文档库 最新最全的文档下载
当前位置:文档库 › Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical

Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical

Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical
Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical

AUTHO RS

Steven D.Hood $Department of Earth Sciences,University of Waikato,Private Bag 3105,Hamilton,New Zealand;s.hood@https://www.wendangku.net/doc/e41669290.html,

Steven Hood is a postdoctoral research fellow in the Department of Earth Sciences at the University of Waikato in Hamilton,New Zea-land.While recipient of a University of Waikato doctoral scholarship,he completed a Ph.D.on the subsurface stratigraphy and petrology of the middle Tertiary Tikorangi Formation fracture reservoir in Taranaki Basin in 2000.His research interests are currently focused on the petrology,paragenesis,and petroleum geology of cool-water carbonates,especially in New Zealand.Campbell S.Nelson $Department of Earth Sciences,University of Waikato,Private Bag 3105,Hamilton,New Zealand;c.nelson@https://www.wendangku.net/doc/e41669290.html,

Cam Nelson received B.Sc.and B.Sc.(honors)degrees in geology at Victoria University,Wel-lington.He lectured in the Department of Ge-ology at the University of Auckland,where he received his Ph.D.before joining the Depart-ment of Earth Sciences at the University of Waikato in Hamilton in 1971as its founding geological staff member.He was department chairperson from 1988to 1996and has been a professor since 1991.His research interests are in sedimentary and marine geology and stra-tigraphy and Cenozoic paleooceanography and paleoclimatology of the southwest Pacific region.He is past president and office holder of the Geological Society of New Zealand and was elected a fellow of the Royal Society of New Zealand in 1994.

Peter J.J.Kamp $Department of Earth Sciences,University of Waikato,Private Bag 3105,Hamilton,New Zealand;p.kamp@https://www.wendangku.net/doc/e41669290.html,

Peter Kamp is professor of Earth Sciences at the University of Waikato in Hamilton.He received his M.Sc.degree and his Ph.D.from the Uni-versity of Waikato.His research interests are in the analysis of sedimentary basins,particularly those of Late Cretaceous–Cenozoic age in New Zealand.Another major research inter-est involves the techniques of fission-track analysis and (U–Th)/He thermochronometry.His research applications involve the thermal

Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical carbonate reservoir,Taranaki Basin,New Zealand

Steven D.Hood,Campbell S.Nelson,and Peter J.J.Kamp

ABSTRACT

The nontropical Oligocene carbonate-rich Tikorangi Formation is an important oil producer in the Taranaki Basin,New Zealand.Hydrocarbons are hosted and produced from mineralized,natural fracture systems.Petrographic,trace-element,stable-isotope (d 18O and d 13C),and fluid-inclusion data have enabled a complex se-quence of eight paragenetic events to be determined.The Tikorangi Formation host rock was cemented by low-Mg calcite (event 1)during burial diagenesis,from temperatures of 27j C,corresponding to 0.5km burial,and continued until 37j C,1-km burial depth,producing tight,pressure-dissolved fabrics with essentially no po-rosity and permeability.The host rock was partially dolomitized (5–50%)(event 2)by Ca-and Fe-rich dolomite rhombohedra at burial depths and temperatures of 1.0–1.5km and 35–50j C without secondary porosity development.Subsequent brittle fractur-ing formed by Neogene compression (event 3)is constrained to a period following lithification and dolomitization,but before precip-itation of first-generation vein calcite (event 4).This initial ferroan low-Mg vein calcite formed after a period of burial from Fe-rich,meteorically modified fluids at temperatures of about 50–60j C and 1.4–1.9km burial depth.Baroque dolomite formed (event 5),following a period of Mg-enriched basinal fluid input precursory to hydrocarbon emplacement per se.The dolomite formed mainly as a primary cement but also as a calcite replacement at temperatures following further burial to 2–2.5km and temperatures of 65–80j C.Formation of celestite and quartzine phases (event 6)coincided with or marginally postdated dolomite at similar depths and tem-peratures to event 6and formed as both replacements and cements.Second-generation ferroan vein calcite formed (event 7)at cooler

Copyright #2003.The American Association of Petroleum Geologists.All rights reserved.

Manuscript received April 18,2002;provisional acceptance March 6,2003;revised manuscript received May 14,2003;final acceptance June 4,2003.DOI:10.1306/06040301103

AAPG Bulletin,v.87,no.10(October 2003),pp.1575–15971575

temperatures (53–65j C),perhaps resulting from the introduction of cooler meteoric fluids from upsection.The presence of petroleum-fluid inclusions in the second-generation calcite suggests precursory hydrocarbon-bearing fluids have migrated,along with aqueous fluids from about 10Ma,with hydrocarbon emplacement (event 8)occurring in the last 6m.y.following a period of rapid late Mio-cene burial.An improved understanding of the paragenesis of the Tikorangi Formation may assist in hydrocarbon production from its reservoirs.

INTRODUCTION

Within the Taranaki Basin,New Zealand’s only commercially pro-ducing hydrocarbon basin,the uppermost Oligocene Tikorangi For-mation is a naturally fractured reservoir in a nontropical carbonate.It is a unique play among otherwise siliciclastic reservoirs in the ba-sin.However,despite its hydrocarbon productivity,the paragenesis (geologic history)of the carbonate-rich host rocks and associated mineralized fracture systems is not well understood.Knowledge of the evolution of precipitates in the host rock and hydrocarbon-bearing fracture systems is a key to understanding the history of fluid flow prior to and during petroleum accumulation and ultimately for determining reservoir quality and production.

This study addresses these diagenetic issues by integrating a range of specialized petrographic (cathodoluminescence,fluid-inclusion geothermometry)and geochemical techniques (stable isotope,trace element)to unravel a complex sequence of para-genetic events for which associated geologic conditions are https://www.wendangku.net/doc/e41669290.html,ing the only available core material from five wells in the Waihapa-Ngaere field,namely,Waihapa-2,Waihapa-4,Waihapa-5,Waihapa-6,and Ngaere-2wells (Figure 1C),eight key paragenetic events for the Tikorangi Formation host rock and fracture systems were established.These events range from host rock diagenesis (event 1:cementation;event 2:dolomitization),creation of fracture porosity (event 3),fracture porosity modification by mineralization (events 4–7),to hydrocarbon emplacement into the mineralized fracture systems (event 8).For each event,a probable temperature field has been defined,which,combined with a geohistory plot,has enabled the timing of events to be determined.Events are dom-inated by the formation of a multiphase,both primary precipitate and secondary replacement,vein mineral suite of low-Mg ferroan calcite,Ca-rich nonstoichiometric ferroan baroque dolomite,fi-brous and spherulitic quartzine (length-slow chalcedony),and acic-ular and tabular celestite.Together,these mineralization events have extensively modified primary fracture porosity and perme-ability,thereby influencing hydrocarbon flow rates.Fracture pro-ductivity and the reservoir characteristics have been ultimately determined by original depositional facies/setting,diagenesis,and deformation.

history of sedimentary basins and the ex-humation history of basement provinces–mountain belts.

ACKNOWLEDGEMENTS

We thank Petrocorp Exploration,now Shell Petroleum Mining,for access to drill-core and in-house petroleum reports and the New Zealand Ministry of Economic Development for assistance in the Petroleum Report Library and core storage facilities,Wellington.We are grateful to John Collen for providing perceptive insights about the topic and Brian Ricketts for reviewing an early draft of the manuscript.We are grateful to Jeffrey Dravis and Mark Longman for constructive referee comments and to John Lorenz (AAPG editor)for his helpful sugges-tions.We acknowledge funding from the Uni-versity of Waikato Postgraduate Scholarship and the New Zealand Foundation for Research Science and Technology (UOW815).

1576Modification of Fracture Porosity by Multiphase Vein Mineralization

GEOLOGICAL SETTING

The Taranaki Basin lies largely offshore west of the North Island (Figure 1A,B).Its general geology and pe-troleum systems have recently been reviewed by King and Thrasher (1996).The basin underwent three dis-tinct phases of evolution conducive to the generation and entrapment of hydrocarbons:Late Cretaceous to Paleocene intracontinental extensional rifting,Eocene to early Oligocene passive margin,and Oligocene to Holocene active marginal basin associated with the evolution of the convergent Australia–Pacific plate boundary through New Zealand.The sedimentary fill reflects a Late Cretaceous to Cenozoic first-order se-quence,involving transgression to the earliest Miocene,followed by regression until the present.

A passive margin setting changed in the late Oligocene–early Miocene with the development of the present Australia–Pacific convergent plate boundary through New Zealand.Renewed subsidence started at about 35Ma in northern areas of the Taranaki Basin and moved southward and eastward,reflecting pro-gressive foundering of the paleoshelf.The Ngatoro Group,a carbonate-rich sequence of Oligocene to early Miocene age (Figure 2),comprises the Otaraoa Forma-tion (calcareous sandstone and siltstone;222m thick in the Mangahewa-1well-type section [King and Thrasher,1996]),Tikorangi Formation,and Taimana Formation (calcareous mudstone and marl,<250m thick [King and Thrasher,1996]).The carbonate-dominated Tiko-rangi Formation in this group includes three major megafacies:shelfal (260m thick at reference well Hu Road-1A),foredeep (223m thick at reference well Waihapa-5),and basinal ($145m thick at reference well Maui-1)(Figure 3)(Hood,2000;Hood et al.,in press a,b).A phase of convergence began in the early Miocene,when basement was thrust westward along the Taranaki fault,truncating and overriding the Tiko-rangi Formation (King and Thrasher,1996).During this compressive phase,the basin was partitioned into actively (Eastern mobile melt)and passively subsiding (Western stable platform)sectors (Figure 1B).

The Eastern mobile belt is a broad region of Neo-gene tectonic deformation,including the Tarata

thrust

Figure 1.(A)Location of Taranaki Basin in New https://www.wendangku.net/doc/e41669290.html,Z,Taupo volcanic zone.(B)Major structural and tectonic elements and main oil/condensate accumulations in Taranaki Basin,including the Waihapa-Ngaere field (modified from King and Thrasher 1996).(C)Location and current status of the seven onshore wells providing core from the Tikorangi Formation,in the Waihapa-Ngaere field,that form the basis for this study.

