电极。研究了电极活性物质与导电剂、粘结剂的配比,电极片的面密度、压实密度对锂离子电池高倍率放电性能的影响,通过实验研究得到了一种高倍率放电性能良好的锂离子电池,该电池放电容量高,放电平台平滑,平台电压较高,循环性能较好,且电池放电时表面温度不高。分析锂离子电池高倍率放电循环曲线时发现了放电容量变化的一个规律,给出了针对锂离子电池高倍率放电的一种充、放电制度。关键词:锂离子电池;高倍率;放电;极耳中图分类号: TM912.9文献标识码:A 文章编号:1002-087X(2006)05-05 Researchonhighratedischargeforlithiumionbattery TANGZhi-yuan1,TANCai-yuan1,CHENYu-hong1,CUIYan1,XUEJian-jun2 (1.DepartmentofAppliedChemistry,SchoolofChemicalEngineeringandTechnologyTianjinUniversity,Tianjin300072,China; 2.GreatPowerBatteryCo.Ltd,GuangzhouGuangdong511483,China) Abstract:Thispaperresearchedonhighratedischargeperformanceinlithiumionbattery.Batterydesigninfluencedon thehighratedischargeperformancesincerely,thenanewdesignaboutlithiumionbatterycameforth.Theelectrodematerialingredient,surfacedensityandthicknessofelectrodewereresearched.Thispaperfoundafavorablehighratedischargeperformancelithi-umionbattery,whichhadhighdischargecapacity,flatvoltage,preferablecycleperformanceandlowtemperaturewhendis-charging.Aruleondischargecapacitywasfound,andachargeanddischargesystemforhighratedischargelithiumionbatterywasrecommended. Keywords:lithiumionbattery;highrate;discharge;lead 当前,锂离子电池行业发展迅速,随着电子产品的发展,对锂离子电池也提出了更高的要求。电动汽车市场展现出蓬勃的发展势头[1 ̄4],需要放电电流较大、功率较高的锂离子电池,许多小型电器也要求能够高倍率放电,小电流放电锂离子电池已不能完全满足市场的需求。虽然,氢镍电池高倍率放电研究发展较早,但是其电压较低,质量比容量及体积比容量与锂离子电池相比均较低,因此,在一些对电池电压、质量、体积等要求严格的电器中,都对锂离子电池寄予厚望。 1实验 1.1电极制备 正极活性物质LiCoO2,与鳞片石墨、碳黑、乙炔黑混合,以 聚偏氟乙烯(PVDF)作为粘结剂配制成浆料。负极活性材料为石墨,添加乙炔黑,以羧甲基纤维素钠(CMC)为粘结剂,混合制成浆料。将正、负极浆料分别涂布于铝箔、铜箔上,然后干燥辊压制成正、负极片。电解液为1.0mol/LLiPF6/碳酸乙烯酯(EC)-碳酸二甲酯(DMC)(1∶1)(广州市天赐高新材料科技有限公司),隔膜为聚丙烯微孔膜(Celgard2400),厚度为0.025mm。 1.2电极及电池设计 以063465软包装液态锂离子电池为研究对象,制作两类电池:(1)正、负极片分别焊接一个极耳(本文称为单极耳电池)。(2)正、负极片分别焊接两个极耳(本文称为双极耳电池)。(如图1所示)。单极耳和双极耳电池的封口处侧视图如图2所示。 a.极耳;b.极耳胶 A.极耳胶1;a.极耳1; B.极耳胶2;b.极耳2 图2两种设计电池封口处侧视图 Fig.2Sideviewofbatteryseal

聚合物锂离子电池测试标准

1.0范围scope 本规范规定了聚合物锂离子电池定义、要求、测验方法。 本规范适用于聚合物锂离子电池(聚合物软包/固态/二次圆柱/一次圆柱),不适用于动力电池。 2.0 3.0引用标准reference standard 下列是本文引用的标准。执行本规范时,所示版本均应为有效版本。使用本规范的各部门应注意下列引用标准是否是最新版本。 GB/T2900.11-1988蓄电池名词术语 GB/T18287-2000蜂窝电话用锂离子电池总规范 UL 1642 锂电池安全测试标准 4.0 定义definition 4.1充电限制电压--电池由恒流充电转入恒压充电时的电压值。 4.2标称容量—指电池在环境温度为25±2℃的条件下,以5h率放电至终止电压时所应提供的电量,用C5表示, 单位为Ah(安培小时)或mAh(毫安小时)。 4.3恢复容量—在规定的温度、时间下贮存一段时间,电池放电后进行充电,并再次放电的容量。 4.4标称电压—用以标识电池电压的适宜的近似值。 4.5终止电压—规定放电终止时电池的负载电压。 4.6漏液—可见液体电解液的漏出。 4.7鼓胀—电池内部压力增加,内有气体,厚度(直径)膨胀率108%以上。 4.8破裂—由于内部外部因素引起电池外壳的机械变形,导致内部物质暴露或溢出,但没有喷出。 4.9起火—电池有可见火焰或冒黑烟等。 4.10爆炸—电池的外壳猛烈破裂导致主要成分抛射出来。 4.11聚合物软包—外包装膜为铝塑膜可循环充放电使用的电池。 4.12聚合物固态—外包装膜为铝塑膜,内部极片与隔膜混为一体可循环充放电使用的电池。 4.13聚合物二次圆柱—可循环充放电使用的聚合物圆柱电池。 4.14聚合物一次圆柱—不可再次充放电使用聚合物圆柱电池。 5.0测试条件和要求test conditions and requirement

聚合物锂离子电池技术

聚合物锂离子电池技术 摘要:本文阐述了不得聚合物锂离子电池的结构特点,从正极材料、电解质、负极材料等几方面综述了聚合物锂离子电池的技引言 能源和环境是人类进入21世纪必须面对的两个严峻问题,开发新能源和清洁可再生能源是今后世界经济中最具决定性影响的技术领域之一。锂离子电池自问世以来发展极快,这是因为它正好满足了移动通讯和笔记本电脑迅猛发展对电源小型化、轻量化、长工作时间、长寿命、无记忆效应和对环境无公害等的要求。而聚合物固态电解质代替液体电解质来制造聚合物锂离子电池,则是锂离子电池的一个重大进步,其主要优点是具有高的可靠性和加工性,可以做成全塑结构,从而使制造超薄及自由度大的电池的愿望得以实现。 1 锂离子电池的结构特点 锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。其反应示意图及基本反应式如下所示:

2. 聚合物锂离子电池技术 2.1 聚合物锂离子电池的性能特点 聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。 聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。

锂电池基础知识讲解

锂电池基础知识讲解 理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 ⑴正极材料的溶解 尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应: 2Mn3+(固)Mn4+(固)+Mn2+(液) 歧化反应生成的二价锰离子溶于电解液。离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4。 Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55℃时的34%)[14]。 ⑵正极材料的相变化[15] 锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。 对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。 第二类相变是Jahn-Teller效应。Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。由于Jahn-Teller效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。四方晶相对称性低且无序性强,使锂离子的脱嵌可逆程度降低,表现为正极材料可逆容量的衰减。 ⑶电解液的还原[15] 锂离子电池中常用的电解液主要包括由各种有机碳酸酯(如PC、EC、DMC、DEC 等)的混合物组成的溶剂以及由锂盐(如LiPF6 、LiClO4 、LiAsF6 等)组成的电解质。在充电的条件下,电解液对含碳电极具有不稳定性,故会发生还原反应。电解液还原消耗了电解质及其溶剂,对电池容量及循环寿命产生不良影响,由此产生的气体会增加电池的内部压力,对系统的安全造成威胁。 ⑷过充电造成的量损失[15] 负极锂的沉积:过充电时,发生锂离子在负极活性物质表面上的沉积。锂离子的沉积一方面造成可逆锂离子数目减少,另一方面沉积的锂金属极易与电解液中的溶剂或盐的分子发生反应,生成Li2CO3、LiF或其他物质,这些物质可以堵塞电极孔,最终导致容量损失和寿命下降。 电解液氧化:锂离子电池常用的电解液在过充电时容易分解形成不可溶的Li2CO3等产物,阻塞极孔并产生气体,这也会造成容量的损失,并产生安全隐患。 正极氧缺陷:高电压区正极LiMn2O4中有损失氧的趋势,这造成氧缺陷从而导致容量损失。 ⑸自放电 锂离子电池的自放电所导致的容量损失大部分是可逆的,只有一小部分是不可逆的。造成不可逆自放电的原因主要有:锂离子的损失(形成不可溶的Li2CO3等物质);电解液氧化产物堵塞电极微孔,造成内阻增大。