Hood et al.

1577

zone in onshore Taranaki,which experienced as much as 7km of contraction (Figure 1B)(King and Thrasher,1996).The Tarata thrust zone delineates a belt of lo-cally intense deformation,in which a series of imbricate en echelon thrust faults and associated anticlines,in-cluding the Waihapa-Ngaere field structure,host most of the petroleum discovered to date.The Waihapa-Ngaere field provides the location of petroleum well sections accessed in this study (Figure 1B,C).

THE TIKORANGI FRACTURED RESERVOIR The discovery in 1988of the Waihapa-Ngaere oil field in the naturally fractured,carbonate-dominated Tiko-rangi Formation opened up a new play in Taranaki Basin (Figure 1A,B).The uppermost Oligocene (early Wai-takian New Zealand stage)limestone-rich reservoir (Figure 2)hosts predominantly oil in an open,but com-monly extensively mineralized,fracture system formed during early Miocene thrusting at subsurface depths of about 3km (Figure 4A,B).Six years ago,the Waihapa-Ngaere field (five producing wells)was the biggest on-shore producer in Australasia,yielding 18,000BOPD with initial reserves estimated at 22.9million bbl (Min-istry of Economic Development,MED,2002a).The Tikorangi Formation continues to attract both recent and ongoing exploration activity in new prospecting areas outside the currently producing fields (Ministry of Economic Development,MED,2002b).

In detail,the Waihapa-Ngaere structure at the producing level is an asymmetric north-south–trending anticline with a steeply dipping (30–40j )western flank and a gently dipping (15j )eastern flank.Thinning of the Taimana and Manganui formations on to the anti-cline indicates that structural growth occurred during the early Miocene,possibly 20–16Ma.

The Tikorangi Formation deposits in the vicinity of the Waihapa-Ngaere field comprise a spectrum of siliciclastic-to carbonate-dominated rocks,including a prominent component of reworked and redeposited siliciclastics and shelfal bioclasts attributed to a fore-deep megafacies,one of three major lithofacies asso-ciations identified in the formation (Figure 3).Using Dunham’s (1962)petrographic classification,the rocks range from variably siliciclastic lime mudstones to wackestones to packstones to clean grainstones (Hood et al.,in press a,b).

NONTROPICAL CARBONATE FACIES

Globally,carbonate rocks are major and important hydrocarbon reservoir hosts.However,the Tikorangi Formation carbonates formed in a nontropical setting at a paleolatitude of about 45–50j S (Nelson and Cooke,2001)and are fundamentally different in character from many of the world’s well-studied limestone reservoirs (e.g.,Nelson,1988;Hayton et al.,1995;Hood and Nelson,1996;Hood et al.,in press b).In the case of

the

Figure 2.Schematic lith-ostratigraphy for the Tiko-rangi Formation in Tara-naki Basin showing age of the Oligocene to earliest Miocene (Lwh–Lw)ba-sinal facies and latest Oli-gocene (early Lw)fore-deep and shelfal facies.Note the occurrence of limestone-dominated Tikorangi Formation among otherwise silici-clastic-dominated facies.New Zealand stages are Ar =Runangan,Lwh =Whaingaroan,Ld =Dun-troonian,Lw =Waitakian,Po =Otaian,and Pl =Altonian.1578

Modification of Fracture Porosity by Multiphase Vein Mineralization

F i g u r e 3.T i k o r a n g i F o r m a t i o n d e p o s i t i o n a l m o d e l s h o w i n g t h e l o c a t i o n a n d m a j o r c h a r a c t e r i s t i c s o f t h e t h r e e m e g a f a c i e s i n e a s t e r n T a r a n a k i B a s i n d u r i n g t h e l a t e s t O l i g o c e n e (L w )(m o d i f i e d f r o m H o o d ,2000).

Hood et al.

1579

1580Modification of Fracture Porosity by Multiphase Vein Mineralization

Tikorangi Formation,its mixed siliciclastic-carbonate composition,skeletal carbonate assemblages(echino-derms,planktonic/benthic foraminifera,bivalves,cal-careous red algae,bryozoans,barnacles,absence of hermatypic corals),low-Mg calcite mineralogy of fossil fragments and cements,and burial cementation history are all characteristic features of formation in temperate-latitude settings(Hood,2000).However,one feature that distinguishes the Tikorangi Formation rocks from other well-studied,uplifted and exposed,age-equivalent New Zealand limestones is the occurrence of dolomite. Dolomitization is relatively uncommon in New Zea-land carbonates of all ages(Nelson,1978),especially so when compared with Australian nontropical(James et al.,1993;Kyser et al.,1998,2002)and other global tropical carbonate occurrences.The ubiquitous occur-rence of significant quantities of dolomite in the Tiko-rangi Formation is of economic importance,as dolo-mites fracture more easily than limestones(e.g.,Mar-tindale and Boreen,1997)and make superior fractured reservoirs.Consequently,the delineation of dolomite-rich facies may have implications for predicting the occurrence of key fracture systems in a formation(Vide-tich,1994).

ANALYTICAL TECHNIQUES

A variety of data were acquired from stained and pol-ished thin sections of236vein and host rock samples. Cathodoluminescence observations were made on a Technosyn Cold Cathodoluminescence8200MkII stage.Selected samples were examined under incident blue light ultraviolet fluorescence(e.g.,Dravis and Yurewicz,1985).Homogenization and freezing tem-peratures of liquid-gas inclusions occurring in calcite, celestite,and dolomite vein mineral material were mea-sured using a U.S.Geological Survey gas-flow heating/ freezing system.Descriptions of these inclusions are available in Hood(2000).X-ray diffraction analyses were undertaken on unorientated powder mounts of vein and host rock samples using a Philips analytical x-ray diffractometer with a PW1729x-ray generator and a PW1840diffractometer control.Trace-element geo-chemistry was determined for representative host and vein mineral samples of calcite and dolomite following the procedures of Robinson(1980).The sample so-lutions were analyzed for Ca,Mg,Na,Fe,Sr,and Mn using a GBC909AA double-beam atomic absorption spectrophotometer.Errors are±1%for Ca and Mg and ±5ppm for Sr,Na,Mn,and Fe.Stable oxygen(d18O) and carbon(d13C)isotope analysis of vein and host rock samples was undertaken using a VG Micromass602E mass spectrometer.The isotope data are expressed in conventional per mil(x)deviations from the Peedee belemnite standard and have an analytical precision of better than±0.05x for d13C and±0.10x for d18O. Further details are available in Hood(2000).

PALEOSALINITY,PALEOTHERMOMETRY,

AND PORE-FLUID CALCULATIONS

Paleotemperatures of mineral precipitates have been derived from the d18O isotope data shown in Table1 and Figure5.Values have been calculated using a range of water(standard mean ocean water,SMOW)values ofà1,0,and+1x.A value ofà1x assumes no ice buildup,whereas+1x assumes ice buildup at the last glacial maximum(Chappell et al.,1996).For calcitic samples,the paleotemperature equation of Shackleton (1967)was used:T(j C)=16.9à4.38(d18O c-w)+ 0.1(d18O c-w)2,where d18O c-w is the isotope composi-tion of calcite minus that of water.Paleotemperatures for dolomite were calculated from the equation of Fritz and Smith(1970):T(j C)=31.9à5.55(d18O d-w)+ 0.17(d18O d-w)2,where d18O d-w is the isotope com-position of dolomite minus that of water.Burial depths

Figure4.Core and thin-section plane-polarized-light(PPL)and cathodoluminescense-light(CL)photographs of the major fracture-porosity and the carbonate-cement phases of first-generation calcite and ferroan baroque dolomite in the Tikorangi Formation.(A) Fracture partially healed by coarse first-generation calcite coated by fine baroque dolomite(sample W4.7.2B).(B)Fracture surface lined by large equant first-generation calcite coated by very fine sucrosic dolomite(sample W4.7.2A).(C,D)Thin-section photomicrographs of moderately ferroan,dull-luminescent first-generation calcite cement precipitated at host rock boundary that has been overgrown,but also partially replaced,by nonluminescent(black)ferroan baroque dolomite crust(DOL evident in A and B).Note the very dirty appearance of calcite and generally cleaner dolomite(sample W2.9.12,PPL and CL).(E)Thin-section photomicrograph of dull-luminescent first-generation calcite showing evidence of partial dolomitization by nonluminescent ferroan dolomite(sample W4.7.2B).

(F)Thin-section photomicrograph of first-generation calcite,containing primary fluid inclusions,overgrown by dolomite.(G,H)Thin-section photomicrograph of first-generation zoned ferroan calcite lining a vein with central porosity occluded by nonluminescent baroque dolomite(sample NG2.4.1B,PPL and CL).CAL I=first-generation calcite;DOL=dolomite;QU=quartzine.

Hood et al.1581

of vein mineral formation have been estimated,assum-ing a starting depositional bottom-water temperature of8j C(e.g.,Head and Nelson,1994)and an inferred geothermal gradient of29j C/km,both comparable to the modern situation(e.g.,Armstrong et al.,1996). The salinity of precipitation waters was estimated using derived T m values,where NaCl(ppt)=0.17à(19.22?T m)à(0.93?T m2)à(0.34?T m3),following Goldstein and Reynolds(1994)(Table2).

This study has used bivariate plots to aid in the elemental discrimination of diagenetic environments for the Tikorangi Formation limestones.Summary el-emental matrices were constructed to aid in elucidat-ing the relative influence of meteoric-,shallow-burial, and deep-burial-derived pore fluids(see Hood,2000). Previous studies(e.g.,Brand and Veizer,1980;Wine-field et al.,1996;Nelson et al.,in press)have shown that element-element plots and summary elemental matrices can be invaluable tools to help infer diagenetic environments.

PARAGENETIC EVENTS

The following sections outline the eight paragenetic events identified for the Tikorangi Formation host rock and associated fracture systems.These events are sum-marized in a geohistory plot(Figure6),in a generalized schematic paragenetic sequence(Figure7),and in a more detailed sequential model of vein mineralization (Figure8).The key event data are summarized in Table 3,and the petrographic details of the carbonate and noncarbonate vein minerals are shown in Tables4and 5,respectively,with illustrations in Figures4and9. Stable oxygen(d18O)and carbon(d13C)isotope data are shown in Figure5,and trace-element information are summarized in Hood(2000).