聚合物锂离子电池使用注意事项

聚合物锂离子电池使用注意事项一、注意事项 由于电芯属于软包装,为保证电芯的性能不受损害,必须小心对电芯进行操作。 1.铝箔包装材料 铝箔包装材料易被尖锐部件刺损,诸如镍片、尖针。 禁止用尖锐部件碰撞电池 应清洁工作环境,避免有尖锐部件存在 禁止用钉子及其它利器刺穿电池 禁止将电池与金属物,如项链、发夹等一起运输或贮存 2.顶封边 顶封边非常容易受到损害 禁止弯折顶封边 3.折边 折边在电池生产过程中已完成,并通过了密封测试。 禁止打开或破坏折边 4.极耳 极耳的机械强度并非异常坚固,特别是铝片。 禁止弯折极耳 5.机械撞击 禁止坠落、冲击、弯折电芯 禁止用锤子敲击或踩踏电池

禁止敲击或抛掷电池。 6.短路 任何时候禁止短路电芯,它会导致电芯严重损坏 禁止用金属物如电线短路连接电池正负极 二、聚合物锂离子电池测试标准环境 环境温度: 20±5℃ 相对湿度: 45~85% 在测试前电池都要先放完电 三、聚合物锂离子电范充放电注意事项 1.充电 充电电流及充电电压不得超过以下标准,如超过规定值可能会对电芯的充放电性能、机械性能及安全性造成造成损坏,进可能导致发热及泄漏。 电池充电器必须能恒流恒压充电; 充电时的单体电池充电电流必须在1C5A以下; 充电时温度范围在0~+45℃; 充电时电压不能超过4.23V。 2.放电 放电电流不得超过以下标准,放电必须在本标准范围内进行。 单体电池放电电流必须小于25A; 放电时温度范围在-20~+60℃;

单体电池放电终止电压不小于2.75V。 3.过放电 需要注意的是,在电芯长期未使用期间,它可能会用其自放电特性而处于某种过放电状态。为防止过放电的发生不能过放电使单体电池低于2.5V。 4.具体应用时要求加合格保护电路板。 四、聚合物锂离子电池贮存 电池长期贮存的环境为:温度-20~+35℃ 相对湿度 45~75% 电池贮存期近一年时要用标准充电方式给电池充电10%~50%。 五、聚合物锂离子电池运输 电池应在10%~50%的充电状态下运输。 六、聚合物锂离子电池其它使用说明 1.为了防止电池可能发生泄漏、发热、爆炸,请注意以下预防措施: 禁止在任何情况下拆卸电芯。 禁止将电池浸入水中或海水中,不能受潮。 禁止在热源旁,如火、加热器等,使用或放置电池。 禁止将电池加热或丢入火中。 禁止直接焊接电池。 禁止在火边或很热的环境中充电。

聚合物锂离子电池电池基本生产工艺流程

聚合物锂离子电池基本生产工艺流程 目的:将粉状材料搅拌成糊状浆料 Polymer/DBP(增塑剂)/Carbon/LiCoO 2(Cathode) or Graphite(Anode)/Solvent 控制点:固含量/浆料颗粒直径的分布/粘度 目的:将糊状浆料涂制成薄膜 控制点:膜片一致性(重量&厚度)/机械强度/干燥度 Laminating:在一定温度下通过一定的压力将集流体、阴/阳极材料、隔离膜热 复合成电芯单体的基本结构。 Lam 1产品:Electrode 控制点:Temperature/Pressure /Thickness Anode/Cathode/Separator Separator 要求:Electronic insulator/Ionic conductor; Mechanical strength 控制点:Temperature/Pressure/Gap/Thickness 产品:Bi-cell 为Li 离子打通通道 Tab TAB Lead Sealant 0.1~0.15mm 控制点:Temperature/Pressure 控制点:Temperature/Time 85±5℃,4h (55A5130:20H) Composition: Salt; Organic solvent(有机溶剂) 要求:high ionic conductivity; chemical/electrochemical stable; good LT/HT performance 大电池:2 h; 中小电池:1h 干燥房