Event1:Host Rock Burial Cementation(23.5–22.5Ma)

The Tikorangi Formation host rocks(Figure4A,C,D) were cemented during burial diagenesis(Figure6)by ferroan low-Mg calcite(1–3mol%MgCO3)having slightly to moderately depleted d18O values(à2to à4.3x,averageà3.2x)and d13C(à0.2toà0.9, averageà0.45x)values(Figure5).Pressure dissolu-tion during burial,initiated at100m and continuing to several hundred meters burial,produced tight,com-monly fitted fabrics and dissolution seams visibly en-riched in insoluble residues,and pressure-dissolved fab-rics with essentially zero porosity(Figure7C)(Hood, 2000).Original intermediate-Mg calcite/high-Mg cal-cite skeletal fragments(echinoderms,benthic fora-minifera,calcareous red algae,some bryozoans)were transformed to more stable low-Mg calcite forms via incongruent dissolution,whereas uncommon,undis-solved aragonitic skeletal fragments were neomorphi-cally transformed to low-Mg calcite.

Cementation of the limestone-dominated sequence may have commenced at temperatures as low as about

Table1.Stable Oxygen Isotope Paleotemperature Calculations for Tikorangi Formation Host Rock and Vein Minerals Using a Range of SMOW Values(à1to+1x)and an Average Geothermal Gradient of29j C/km*

Stable Isotopes Isotope T(j C)Isotope T(j C)

d13C d18O d18O SMOW=à1d18O SMOW=0 Mineral Phase**Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Host rock(7)y

(Tikorangi

Formation)

à0.5 2.0à0.9à3.2à2.0à4.3272132322638

Vein calcite:first

generation(8)

à3.8à1.7à6.2à7.4à5.8à8.7494057554663

Vein calcite:

second

generation(8)

à4.6à0.5à6.3à8.2à7.1à9.1534759595365 Vein dolomite(7)à4.5à2.2à5.7à6.1à4.7à6.7655569726277

*See calculations section for further details.

**Bracketed()value denotes number of samples.

y Inclusion of data for five samples from Smale et al.(1999).

1582Modification of Fracture Porosity by Multiphase Vein Mineralization

20j C,or0.5km burial depth,and was complete by about1km burial depth at temperatures as much as about37j C(Table3).Cements in the Tikorangi For-mation were derived from pressure dissolution of cal-citic skeletons(e.g.,Hood and Nelson,1996;Nelson et al.,1988a).Iron values ranged from greater than 2000ppm to many thousand parts per million,con-sistent with advanced diagenetic alteration of the carbonates(Table6)(Winefield et al.,1996).Fe-rich or ferroan calcites are a common feature of cements formed in reducing conditions associated with the burial environment(Nelson et al.,1988b;Hood and Nelson, 1996)where Fe has been mobilized from the Fe-rich mixed siliciclastic-carbonate sediments and coprecipi-tates in the carbonate cements(Rao,1996).Tikorangi Formation calcite cements are typically also enriched in Mn(>100ppm),again characteristic of burial-related cements(Table6).Sr and Na values are low in com-parison with bulk skeletal values for modern Tasmanian cool-water carbonates(Rao,1996),in agreement with Rao’s suggestion that Sr and Na become relatively more depleted with cement formation.

Event2:Host Rock Partial Dolomitization(23–20Ma)

Following lithification,partial burial dolomitization of the Tikorangi Formation rocks occurred(Figure6)in diagenetic microenvironments with restricted pore-fluid flux by mimic and fabric-selective replacement of interparticle,and uncommonly intraparticle,micritic matrix.Micritic components provided a substrate for dolomite nucleation and crystal growth because of their high surface area and finely crystalline nature being re-placed by ubiquitous,generally small quantities(typi-cally<20%,uncommonly as much as50%)of uni-modal,very fine(20–90m m),scattered free-floating euhedral dolomite rhombs(Figure7D).Rhombs have dull luminescent Fe-rich cores and commonly oscilla-tory bright and dull concentric outer zones.

The dolomites are invariably poorly ordered,non-stoichiometric calcian-rich(average58mol%CaCO3) and Fe-rich(average13mol%FeCO3)varieties(Hood, 2000).Dolomite-rich samples show enrichment also in Na,Sr,and Mn in comparison to nondolomite-bearing rocks(Table6).Morrow(1990a)states that saline so-lutions should produce dolomites markedly enriched in trace elements,as is found in the Tikorangi Formation. The nonstoichiometric nature and fabric-selective na-ture of the incomplete dolomitization in the Tikorangi Formation is indicative of a late-burial replacive dia-genetic origin(Hood,2000)in a relatively closed sys-tem with high Sr and Na contents,commonly asso-ciated with clay-rich micrites and shales(e.g.,To¨ro¨k, 2000).Dolostones of nearly stoichiometric dolomite are conversely thought to be a result of large-scale cir-culation of fluids providing Mg in an open system.Iron was largely supplied from the siliciclastic-rich units. Magnesium sources were probably from commonly bio-turbated clay-rich micrite,the release of Mg from clay mineral structures,and the pressure dissolution of low-and intermediate-Mg calcite skeletons.Dissolution dur-ing dolomitization more or less balanced precipitation,

Isotope T(j C)Paleodepth(km)Paleodepth(km)Paleodepth(km)

d18O SMOW=+1d18O SMOW=à1d18O SMOW=0d18O SMOW=+1

Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum 3731430.70.50.80.80.6 1.0 1.00.8 1.2

615169 1.4 1.1 1.7 1.6 1.3 1.9 1.8 1.5 2.1 655972 1.6 1.3 1.8 1.8 1.5 2.0 2.0 1.7 2.2 806985 2.0 1.6 2.1 2.2 1.9 2.4 2.5 2.1 2.6

Hood et al.1583

preventing the potential development of secondary po-rosity and permeability enhancement commonly asso-ciated with the dolomitization process(Hood,2000).

Event3:Host Rock Fracture Porosity Creation(20–18Ma)

Following burial lithification and partial dolomitiza-tion,the Tikorangi Formation experienced thrust fault-ing and associated folding,forming the Tarata thrust zone(Figure7E)(King and Thrasher,1996).This early Miocene faulting and folding created extensive fracture systems in the Tikorangi Formation that became var-iably mineralized(Figures1B,4A,7F).

Most fractures appear to be extensional,and many exhibit shear characteristics and have been partially or totally healed by vein mineralization,with consequent substantial reduction of the initial fracture porosity (Figure4A,B).A spectrum of effective fracture widths or apertures occurs,ranging from micro-(<1mm)to macrosize(several centimeters).Only unmineralized or partly mineralized natural fractures are significant in terms of production-related porosity and permeability. The history of fracturing,mineralization,and move-ment is highly complex.Not only are there multiple phases and directions of movement,but also multiple phases,degrees,and types of mineralization that may incorporate host rock fragments and be stained with hydrocarbons.

Fracture porosity has been generated by a com-bination of shear displacement and extension on frac-tures.Fractures have steep dips and strike subparallel to the direction of maximum principal stress($080j), whereas true mean fracture orientation is near vertical given fracture censoring because of the borehole ori-entations(J.Willis-Richards,1994,personal commu-nication).There appear to be fracture zones with depths that are linked to subtle changes in physical rock prop-erties;less shale content promotes fracturing,whereas more shale content promotes lower fracture density. Given the interbedded lithostratigraphy of the Tiko-rangi Formation(Hood et al.,in press a),there is high potential for a very complex fracture system dependent upon the mechanical properties of individual strata (i.e.,Lorenz et al.,2002).Open fractures seem to be associated with north-south extension,with the more competent rocks containing a greater proportion of near-vertical extension fractures.Earlier compression-related fractures appear sealed,and there is no evidence for

a Figure5.Stable oxygen and carbon isotope plot and generalized isotope fields for the host Tikorangi Formation and carbonate vein mineral phases.A typical modern New Zealand cool-water skeletal carbonate value has been plotted as an initial reference(from Nelson and Smith,1996).The d18O data have been used to generate the paleotemperatures in Table1(see text).

1584Modification of Fracture Porosity by Multiphase Vein Mineralization

T a b l e 2.F l u i d -I n c l u s i o n D a t a a n d I m p l i e d C o m p o s i t i o n o f G e o l o g i c a l F l u i d s f o r T i k o r a n g i F o r m a t i o n V e i n M i n e r a l s

M i n e r a l

N u m b e r M e a s u r e d T o t a l O c c u r r e n c e O c c u r r e n c e L i q u i d +V a p o r *

T h **T m y S a l i n i t y (p p t )

F l u i d T y p e

F l u i d (s )O r i g i n s

H y d r o c a r b o n s

C a l c i t e :f i r s t g e n e r a t i o n

52m a n y

u n c o m m o n

90+à0.5t o à4(à1.5)9–84(28)s a l i n e d e p l e t e d t o s a l i n e e n r i c h e d w i t h a v e r a g e l e s s t h a n n o r m a l m a r i n e

m i x e d :m e t e o r i c >s h a l l o w b u r i a l >d e e p b u r i a l l a r g e l y i n f l u e n c e d f r o m m e t e o r i c f l u i d s e n t e r i n g t h r o u g h c a s c a d e z o n e s

a b s e n t

B a r o q u e d o l o m i t e

18u n c o m m o n v e r y u n c o m m o n 88+–26–47(33)s l i g h t l y s a l i n e d e p l e t e d t o s a l i n e e n r i c h e d ;a v e r a g e a b o u t n o r m a l m a r i n e m i x e d :d e e p b u r i a l (b a s i n a l )>s h a l l o w b u r i a l >m e t e o r i c

i n f l u x o f b a s i n a l b r i n e s p r e c u r s o r y t o h y d r o c a r b o n e m p l a c e m e n t

a b s e n t

C e l e s t i t e 19c o m m o n u n c o m m o n 110+

à1.4t o à2.5(1.8)

26–47(33)s l i g h t l y s a l i n e d e p l e t e d t o s a l i n e e n r i c h e d ;a v e r a g e a b o u t n o r m a l m a r i n e m i x e d :d e e p b u r i a l (b a s i n a l )>s h a l l o w b u r i a l >m e t e o r i c

i n f l u x o f b a s i n a l b r i n e s p r e c u r s o r y t o h y d r o c a r b o n e m p l a c e m e n t

a b s e n t

C a l c i t e :s e c o n d g e n e r a t i o n

52m a n y s o m e 101+

à1t o à4(à1.9)

2–84(35)s l i g h t l y s a l i n e d e p l e t e d t o s a l i n e e n r i c h e d ;a v e r a g e g r e a t e r t h a n n o r m a l m a r i n e

m i x e d :m e t e o r i c >s h a l l o w b u r i a l t o d e e p b u r i a l m i x o f b a s i n a l b r i n e s ,h y d r o c a r b o n -b e a r i n g a n d m e t e o r i c f l u i d s

p r e s e n t

*G e o t h e r m o m e t r y e n a b l e s t h e m i n i m u m t e m p e r a t u r e o f f l u i d e n t r a p m e n t i n a t w o -p h a s e l i q u i d +v a p o r f l u i d i n c l u s i o n (F I )t o b e d e t e r m i n e d ,a s w e l l a s t h e s a l i n i t y o f t h e f l u i d .**T h o r t e m p e r a t u r e o f h o m o g e n i z a t i o n i s o b t a i n e d b y h e a t i n g a t w o -p h a s e F I f r o m r o o m t e m p e r a t u r e u n t i l t h e v a p o r p h a s e d i s a p p e a r s (i.e .,l i q u i d f i l l s t h e F I ).y T m ,o r t e m p e r a t u r e o f f i n a l m e l t i n g ,i s o b s e r v e d u p o n r e h e a t i n g a f r o z e n F I a n d i s r e c o r d e d w h e n a l l i c e h a s r e t u r n e d t o a l i q u i d s t a t e .T h e f r e e z i n g p o i n t d e p r e s s i o n i s t h e n r e l a t e d t o t h e s a l i n i t y o f t h e F I (S h e p h e r d ,1985;G o l d s t e i n a n d R e y n o l d s ,1994).

Hood et al.

1585

fracture pattern systematically related to the north-south Waihapa anticlinal axis.The most recent extension (post-oil-emplacement)has produced uncemented fractures (J.Willis-Richards,1994,personal communication).

The key role of fracturing in the Tikorangi For-mation has been the creation of fracture porosity and permeability in otherwise essentially nonporous and impermeable host limestones (Figures 7E,F,8).For the fractures to have remained open,the Tikorangi Forma-tion rocks must have had sufficient shear strength to resist the outward horizontal stress resulting from buri-al diagenesis (Bj?rlykke,1994).Brittle failure was en-hanced by the rapid onset of a compressive stress re-gime and by the fine-grained and dolomitic nature of the limestones.Dolomite-rich units would have been more susceptible to brittle fracture than nondolomite-bearing units because of their greater intact rock strength and,therefore,brittleness (e.g.,Martindale and Bo-reen,1997).It is possible to predict from the litholog-ical and sedimentological data gained by Hood (2000)that the best fracture porosity opportunities would be provided by typically dense,low-porosity,strong,well-cemented limestones,commonly dolomitic,having the lowest gamma-ray values and highest sonic velocities of all Tikorangi Formation samples.The stronger the rock,the greater the depth to which purely tensile fractures could form.Production may be controlled by different parameters in different wells (i.e.,isolated layers in some wells and not in others).Fieldwide communica-tion may be via large top to bottom fractures,but in-dividual wells may be tortuously connected to these.The Waihapa portion of the field has produced

mainly

Figure 6.Schematic summary showing the timing of parage-netic events in the Tikorangi Formation and associated frac-ture systems based on a geo-history plot determined for Waihapa-1(see Figure 1C for location).Plotting of the event windows,based on mean iso-tope temperatures calculated using a range of SMOW values from à1to +1x ,on the geohistory plot enables event timing to be determined.km BKB =kilometers below kelly bushing.New Zealand series are L =Landon,P =Pareora,S =Southland,T =Taranaki,and W =Wanganui.

Figure 7.Schematic paragenetic sequence summary for the carbonate-dominated Tikorangi Formation,from deposition to hydrocarbon emplacement.(A)The creation of a foredeep trough (in cross section)caused by subsidence to the west of a basement high prior to (B)deposition of the Tikorangi Formation carbonate-rich sediments.In the foredeep basin,sediments were derived from redeposition of shelfal biota basinward and were intermixed with pelagic biota (see Figure 3).(C)Sediments were subsequently buried and lithified because of pressure-dissolution cementation to form variably siliciclastic carbonate-rich rocks seen in enlarged view of black box shown in (B).(D)Rocks were partially dolomitized by euhedral zoned rhombohedra drawn as they appear under cathodoluminescent light.(E)Thrusting and folding associated (as seen in cross section)with propagation of the Australia–Pacific plate boundary through New Zealand resulted in the formation of (F)extensive,open-fracture systems,as seen in enlarged view of black boxed area shown in (E).(G)A variety of mainly carbonate minerals were precipitated in fracture systems (as seen in a stained thin section and enlarged view of black box in (F)before (H)hydrocarbon emplacement.The current Tikorangi Formation reservoir depths are about 3km.The timing of events are shown in Ma and were deduced from the geohistory plot in Figure 6.FE CAL I,first-generation ferroan calcite,appears with a blue stain;FE CAL II,second-generation ferroan calcite,appears with a blue stain;FE DOL,ferroan (baroque)dolomite,appears with a blue/green stain.1586

Modification of Fracture Porosity by Multiphase Vein Mineralization

Hood et al.1587

from the middle to lower sections interval.The lowest interval tested oil in Waihapa-1/1A,but there was no evidence of sustained production from the interval (Petrocorp Exploration,1995,personal communication).

This has implications for the location of extensive networks of fracture systems and for hydrocarbon pro-spectivity and production in the Tikorangi Formation.Fractures may have opened and closed several times during seismic events (e.g.,Mann,1994).Open frac-tures became avenues of enhanced permeability,with an ensuing history of ongoing displacement and episod-ic mineralization prior to hydrocarbon

emplacement.

Figure 8.Schematic model summarizing vein mineraliza-tion events in the Tikorangi Formation.The event numbers refer to those shown in Figure 6.FE CAL I =first-generation ferroan calcite;FE CAL II =second-generation ferroan cal-cite;TE =trace element.

1588

Modification of Fracture Porosity by Multiphase Vein Mineralization

Fracturing may have connected the deep-burial envi-ronment(Figure6)with meteoric fluids in the shallower subsurface,abruptly reducing the pore-fluid pressure gradient into the fractures and potentially drawing down meteoric fluids.

Event4:First-Generation Ferroan Calcite Vein Precipitation (19–14.5Ma)

First-generation vein calcite(Table4)(Figure4C–H) formed as a late diagenetic vein mineral after fracturing of the Tikorangi Formation(Figures6,7G,8).First-generation calcite is variably textured,dog-toothed, drusy equant,white to gray calcite and constitutes the bulk of the vein filling.This calcite is ferroan(as much as12,600ppm)and may exhibit a pale yellow dis-coloration resulting from oil staining.Crystal textures range from fine(0.5–1mm)to coarse(3–7mm),un-commonly greater than20mm size(Figure4B).Crystal growths are commonly multidirectional,and multiple phases of movement and crystal growth are evident. Calcite crystals commonly exhibit an unzoned(Figure 4D),non-to dull red/orange luminescence.A general lack of zoning and dull to nonluminescence are char-acteristic of Fe2+-rich burial-derived cements(Nelson et al.,1988b;Hood and Nelson,1996).Uncommonly, coarse,slightly ferroan drusy calcite may show a con-centric zonation(Figure4H).

Mineralogically,the first-generation vein calcite is low-Mg calcite(approximately2mol%Mg)and has moderately isotopically depleted d18O values(à5.8to à8.7x,averageà7.4x)and slightly to moderately depleted d13C values(à1.7toà6.2x,average à3.84x)(Figure5).Trace-element values show en-richment in Fe(7050ppm)and Sr(3700ppm).Cor-relations between trace-element concentrations in cal-cite and core-sample depth show for all elements(not included here)except Sr an increasing concentration upcore and point to a stratigraphically higher fluid source.Sr and Na concentrations in first-generation calcite have been correlated with d18O stable-isotope data to assess potential indicators of meteoric diagen-esis(see Hood,2000).Overall,75%of the geochemical trends support some degree of meteoric influence in the Tikorangi Formation first-generation vein calcite.

First-generation vein calcite temperatures of for-mation range from about50to60j C and probably oc-curred before19–14.5Ma(Figures6,8)(Table3). Slickensiding of first-generation ferroan calcites pro-vides evidence of ongoing movement during precipita-tion(Figure9E,F).Summary trace-elemental matrices and schematic pie diagrams used to suggest the relative influence of meteoric,shallow-burial,and deep-burial pore fluids during mineral precipitation have been con-structed for both calcite and dolomite by Hood(2000). These data,as well as fluid-inclusion data(Table2), suggest a meteoric signature associated with calcite vein mineralization(Hood,2000).Episodic movement/ fracturing is likely to have been a key to facilitating fluid migration(Parnell,1994).Fluid flow in fault-related fracture systems is episodic where faults draw fluids into the crust(Parnell,1994).This may have been a mechanism for introducing meteoric fluids at depth. Faulted reservoir rocks such as the Tikorangi Formation are commonly characterized by oil-field waters with low salinity.Studies have documented evidence for both calcite and dolomite cements in environments where mixing of waters of widely varying salinity has occurred (Feng and Meyers,1998).The question is how deep meteoric water can penetrate beneath the onshore Ta-ranaki Basin.Allis et al.(1997)have noted that sand-stones at2km depth are conduits for deeply circulating

Table3.Diagenetic Sequence of Events in the Tikorangi Formation Placing Dolomitization as a Late Deep-Burial Diagenetic Process

Diagenetic

Event Description Isotope Temperature

(j C Mean Range)

Timing

(Ma)

Timing

(NZ Stage)*

1host rock Tikorangi Formation host rock cementation27–3723.5–22.5Lw

2host rock partial dolomitization37–4923–20Lw

3creation of fracture porosity38–5320–18Po

4first-generation vein calcite precipitation49–6119–14.5Pl–Sl

5fracture systems vein dolomite formation65–8014.5–12Sl–Sw

6vein celestite and quartzine formation65–8014.5–10Sl–e.Tt

7second-generation vein calcite precipitation53–65ca.10–7Tt

8hydrocarbon emplacement into fracture networks80–120<6Tk–Wn(?) *Lw=Waitakian;Po=Otaian;Pl=Altonian;Sl=Lillburnian;Sw=Waiauan;Tt=Tongaporutuan;Tk=Kapitean;Wn=Nukumaruan;e=early.