通过恒流/恒压充放电激活电池 CC ---Constant Current CV---Constant V oltage Pre-degassing 耐高温性能测试(85℃/4h) 55A5130 :75℃/24h 经封装,在真空状态下通过一定压力时间真空度将电芯内气体抽出,并保 证密封度 成型过程(外观要求)Trimming/Folding 将Ni片焊到Al Tab上,因Al Tab不易上锡、易断 电性能测试参数:Open Current V oltage、Impedance、Capacity QAI-002 聚合物锂离子电池的四个检测方法: 1.电性能 charge/discharge; capacity; voltage/impedance; cycle life 2.环境适应能力 LT/HT performance; vibrate; collide;自由跌落;恒定湿热 3.安全性能 过充过放保护;短路保护 4.存储性能 荷电保持能力;高温高湿存储性能 准备:Nelson 12/03/03 审核:Kevin 批准:Vicky

锂电池基本学习知识讲解

锂电池基本知识讲解 电池基本知识 1.电池 电池是将化学反应产生的能量直接转化为电能的一种电化学装置。 2.原电池 原电池是指经过放电后,不能用一般的充电方法使其复原而继续使用的电池,也叫一次电池。 3.蓄电池 指可以通过充电方法使两极活性物质复原而可以再次放电的电池,也叫二次电池。 4.干电池 干电池是指电解液不流动的电池,通常是指锌、锰干电池。 5.电解池 电解池是一种将电能转化为化学能的电化学装置,电池充电时相当于电解池。 6.电子导体 是指依靠物质内部的自由电子在外加电场作用下做定向运动而导电的导体,也叫第一类导体。各种金属通常为第一类。

7.离子导体 是依靠物质内部的可移动离子在外加电场作用在做定向移动而导电的导体,也叫第二类导体。各种电解液通常为第二类导体。如氢氧化钾水溶液。 8.电解质 一定条件下具有离子导电性的物质称为电解质。 9.电极 是指由两类导体即电子导体和离子导体串联组成的导电体系,也叫半电池,通常为了方便把构成电极的金属导体部分称为电极。 10.正/负极 在一个电化学装置中,电极电位较高的电极称为正极;电极电位较低的电极为负极。 11.电池充电 借助于外直流电源,将电能输入电池迫使其内部发生电化学反应的过程叫电池充电。 12.电池放电 电池内部发生电化学反应产生电能并向外电路输出电能的过程叫电池放电。 13.活性物质 是指在电池中将化学能转变为电能的过程中参加电极反应的物质。

14.为什么电池放电时不需要外接电源而电池充电时需要外接电源? 电池放电时的电化学反应是一种自发的过程,电池向外电路供电是可以自发进行的过程,而充电时的电池相当于电解池,电解池中消耗电能的化学反应是一种不可以自发进行的过程,所以要借助于外接电源强迫化学反应逆方向进行。 15.电池电动势 电池正极平衡电极电位与负极平衡电极电位之差称为电池电动势,又叫理论电压。 16.开路电压 电池开路时,正负极之间的电位差叫开路电压,开路电压在数值上等于正负极稳定电极电位之差,是一个实测值。 17.标称电压 一般被认为是电池工作在标准条件下可具有的电压值。18.放电电压 电池放电时正负极间的电位差叫放电电压,也叫工作电压或负载电压或端电压。 19.充电终止电压 电池充电所允许的最高电压叫充电终止电压。 20.放电终止电压 电池放电时,电压下降到不宜再继续放电的最低工作电压