Hood et al.1589

ground water at a timescale on the order of104–105yr. Martin et al.(1994)concluded that meteoric fluids were present during deep-burial diagenesis of older Pa-leocene sandstones in Taranaki Basin,most likely from surface meteoric fluids,but with some contribution from upward expulsion of connate meteoric fluids from the compacting thick,nonmarine Cretaceous sediments. The surface meteoric scenario is also one preferred here for introducing meteoric fluids into the Tikorangi For-mation fracture systems.

Event5:Vein Ferroan Baroque Dolomite Formation (14.5–12Ma)

Vein baroque dolomite(Table4)formed after first-generation calcite and is the next most voluminous vein mineral type after this calcite(Figure8),occurring both as a primary precipitate(Figure4C,D,F–H)and as a replacement phase of calcite(Figure9A,B).A mam-millary texture results from a thin dolomite crust(as much as2.5mm),with fine crystals(0.1–1mm long) coating much of the first-generation calcite on fracture surfaces(Figure4B).The dolomite may be stained yellow/ brown by hydrocarbons.Crystals commonly have a char-acteristic sweeping undulose extinction with curved or saddlelike shapes,a feature of baroque dolomite(Radke and Mathis,1980;Gregg,1988).Late baroque(saddle) dolomites are commonly Fe-rich,like those in the Tiko-rangi Formation(Table6).

X-ray diffraction shows the vein baroque dolomite to be nonstoichiometric,calcian-rich dolomite(average 58mol%CaCO3).Trace-element analysis shows Mg values from11,800to88,400ppm and an average of 39,000ppm(Table6).Baroque dolomite is also com-monly Fe-rich(12,000–63,000ppm,average41,400 ppm)and lies in the ferroan dolomite-ankerite series. Correlations performed using sample depth versus trace-element concentration in the dolomites(Hood, 2000)showed in all cases,with the exception of Ca, increasing concentrations downcore.Dolomite vein samples show moderately depleted d18O values ranging

Table4.Petrography of Carbonate Vein Minerals in Fractures in Tikorangi Formation

Carbonate

Mineral Phases Crystal Habit Crystal Size Occurrence

Relative

Abundance Staining*

Calcite(CaCO3)

Ferroan calcite: first generation dog-toothed

to drusy equant,

euhedral to subhedral

commonly

0.5–7mm

(uncommonly

to20mm)

major vein fill,

thick coatings

on fracture

surfaces

very common dull to deep blue,

slightly highly

ferroan

Ferroan calcite: second generation coarse equant

to dog-toothed to

platey,clear

to white sparry

2–5mm,

uncommonly

>20mm

single crystals/

clusters on:

dolomite;

slickensided first-

generation calcite

uncommon

to some

light blue

moderately

ferroan

Dolomite [CaMg(CO3)2]

Baroque(ferroan) dolomite sucrosic,

subhedral to

typically anhedral

xenotopic

(nonplanar)

fabrics

coarse to

as much as1mm

typically surface

crust-coats first-

generation

calcite—also

vein fill

common uncommonly

unstained,

typically deep

green/blue;may

become less

ferroan

outward

*After Dickson1965.

1590Modification of Fracture Porosity by Multiphase Vein Mineralization

fromà4.7toà6.7x(Figure5).d13C values are also similarly moderately depleted and range fromà2.2to à5.7x.Vein dolomite shows a summary elemental matrix dominated by deep-burial and shallow-burial signatures and only relatively minor meteoric influence (Hood,2000).Combining stable-isotope and trace-element plots of d18O versus Na and Sr,as was done above for vein calcite,suggests some degree of meteoric influence in the Tikorangi Formation vein dolomite, but a reduced influence in comparison to that evident for first-generation vein calcite formation.

Baroque dolomite formed both as a primary pre-cipitate,in the form of an isopachous coating to the first-generation vein calcite,and less commonly as a replacement of earlier first-generation calcite.A re-placement origin is supported by calcite relicts poiki-litically enclosed in dolomite,preferential replacement of finer calcite crystals,and partially dolomitized coars-er calcite crystals(Hood,2000).Relict calcite inclu-sions are commonplace in dolomite that have replaced calcite.The absence of fluid inclusions in the dolomite is indicative of slow crystal growth(Goldstein and Rey-nolds,1994).Baroque dolomite formed at tempera-tures averaging65–80j C(Figures6,7G,8)(Table3). This lies in the oil-window temperature of60–150j C, a range in which baroque dolomite is commonly formed in association with sulfate-bearing carbonates and hy-drocarbons,which has implications for celestite forma-tion and the timing of hydrocarbon emplacement(Mor-row,1990a,b).Poorly ordered Ca-rich baroque fer-roan dolomite,also reflecting the large amount of iron present in the mixed carbonate-siliciclastic system,is typical of a very late-burial diagenetic origin(Zenger and Dunham,1988).Baroque dolomite is suggested to form at elevated temperatures coincident with the oil window, from about60to150j C,and there is a striking associa-tion between saddle dolomite,sulfate,and hydrocarbon-bearing fluids(e.g.,Radke and Mathis,1980).

Dolomitizing fluids are thought to have been of a burial/basinal type and Mg-rich and Fe-rich(Table2). Allis et al.(1997)have suggested that presently,the Tikorangi Formation is charged by hydrocarbon and

Crystal

Clarity CL Signature Intercrystalline

Porosity

Petrographic

Features

Timing/

Origin

typically

dirty brown, inclusion rich uncommonly

concentrically

zoned,patchy,

non to dull

red/orange

common where

associated with strain

recrystallization

strain recrystallization,

sheared,slickensided,

twinned,partially

dolomitized

event4

primary precipitate

clear to dusty,primary inclusion trains unzoned,

patchy non to dull

red/orange

absent clean,clear

sparry,coarse

event7

primary precipitate

clean white sparry to pale brown dull,typically

non luminescent

(black)

substantial

porosity in

central vein

systems,

minor resulting

from dolomitization

partial replacement

first-generation

calcite,undulose

extinction,some

warped crystal faces,

calcite inclusions

event5commonly a

precipitate,common

calcite first-generation

partial replacement

Hood et al.1591

associated saline formation water leaking from sources in an underlying overpressured zone.Fluids imported Mg from underlying shale sequences,partially dissolving the precursor calcite phase,precipitating dolomite,and exporting Ca and Sr.Dolomite formation is suggested to have been terminated by a change in environmental conditions resulting from an increase in input of cool, relatively Mg-poor meteoric-derived fluids,after which the precipitation of second-generation calcite(event7) occurred.

Event6:Vein Celestite and Quartzine Formation (about12–10Ma)

Celestite(SrSO4)occurs as small patches of crystals in close association with the vein carbonate phases.Crys-tals are tabular,platelike anhedral to euhedral crystals (Table5)(Figure9E,F)or prismatic with a high relief and a commonly dirty pale brown to yellow discolora-tion.The celestite can poikilitically enclose relict in-clusions of ferroan calcite and uncommonly dolomite rhombs,so that much like dolomite,it is considered to have both a primary cement and secondary replace-ment origin.Celestite replacement can be confined to discrete thin calcite laminae separated by slickensided surfaces(Figure9E,F).Celestite is clearly identified under cathodoluminescence by its very dull but char-acteristic purple/blue luminescence.Formation of vein celestite(Table2)resulted from the interaction of heat-ed Sr-rich formation waters enriched in sulfate and Sr (e.g.,Hulen et al.,1994),possibly related to hydrocarbon-bearing fluids.At relatively modest burial depths (3000m or less),there is definite potential for highly variable sulfate concentrations in subsurface waters (Land,1997)conducive to celestite formation,for example,as has been reported from Deep Sea Drilling Project cores(Baker,1986).The similar implied asso-ciation of dolomite,sulfate,hydrocarbons,and traces of celestite,as either synprecipitates or as younger phases,is documented by Radke and Mathis(1980).

Nondetrital quartz(quartzine)(Table5)appears in a few samples and may occur in two crystal forms(Figure 9A,B).The first is fine,length-slow chalcedony,form-ing bundles of fibers/needles that may radiate from a common point.Although characteristic of a void-filling cement,it may also be a replacement fabric(Hesse, 1990a).The second form is spherulitic quartzine(Fig-ure9A,B).Areas with a pale brown discoloration and inclusion-rich appearance may include organic matter related to hydrocarbons,thereby recording the first onset of hydrocarbon-bearing fluid migration into the

Table5.Petrography of Noncarbonate Vein Minerals in Fractures in Tikorangi Formation

Noncarbonate

Mineral Phases Crystal Habit Crystal Size

(mm)Occurrence

Relative

Abundance Staining*

Celestite(SrSO4)

Tabular celestite tabular platelike

anhedral to

euhedral crystals,

uncommonly prismatic 0.5–2.0mm fracture fill some to locally

common

n/a

Acicular celestite single needles,

uncommonly intergrown

radiating crystals

0.2–0.5mm fracture fill uncommon n/a

Authigenic quartz(SiO2)

Fibrous quartzine fine,elongated

fibers,some bundles

$0.1mm fracture fill very uncommon n/a

Spherulitic quartzine irregular mass,containing

scattered aggregated or

spherulitic centers amorphous irregular

patches in CL;pinpoint–

sized crystals in CPL

fracture fill some n/a

*After Dickson1965.

1592Modification of Fracture Porosity by Multiphase Vein Mineralization

Tikorangi Formation.Spherulitic quartzine crystals dis-play a spectacularly vivid,generally moderately bright blue luminescence(Figure9B).

Chertification in the Tikorangi Formation veins may have involved some precipitation of primary precipitates,but especially the replacement of both calcite and dolomite as evidenced by the poikilitic inclusion of carbonate relicts.When a carbonate rock is leached by a silica-saturated acidic solution,CO2is liberated.This compound partially dissolves in the invading solution,reducing silica solubility and causing quartz to precipitate.Quartz precipitation also could have been induced by slight cooling of the mineral-izing solution or by mixing of this fluid with slightly cooler and more dilute ground waters as indicated by the formation temperatures of second-generation vein calcite in the Tikorangi Formation.

The small crystal size of quartzine(Table5)sug-gests rapid and homogenous nucleation,whereas re-placement fabrics suggest relatively low silica concen-trations.Quartzine commonly occurs at the host rock/ vein contact and may be a result of the weakening and fracturing at this contact,allowing Si-rich fluid mi-gration.Evidence of a relatively late-stage origin is provided by organic-rich inclusions related to precur-sor hydrocarbon-bearing fluids,occurring after first-generation calcite and the majority of dolomite car-bonate mineralization(cf.Hesse,1990b).Formation would have been promoted in the presence of Mg and high alkalinity,conditions similarly favorable for dolo-mitization(Hesse,1990a).The close association of dolomite and quartzine phases is suggestive of forma-tion in a similar time frame,and they are not consid-ered to be mutually exclusive(Figure8).Elevated heat flow,generally regarded as necessary for a replacement origin,would have necessitated temperatures in the range of60–100j C(Table2),which is compatible with those suggested for second-generation vein calcite of as much as65j C.

Event7:Second-Generation Ferroan Vein Calcite Precipitation(about10–7Ma)

This second phase of ferroan calcite postdates the ear-lier first-generation calcite mineralization and the thin isopachous coatings of dolomite mineralization(Fig-ures6,7G,8).It comprises large(2–22+mm),single or clustered,clear/translucent free-growing crystals that exhibit a range of equant,dog-toothed,and platey habits(Table4).These ferroan calcite crystals formed directly upon dolomite(Figure9C,D).In cases where

Crystal

Clarity CL Signature Intercrystalline

Porosity

Petrographic

Features

Timing/

Origin

very dirty inclusion rich, commonly pale brown to yellow discoloration dull to very dull

purple/blue

some high relief,

fluid inclusion-

rich,calcite

inclusions,twinned

event6primary and

replacement,

some carbonate

mineral relicts

clear to dirty very dull to dull

purple/blue absent commonly ghostlike forms event6replacement

calcite ghosts

dirty,micritic appearance moderate to

bright blue absent commonly ghostlike forms,

associated micriticlike

calcite,felted

event6(?)calcite

replacement

yellow/brown,clean to dirty and inclusion rich amorphous

moderate to

bright vivid to

darker blue

absent organic-bearing(?),

relict inclusions,

commonly associated

dolomite/host rock contact

event6(?)secondary-

carbonate mineral

relicts,commonly

associated with dolomite

Hood et al.1593

dolomite phases are absent,a similarly textured phase of large equant ferroan calcite crystals grew on the sur-face of the first-generation calcite following a period of movement and slickensiding.

Second-generation calcite d18O values are general-ly slightly more depleted than previous vein carbonate precipitates,ranging fromà7.1toà9.1x(average à8.2x)(Figure5).Second-generation calcite d13C values are slightly more depleted compared to first-generation calcite values,averagingà4.6x and ranging fromà0.5toà6.2x(Figure5).Second-generation calcite contains some evidence of hydrocar-bon entrapment(Figure9G,H).Uncommonly,inclu-sions may show heterogeneous entrapment and segregation of hydrocarbon and water phases.Aqueous inclusions containing high-pressure bubbles of meth-ane can be observed to have formed solid gas hydrates (clathrates)(Figure9H,inset).

This second-generation calcite(Table4)formed when temperatures averaged53–65j C(Table3),re-sulting from the introduction of cooler meteoric fluids from upsection(Figure8).The presence of fluorescing petroleum fluid inclusions in second-generation calcite suggests that precursory hydrocarbon-bearing fluids have migrated along with aqueous fluids from about 10Ma.Event8:Hydrocarbon Emplacement(

Hydrocarbon emplacement per se is inferred to have occurred during the past6m.y.,post-second-generation calcite formation,corresponding to burial temperatures and depths in the Tikorangi Formation fracture systems of80–120j C and2.0–3.5km,respectively(Figures6, 7H,8).

CONCLUDING REMARKS

The lithofacies diversity of the carbonate-dominated Tikorangi Formation,coupled with superimposed buri-al diagenesis and tectonic fracturing,have resulted in a complex reservoir rock.Postlithification processes in the Waihapa-Ngaere field involved substantial thrust faulting(in the Tarata thrust zone)and extensive brit-tle fracturing of carbonate strata and episodic fluid flow in response to tectonic loading.Fracture systems pro-vided significant fracture-induced porosity into which a suite of calcite-dolomite-celestite-quartzine minerals formed prior to hydrocarbon emplacement,as sum-marized in Table3and the paragenetic model pre-sented in Figure8.Mineralization substantially re-duced fracture porosity and permeability.

Table6.Summary Trace-Element Data(in ppm)for Tikorangi Formation Host and Vein Samples

Petrofacies Number of Samples Mg Ca Na Fe Sr Mn Host rock

Calcitic only53167287,33487873812876141 Dolomite-rich(>15%in sample)847,260257,971488027,0493078486 Tikorangi Fm average6515,515325,040458912,6473483273 Vein minerals

Calcite:first generation117778295,68078970503738211 Baroque dolomite439,137248,65053541,4406972450 Figure9.Thin-section photomicrographs showing several vein mineral types in the Tikorangi Formation as observed under plane polarized light(PPL),cross-polarized light(XPL),cathodoluminescense light(CL),and ultraviolet(UV)light.(A,B)Complex

relationships between first-generation calcite(dull red luminescent)and secondary(replacive)dolomite(nonluminescent)and quartzine(blue luminescent)phases(sample W4.7.4C,PPL and CL).(C,D)Second-generation coarse equant calcite crystal has precipitated directly on dolomite phase(sample W2.9.12B,PPL and CL).(E,F)Celestite occurring as a replacement phase in first-generation calcite exhibiting low first-order interference colors and a dull purple/blue luminescence.Note the multiple layers of calcite separated by slickensided surfaces(sample NG2.4.3,CPL and CL).(G)Hydrocarbon-bearing fluid inclusions occurring in second-generation calcite.(H)White luminescence is produced by hydrocarbon-bearing fluid inclusions under UV light.Inset shows inclusions containing high-pressure methane that has formed a solid gas hydrate(clathrate),PPL(sample NG2.4.3).CAL I=first-

generation calcite;CAL II=second-generation calcite;DOL=dolomite;CEL=celestite;QU=quartzine.

1594Modification of Fracture Porosity by Multiphase Vein Mineralization

骨科考试试题

1.下列哪项属于不稳定性骨折 A.嵌插骨折 B.青枝骨折 C.胸椎压缩性骨折(1/5) D.螺旋形骨折 2.导致骨筋膜室综合症的主要原因是 A.主要血管损伤 B.主要神经损伤 C.肌肉挛缩 D.筋膜室内压力过高 3.下列哪项不是骨折功能复位的标准 A.儿童下肢缩短移位<2cm B.侧方成角移位完全矫正 B.长骨干横性骨折,骨折端对位至少达1/2 D.干骺端骨折对位至少3/4 4.肘关节脱位和肱骨髁上骨折的临床鉴别要点 A.局部肿胀 B.肘关节反常活动 C.肘部畸形 D.肘后三角关系改变 5. 关于桡骨下端骨折下列哪项是错误的 A.骨折发生在距桡骨下端关节面3CM以内 B.屈曲型骨折远折端向掌、尺侧移位 C.伸直型骨折远折端向桡、背侧移位骨折易误诊为腕关节脱位 6. 关于手的功能位 A.是手可以随时发挥最大功能的位置 B.腕关节背伸20度~30度 C.轻度尺偏 D.拇指对掌位,远端指间关节半屈位 7. 患者。男,68岁。不慎跌倒,感左髋部疼痛。体检:左下肢短缩2CM、极度外旋畸形。常常提示 A.股骨颈骨折 B.股骨转子间骨折 C.髋关节前脱位 D.髋关节后脱位 8. 骨折的最严重的并发症是: A、正中神经损伤 B、畸形愈合形成肘内翻畸形 C.肌肉 缺血性挛缩 D、骨化性肌炎 9. 处理时,妥善固定的目的,哪一项是错误的 A、为了试行复位 B、避免搬动时骨折端刺伤重要血管神经 C、 防止搬动时疼痛 D、有利于防休克 岁小儿,右肘部被牵拉后即出现哭闹,肘略屈,不敢拿东西,其诊断最大可能是: A.关节脱位 B、右肘关节软组织损伤 C、右桡骨小头半脱位 D、右肱骨髁上骨折 11.胫骨中下1/3交界处最易发生骨折的原因是 A.此处肌肉附着少 B.血液丰富 C.此处骨质疏松 D.骨质形态变化