聚合物锂离子电池的充放电方式

深圳市沃尔德电子 聚合物锂离子电池的充放电方式: 聚合物锂离子电池的充电方式与液体锂离子电池基本上相同,主要有两种方式:恒流充电和恒压充电,当然两者也可以交叉进行。前者主要用于实验室研究,后者则较少用。在恒流充电过程中,电压起始升高较快,容量一般随时间线性增加,内阻也不断增加。商品锂离子电池则是先采用恒流充电,然后采用恒压充电。电压、电流和充电量随充电时间的变化。恒流、恒压充电方式最简单的电路实现方法为:设计一个高精度的恒定电压控制电路,并在该电压环路内添加高精度的电流限制环路。电流限制环路用于限制电池的充电电流,直到电池电压真正达到终止电压(单体聚合物锂离子电池通常为4V)。当电池电压刚刚达到终止电压时,电池实际上只完成了充电的70%~80%。因此需要在恒压模式下继续对电池充电,直到流入电池的电流衰减到最小(5%C)时,才说明电池达到满充电状态。在实际应用或检测中,也可以采用脉冲放电或充电方式。脉冲充电为将全波整流后的交流电压直接接至控制系统,当全波处于上升沿时,电压将超过设定的阈值时,切断充电电路;当全波信号的电压降至低于阈值时,充电电路再次启动。使用这一电路,电池仅在线性充电器的输入输出电压差较低时充电。这可以减小便携式设备的功率损耗,同时允许使用简单的全波整流适配器,电池充电器价格低。 聚合物锂离子电池的放电方式在实际过程中主要是负荷固定的方式。尽管负荷的电阻不变,然而电池的电阻会发生变化。随放电过程的进行,电压下降。当电压降低到一定值时,会发生过放,导致集流体的溶解。为了检测电池的性能,也可以采用恒流放电方式。电池的输出功率与放电电流有关。当电流位于一适中值,输出功率最大(Pmax)。通常可接受的最大功率为Padm。随着聚合物锂离子电池的进一步发展,充电技术也得到不断提高,以期缩短充电时间,提高充电效率和改进充电效果,例如多阶段变电流间歇快速充电方法、初始电流大的多阶段恒流充电等。在聚合物锂离子电池的充电过程中,不可避免会发生包括欧姆极化、浓差极化和电化学极化等在内的极化现象,导致充电电压升高、充电效率降低。为了减小充电过程产生的极化,有效增大充电量,提高充电效率,可以采用去极化的方式。去极化的方式主要有两种:自然去极化(即采用中途停止充电、间歇的方式)和强制去极化(即采用脉冲放电的方式)。 脉冲充电和去极化脉冲的方式也可以对聚合物锂离子电池进行充电。为了提高聚合物锂离子电池充电的效果,除了进行变电流充电以及充电波形(利用间歇和放电脉冲)的改进,还需要考虑电池状态(包括荷电状态或可接受充电电流以及老化状态)对充电的影响。随电池充电的增多,其可接受充电电流减小。并且,随着电池循环次数的增多,电池老化严重,其充电特性也逐渐变劣。 在不同的充电或放电状态下,正极、负极的状态不一样,电阻也不一样。了解其变化对于正确理解聚合物锂离子电池的充放电行为具有积极意义。对于整个电池而言,电池的电阻由本体电阻、膜电阻(Rsei)和电荷传递阻抗(Rct)组成。在循环过程中,发现电池的本体电阻和膜电阻不变,而电荷传递阻抗表现出2个最小值。温度降低时,Rct明显减少,决定电池的电阻。在低温下充电比放电更难。处于全充电状态时,电阻主要由负极的SEI 膜决定;而处于全放电状态时,主要由正极的电荷传递阻抗决定。大电流下的放电容量受正极中锂离子的扩散系数限制,而负极的影响很小。200次循环后,正极的电阻增加最大,例如充电状态为50%时,增加约200%。低温放电时,负极的电阻最大。放电快结束时,正极电阻占据主要地位,而负极的电阻减少。 为了衡量聚合物锂离子电池的循环性能,如果进行实际测试,直到循环达到500次或容量衰减到80%为止,将花费大量时间。通过一系列试验,也可以建立一套模型,采用该模