常见骨科症状体征

1、锁骨骨折症状:局部疼痛,患肩活动受限 体征:肩部或锁骨处可有皮肤擦伤及瘀斑,局部肿胀,有触痛。移位明显者有畸形,可触及骨折断端 注意:锁骨下动脉、臂丛神经、胸膜、肺损伤 2、肱骨外科颈骨折症状:局部疼痛,患肩活动受限 体征:局部肿胀,有触痛,可触及骨折断端 注意:臂丛神经、腋动脉损伤、肩关节脱位。复位后小夹板或超肩U型石膏外固定 3、肱骨髁上骨折肘关节伸直或半屈位时手掌着地病史,导致伸直型或屈曲型骨折 症状:局部疼痛,患肘活动受限 体征:肘部肿胀、畸形、触痛,可有骨擦感及反常活动,可触及骨折断端 注意:肱动脉损伤、尺、桡神经损伤鉴别:肱骨髁骨折、肘关节脱位 复位后石膏外固定,伸直型骨折,肘关节固定于90-120度屈曲位,屈曲型40-60度,1周后改为功能位 4、尺、桡骨骨折症状:局部疼痛,患肘、腕活动及前臂旋转受限 体征:局部肿胀、畸形、触痛,可有骨擦感及反常活动,可触及骨折断端 注意:上、下尺、桡关节脱位、骨筋膜室综合征 5、桡骨远端骨折腕关节于背伸位掌侧着地所致伸直型骨折—Colles骨折 桡骨远端向掌桡侧移位—Smith骨折 症状:局部疼痛,患腕活动受限 体征:局部肿胀、触痛,典型为“枪刺刀”及“餐叉样”畸形,可有骨擦感 注意:桡神经损伤、尺骨茎突骨折、腕关节脱位 6、股骨颈骨折老年骨质疏松者或严重外力 症状:局部疼痛,患髋活动受限,无法站立行走 体征:髋周可有瘀斑、肿胀、患肢短缩外旋畸形,有压痛及纵向叩击痛,大转子上移 鉴别:转子间骨折检查:患髋及骨盆X线。治疗:无明显移位-胫骨结节牵引

注意:其股骨头坏死、骨折不愈合比转子间骨折概率高 7、转子间骨折症状:局部疼痛,患髋活动受限,无法站立行走 体征:髋周可有瘀斑、肿胀、患肢短缩外旋畸形,有压痛及纵向叩击痛,大转子上移 8、股骨干骨折症状:局部疼痛,患髋、膝活动受限,无法站立行走,甚至休克 体征:局部肿胀、畸形,成角短缩畸形,可有骨擦感及反常活动 注意:腘动脉、腓总神经、胫神经损伤 9、髌骨骨折症状:局部疼痛,患膝活动受限,无法站立行走 体征:局部肿胀、畸形,压痛,可触及骨擦感,有关节积液征 10、胫腓骨骨折症状:局部疼痛,患膝、踝活动受限,无法站立行走 体征:局部肿胀、畸形,压痛,可触及骨擦感,可有反常活动,开放性者有骨外露 注意:腓总神经损伤、骨筋膜室综合征 11、踝部骨折症状:局部疼痛,患踝活动受限,无法站立行走 体征:局部瘀斑、肿胀、畸形,压痛,可触及骨擦感,重者有内外翻畸形 注意:三角韧带、下胫腓韧带损伤、踝关节脱位治疗:U型石膏外固定 12、脊柱骨折症状:局部疼痛,脊柱活动受限,并脊髓损伤者出现相应平面的运动、感觉障碍 体征:局部肿胀、压痛叩击痛 注意:脊髓损伤、脊柱滑脱、内脏损伤 13、骨盆骨折症状:局部疼痛,无法站立行走 体征:可有会阴、腹股沟、腰骶部瘀斑,肿胀、压痛,骨盆挤压分离试验(+) 注意:失血性休克、尿道、直肠损伤 14、肩关节脱位症状:局部疼痛,患肩活动受限 体征:方肩畸形,肩胛盂处右空虚感,杜加氏征(+) 注意:骨折,尤其是肱骨大结节

中医骨科常见骨折病历书写模板

骨科常见骨折病历书写模板 入院记录 主诉:**致***部肿痛、畸形、活动受限**天。 现病史:自述**天前在****因****不慎跌倒,***最先着地,致伤***部,伤后觉***部**(疼痛类型)痛难忍,***部逐渐肿胀,并出现畸形,活动时疼 痛加重,***关节活动受限,伤后***(处理情况)。为求进一步治疗, 于今(入院方式)我院门诊就诊,门诊拟“*****”收住我科进一步诊 疗。伤后无头晕头痛、恶心呕吐、胸闷气促、腹胀腹痛、二便失禁或血 尿血便。入院证见:**部肿痛、畸形、活动受限。 既往史:平素体健,否认有肝炎、肺结核、心脏病、糖尿病及肾炎等病史;预防接种史不详;否认外伤、手术及输血史,未发现药物过敏史。其他系统 回顾未见异常。 个人史:出生及生长于原籍,否认曾到过其他地方病或传染病流行地区及其接触情况,无烟酒、食鱼生及其他特殊嗜好,生活及居住条件一般。否认有 冶游史。 婚育史:**岁结婚,有*儿*女,子女及配偶均健康。 月经史:**岁*-*/**-**,既往月经量中等,颜色暗红,无血块,否认痛经、白带异常及闭经史等。 家族史:否认家族成员中有特殊的传染病及遗传病史。 体格检查 T**℃,P**次/分,R**次/分,BP***/**mmHg,体重:**Kg,身高:***cm。 一般情况:神志清楚,**面容;面色红润、含蓄;音语清晰,语声如常。发育正常,营养中等,自主体位,查体合作。舌质淡红,苔薄白,脉***。皮肤粘膜:全身皮肤、粘膜无黄染,无水肿、皮疹、瘀斑、紫癜、皮下结节、肿块、焦痂、溃疡、瘢痕、肝掌及蜘蛛痣,全身毛发生长、分布正常。淋巴结:全身或局部浅表淋巴结未触及肿大及压痛。 头部及其器官:头颅五官大小正常,无肿块、压痛、瘢痕,双瞳孔等圆等大,直径2.5mm,对光反射灵敏,巩膜无黄染,双眼睑无浮肿,乳突区 无压痛,外耳道及鼻道未见异常分泌物,各鼻窦区无压痛,口唇 无紫绀,口腔粘膜无出血点及溃疡,咽无红肿充血,双侧扁桃体 无肿大。 颈部:颈部软,两侧对称,颈静脉无曲张,无抵抗及压痛,双侧甲状腺不大,未触及肿块及结节。 胸部: 胸廓:两侧胸廓对称无畸形,胸壁未见有静脉曲张、皮下气肿,肋间隙无增宽或变窄,胸骨无压痛。 肺脏:两肺呼吸运动对称,呼吸平稳,节律整齐;两侧语颤无明显增强或减弱,无胸膜摩擦感、皮下捻发感等;双肺叩诊清音,无实音或浊音;听诊两 肺呼吸音清,未闻及明显干湿性罗音及胸膜摩擦音。 心脏:心前区无隆起,心尖搏动无弥漫,心前区未触及震颤和摩擦感,心界叩诊无增大,心率**次/分,律齐,心音有力,各瓣膜区未闻及明显病理性杂 音。

常见骨科疾病诊疗知识

常见骨科疾病诊疗知识 股骨颈骨折 中老年人常有骨质疏松,骨质量下降,当遭受轻微暴力即可发生骨折。此病特点有:①伤后髋部疼痛,不能站立;②X线照片可以确诊;③骨折后股骨头、颈部血运破坏,骨折难愈合或不愈合。此病的治疗有手术治疗及非手术治疗。单纯的稳定型骨折可以选择非手术治疗,但要卧床2月后,才能逐渐扶拐下地负重行走。手术方法有钢板、钢针固定或关节置换术。我科在手术治疗方面有很高的水平,从上世纪八十年代开始采用“带血管蒂髂骨瓣移植”治疗股骨颈骨折,预防骨折不愈合,预防股骨头缺血坏死疗效满意,治愈率在98%以上。患者骨折愈合后功能可完全恢复,且费用不高,患者可满意接受。如果患者在患此病早期未得到正确的治疗,出现了股骨头坏死,转来我院后,可给患者行“人工髋关节置换术”,我院的人工关节设计均与国际同步,未发现过排异反应等。总之,如果患有“股骨颈骨折”,要有心理准备,要选择正确的治疗方案,有一个较长恢复过程。 四肢骨折 四肢骨折较为常见,如在行走摔倒、车祸、坠楼等情况下均可发生。在四肢受伤后如果发现肢体变形,即是骨折的表现。若伤口不能立即肯定是否骨折,则上医院照片可以确诊。发现四肢骨折后,必须找骨科专科医生看病或住院治疗。骨科医生会根据你的骨折情况分类,若是简单的、稳定性骨折可不手术治疗,而采用夹板、石膏等固定,配合中药治疗,并不太困难。若是粉碎性骨折等情况则最好手术。应用医疗用的特殊钢板或钢针内固定,我院可治疗创伤后的各型骨折,有进口和国产的各种型号器材,均按世界通用的骨料“AO”原理及技术应用。如长骨骨干骨折可采用带锁钉、自锁钉、加压钢板、记忆合金(钛合金材料或无人体反应的合金材料制成),骨端应用解剖异型钢板等。亦可选择应用可吸收螺钉固定(日后不要再取的材料)。由于有先进技术及器材,故手术后骨折固定牢固,愈合良好。各类骨折治愈率均在98%以上。若有肢体发烂、皮肤缺损,我科可采用显微技术行皮瓣修复。 腰椎间盘突出症 我们人类直立行走,脊柱是人体重量的轴心。脊柱是依靠椎间盘、关节突关节及周围韧带连接而成,椎间盘是上下软骨板,中心髓核及四周纤纤环构成,通过椎间盘测压发现,