关于锂电池和锂聚合物电池的区别及他们正确的充电方法

关于锂电池和锂聚合物电池的区别及他们正确的充电方法 一、锂电池的种类: 以前市面上所使用的二次电池主要有镍氢(Ni-MH)与锂离子(Li-ion)两种类型。锂离子电池中已经量产的有液体锂离子电池(LiB)和聚合物锂离子电池(LiP)两种。所以在许多情况下,电池上标注了Li-ion的,一定是锂离子电池。但不一定就是液体锂离子 电池,也有可能是聚合物锂离子电池。 锂离子电池是锂电池的改进型产品。锂电池很早以前就有了,但锂是一种高度活跃(还记得它在元素周期表中的位置吗?)的金属,它使用时不太安全,经常会在充电时出现燃烧、爆裂的情况,后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份(比如钴、锰等等)从而使锂电真正达到了安全、高效、方便,而老的锂电池也随之基本上淘汰了。至于如何区分它们,从电池的标识上就能识别,锂电池为Li、锂离子电池为Li-ion。现在,笔记本和手机使用的所谓“锂电池”,其实都是锂离子电池。 现代电池的基本构造包括正极、负极与电解质三项要素。作为电池的一种,锂离子电池同样具有这三个要素。一般锂离子技术使用液体或无机胶体电解液,因此需要坚固的外壳来容纳可燃的活性成分,这就增加了电池的重量和成本,也限制了尺寸大小和造型的灵活性。一般而言,液体锂离子二次电池的最小厚度是6mm,再减少就比较困难。 而所谓聚合物锂离子电池是在这三种主要构造中至少有一项或一项以上使用高分子材 料作为其主要的电池系统。 新一代的聚合物锂离子电池在聚合物化的程度上已经很高,所以形状上可做到薄形化(最薄0.5毫米)、任意面积化和任意形状化,大大提高了电池造型设计的灵活性,从而可以配合产品需求,做成任何形状与容量的电池。同时,聚合物锂离子电池的单位能量比目前的一般锂离子电池提高了50%,其容量、充放电特性、安全性、工作温度范围、循环寿命与环保性能等方面都较锂离子电池有大幅度的提高。 目前市面上所销售的液体锂离子(LiB)电池在过度充电的情形下,容易造成安全阀破裂因而起火的情形,这是非常危险的,所以必需加装保护IC线路以确保电池不会发生过度充电的情形。而高分子聚合物锂离子电池方面,这种类型的电池相对液体锂离子电池而言具有较好的耐充放电特性,因此对外加保护IC线路方面的要求可以适当放宽。此外在充电方面,聚合物锂离子电池可以利用IC定电流充电,与锂离子二次电池所采用的CCCV(Constant Currert-Constant Voltage)充电方式所需的时间比较起来,可以 缩短许多的等待时间。 二、手机制造商对锂电池的应用情况 虽然近几年来几乎所有厂家都已经倾向于采用锂离子电池,但世界各大手机制造商对电池的选择还是有自己的特点和习惯,例如曾经在相同的一段历史时期里: 诺基亚:采用Ni-MH(镍氢)电池、LiB(液体锂离子)电池,未采用LiP(聚合物锂离

锂离子电池基本知识

锂离子电池基本知识

锂离子电池基本知识 1、什么是Li-ion电池? Li-ion是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是锂金属,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion又叫摇椅式电池。 2、Li-ion电池有哪几部分组成? (1)电池上下盖(2)正极——活性物质为氧化锂钴(3)隔膜——一种特殊的复合膜 (4)负极——活性物质为碳(5)有机电解液(6)电池壳(分为钢壳和铝壳两种) 3、Li-ion电池有哪些优点?哪些缺点? Li-ion具有以下优点: 1)单体电池的工作电压高达3.6-3.8V: 2)比能量大,目前能达到的实际比能量为100-115Wh/kg和240-253Wh/L(2倍于Nl-Cd,1.5倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L 3)循环寿命长,一般均可达到500次以上,甚至1000次.对于小电流放电的电器,电池的使用期限将倍增电器的竞争力. 4)安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd 电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。5)自放电小 室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。Li-ion也存在着一定的缺点,如: 1)电池成本较高。主要表现在LiCoO2的价格高(Co的资源较小),电解质体系提纯困难。2)不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在0.5C以下,只适合于中小电流的电器使用。 3)需要保护线路控制。 A、过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在4.1V-4.2V的恒压下充电; B、过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。 4、什么是锂离子制造过程? 1)配料 用专门的溶液和粘接剂分别与粉末状的正负极活性物质混合,经高速搅拌均匀后,制成浆状的正负极物质。 2)涂漠 将制成的浆料均匀地涂覆在金属箔的表面,烘干,分别制成正负极极片。 3)装配 按正极片——隔膜——负极片——隔膜自上而下的顺序放好,经卷绕制成电池极芯,在经注入电解

聚合物锂电池的优点和缺点详细解答

聚合物锂电池的优点和缺点详细解答! 聚合物锂电池是锂离子电池的一种,但是与液锂电池(Li-ion)相比具有能量密度高、更小型化、超薄化、轻量化,以及高安全性和低成本等多种明显优势,是一种新型电池。下面我们详细介绍聚合物锂电池的优点和缺点 聚合物锂电池 一.优点: 1.安全性能好

聚合物锂电池在结构上采用铝塑软包装,有别于液态电芯的金属外壳,一旦发生安全隐患,液态电芯容易爆炸,而聚合物电芯最多只会气鼓。 2.厚度小,能做得更薄 超薄,电池能够组装进信用卡中。普通液态锂电采用先定制外壳,后塞正负极村料的方法,厚度做到3.6mm以下存在技术瓶颈,聚合物电芯则不存在这一问题,厚度可做到1mm以下,符合时下手机需求方向。 3.重量轻 采用聚合物电解质的电池无需金属壳来作为保护外包装。聚合物电池重量较同等容量规格的钢壳锂电轻40%,较铝壳电池轻20%。 4.容量大 聚合物电池较同等尺寸规格的钢壳电池容量高10~15%,较铝壳电池高5~10%,成为彩屏手机及彩信手机的首选,现在市面上新出的彩屏和彩信手机也大多采用聚合物电芯。5.内阻小 聚合物电芯的内阻较一般液态电芯小,目前国产聚合物电芯的内阻甚至可以做到35mΩ以下,极大的减低了电池的自耗电,延长手机的待机时间,完全可以达到与国际接轨的水平。这种支持大放电电流的聚合物锂电更是遥控模型的理想选择,成为最有希望替代镍氢电池的产品。 6.形状可定制

制造商不用局限于标准外形,能够经济地做成合适的大小。聚合物电池可根据客户的需求增加或减少电芯厚度,开发新的电芯型号,价格便宜,开模周期短,有的甚至可以根据手机形状量身定做,以充分利用电池外壳空间,提升电池容量。 7.放电特性佳 聚合物电池采用胶体电解质,相比液态电解质,胶体电解质具有平稳的放电特性和更高的放电平台。 8.保护板设计简单 由于采用聚合物材料,电芯不起火、不爆炸,电芯本身具有足够的安全性,因此聚合物电池的保护线路设计可考虑省略PTC和保险丝,从而节约电池成本。 二.缺点: 和锂离子电池相比能量密度和循环次数都有下降。 制造昂贵。 没有标准外形,大多数电池为高容量消费市场而制造。 和锂离子电池相比,价格、能量比较高

锂离子电池基础知识

电池基础知识培训资料 一、锂离子电池工作原理与性能简介: 1、电池的定义:电池是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池即是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能源。 2、锂离子电池的工作原理:即充放电原理。Li-ion的正极材料是氧化钴锂,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion就象一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅两端来回奔跑。所以,Li-ion又叫摇椅式电池。 通俗来说电池在放电过程中,负极发生氧化反应,向外提供电子;在正极上进行还原反应,从外电路接收电子,电子从负极流到正极,而电流方向正好与电子流动方向相反,故电流经外电路从正极流向负极。电解质是离子导体,离子在电池内部的正负极之间定向移动而导电,阳离子流向正极,阴离子流向负极。整个电池形成了一个由外电路的电子体系和电解质的离子体系构成的完整放电体系,从而产生电能。 正极反应:LiCoO2==== Li1-x CoO2 + xLi+ + xe 负极反应:6C + xLi+ + xe- === Li x C6 电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC6

相关文档