骨科常见专科诊断

上肢及上肢带骨骨折 锁骨骨折[类病鉴别 ] 1、肩锁关节脱位:锁骨外端高于肩峰,甚至形成梯状崎形,向下牵拉上肢时,骨外端隆起更明显;向下按压骨外端可回复,松手后又隆起;X线片显示肩锁关节脱位。43JwXkc。 2、胸锁关节脱位:两侧胸锁关节不对称,可有异常活动,锁骨内端可突出或空虚。 3、臂丛神经瘫疾:易与婴幼儿锁骨骨折相混淆。前者锁骨仍完整,同时可见典型得肩部内收内旋、肘部伸直畸形;一般在2个月—3个月后可有显著恢复。sar36d5。 肩胛骨骨折〔类病鉴别〕 1、肋骨骨折:伤后胸部疼痛,咳嗽及深呼吸时疼痛加重;挤压胸廊时,骨折部分疼痛加剧;有时可合并气、血胸;X线片示肋骨骨折。jl72Isw。 2、肱骨外科颈骨折:多为传达暴力所致,上臂内侧可见瘀斑,有疼痛、压痛、功能障碍,可触及骨擦感及异常活动。SqnpgYI。 肱骨大结节骨折〔类病鉴别〕 l、肩关节前脱位:受伤机制与本病相近,也表现为肩部肿痛,活动受限.但有方肩畸形,可扪及异位肱骨头,肩关节弹性固定.有时两者常合并存在。vCcaKVZ。 2、肩峰骨折:均为肩部肿痛,但压痛点位于肩峰部,被动外展时可有一定得活动度;x线片可见肩峰骨折。 3、肱骨外科颈骨折:症状、体征相似,但本病肿胀及瘀斑较明显,肱骨上端环形压痛,可有异常活动;X线片见骨折线位于肱骨外颈.亦可两者合并存在。ygofaiP。 肱骨外科颈骨折〔类病鉴别〕 1、肩关节前脱位:亦表现肩部疼痛、压痛、活动受限,典型方肩畸形;但伤肢外展25°一30°位弹性固定,搭肩试验阳性;X线可鉴别.有时两者合并存在。3OOI0Ta。 2、肱骨大结节骨折:肩外侧大结节处压痛,外展活动受限,上臂内侧无瘀斑,无环形压痛。 3、肩部挫伤:系直接暴力所致.局部皮肤有擦伤、瘀斑,肿胀、压痛局限于着力部位,无环形压痛及纵向叩击痛;X线片无骨折征象。6RcDcyT。 肱骨干骨折〔类病鉴别〕 1、肱骨外科颈骨折:肿痛在肩部,肱骨上端压痛;X线正位片及穿胸位可显示骨折线在肱骨解剖颈下2厘米一3厘米;治疗后骨折多能愈合。C4J9BFt。 2、肱骨肱骨上骨折:多发生于儿童,肘部肿胀较明显,呈靴状畸形;X线片示骨折线在肱骨下端扁薄处;治疗后常遗有肘内翻畸形。cksT7hp。 3、上臂扭伤:压痛局限于损伤部位,有牵拉痛,上臂功能障碍较轻;无环形压痛及纵向叩击痛,无异常活动。 肱骨髁上骨折〔类病鉴别〕

2018骨科考试题

骨科科考试试卷(一) 一、单项选择题:(每题4分,共32分) 1. 陈旧性骨折就是() A. 骨折畸形愈合 B. 骨折迟缓愈合 C. 骨折后 1 ~ 2 周就诊者 D. 骨折后 2 ~ 3 周就诊者 2. 锁骨骨折患者的姿势常为() A?头斜向患侧,下颌转向健侧 B. 头歪向患侧,下颌转向患侧 C?头歪向患侧,下颌转向健侧 D. 头歪向健侧,下颌转向患侧 3. 肱骨髁上骨折最常见的并发症是() A. 肱动脉破裂 B. 前臂缺血性肌痉挛 C. 正中神经损伤 D. 肘内翻 4. 压缩性骨折最常发生在() A. 肱骨外科颈 B. 桡骨远端 C. 股骨颈 D. 椎体 5. 股骨粗隆部骨折容易发生() A. 迟缓愈合 B. 不愈合 C. 髋内翻 D. 股骨头坏死 6. 出现膝粘征——阳性的髋部损伤是() A. 股骨颈骨折 B. 髋关节前脱位 C. 髋关节后脱位 D. 髋关节中心性脱位 7. 腰椎管狭窄的主要症状是() A. 腰痛 B. 腿痛 C. 腰腿痛 D. 反复腰痛和间歇性跛行 8. 脊椎骨折多发生于() A. 颈椎 B. 颈胸段 C. 胸腰段 D. 腰椎 二、填空题:(每题4分,共20分) 1 引起损伤的外力除直接暴力、间接暴力外,还有 _______________________ 和 ______________ 。

2 桡、尺骨双折的治疗原则是恢复前臂的 _______ 。 3?髌骨骨折的治疗原则主要是恢复膝关节 ____________ 的功能。 4 中医认为骨折的愈合过程为 _______________ 、 ______________ 和骨合。 5 骨折的基本移位方式有缩短移位、移位、 _______ 移位、 __________ 移位和 __________ 移位。 三、名词解释:(每题6分,共18分) 1?颈干角 2?功能复位 3?弹性固定 四、问答题:(每15题分,共30分) 1?小夹板固定后的注意事项有哪些? 2?股骨颈骨折为什么常常难愈合

骨科各种手术记录大全

骨科各种手术记录大全 1、髌骨骨折 1. 平卧位 2. 常规消毒铺巾。 3. 在右膝关节作横弧形切口,切开筋膜层,显露髌骨骨折端,及断裂的髌韧带扩张部,冲洗膝关节腔,清除血肿,见骨折粉碎,移位,将骨折复位,以巾钳维持,平行髌骨纵向钻入两枚克氏针,再以钢丝“8”字环绕绑扎,取1—0Dexon线环绕髌骨缝扎两周,以固定。 4. 冲洗术野,彻底止血,逐层缝合。 髌骨骨折切开复位内固定术 1.麻醉平稳后,患者仰卧位,常规消毒铺单,取右膝前正中长约8厘米纵行切口,切开皮肤浅深筋膜,分离显露骨折处。 2.术中可见髌骨骨折,呈粉碎性,关节腔可见有大量凝血块,髌腱膜于骨折处横断。 3.手术清除骨折端处凝血块,将骨折复位后,暂用巾钳固定。于髌骨旁纵行切开关节囊,手指探查髌骨关节面复位良好,以髌骨记忆合金张力钩固定,用生理盐水充分冲洗关节腔及切口,用粗丝线缝合修补髌腱膜及关节囊。 4.清点器械无误后缝合皮下组织及皮肤。手术顺利,术中出血不多,术后患者安返病房。 2、肱骨骨折 手术程序: 1. 臂丛麻醉成功后,患者取平卧位,左上臂置于胸前,左上臂根部绑止血带,常规手术野皮肤消毒铺巾。 2. 驱血至300mmHg,上止血带,自尺骨鹰嘴至肱骨下段后方切开约长10cm,切开皮肤及皮下组织,显露肱三头肌及腱膜,显露出尺神经,牵开尺神经以免损伤,自肱三头肌中线切开直至肱骨骨膜,将肱三头肌向两侧拉开,显露肱骨骨折端,见远端向前成角移位,将骨折端血肿清除,牵引复位骨折并维持,取5孔肱骨重建钢板预弯后置于肱骨后侧,钻孔,攻螺纹,拧入螺钉固定,并使骨折端加压,检查骨折固定稳定,肘关节活动不受影响。 3. 冲洗伤口,彻底止血,留置胶管引流1条,逐层缝合。 4. 麻醉满意,术程顺利,术后予左上肢石膏托外固定。 左肱骨骨折内固定术后再次骨折 1.麻醉平稳后,患者取仰卧位,常规消毒铺单。 2.沿原手术切口切开,逐层切开皮肤、皮下组织,分离显露桡神经,游离桡神经并牵开保护,充分显露骨折断端,可见左肱骨骨折,内固定物松脱,骨折断端处有大量肉芽组织形成,有碎骨块,骨折断端错位成角,骨折端骨质硬化,髓腔封闭。 3.手术取出内固定物,清理骨折断端处肉芽组织,咬除骨折断端硬化骨质,打通髓腔,于右髂骨处凿除部分髂骨,于肱骨大结节上方开口并以髓腔锉依次扩髓,打入8×220毫米带锁髓内针主针,针尾穿至平肱骨结节水平。安装瞄准器、压力定位杆,依次经切口、钻孔、测深、攻丝后,拧入远端锁钉1枚,再同理锁入近端锁钉1枚,大量生理盐水冲洗切口后,以所取髂骨植于骨折断端。 4.术中观察骨折对位对线良好,骨折固定牢靠。用大量生理盐水冲洗切口后逐层缝合。 5.C臂机下观察骨折对位,对线良好。手术顺利,术中出血不多,患者安返病房,回房血压

骨科常见疾病

骨科常见疾病疾病种类: 1.手外伤 2.断肢再植 3.肱骨髁上骨折 4.肱骨干骨折 5.尺桡骨骨折 6.股骨颈骨折 7.股骨干骨折 8.髌骨骨折 9.胫腓骨骨干骨折 10.胫骨平台骨折 11.踝部骨折 12.跟骨骨折 13.锁骨骨折 14.肩锁关节脱位 15.肩关节脱位 16.肘关节脱位 17.髋关节脱位 18.足拇外翻 19.腰椎间盘突出症 20.腰椎管狭窄症 21.皮瓣修复术 22.VSD负压吸引术 23.骨科病人的功能锻炼

手外伤 观察要点 1.创口的部位及性质,皮肤缺损范围、程度,肌腱、神经、血管及骨关节损 伤的程度。 2.患手血运情况:是否存在皮肤苍白、批温降低、指腹瘪陷、毛细血管回流 缓慢或消失、皮肤青紫或肿胀等情况。 3.伤口疼痛情况,正确评估疼痛程度。 4.全身情况是否有烦躁不安或表情淡漠、皮肤粘膜苍白、湿冷、尿量减少、 脉搏细速、血压下降等失血性休克的早期表现,即使补充血容量。 术前护理 1.心理护理意外致伤,顾虑手术效果,易产生焦虑心理。应给予耐心地开 导,介绍治疗方法及预后情况,并给予悉心的护理,同时争取家属的理解和支持,减轻和消除心理问题,积极配合治疗。 2.体位平卧位患手高于心脏,有利于血液回流,减轻水肿和疼痛。 3.症状护理手部创伤常伴有明显疼痛,剧烈的疼痛会引起血管痉挛,还可 引起情绪、凝血机制等一系列的变化,因此,应及时遵医嘱使用止痛药物。 4.病情观察包括生命体征及患手局部情况,尤其应警惕失血性休克,正确 使用止血带。 术后护理 1.体位平卧位患手高于心脏,有利于血液回流,减轻肿胀。患手尽快消肿, 可减少新生纤维组织生成,防止关节活动受限。 2.饮食高热量、高蛋白、高维生素、高铁、粗纤维饮食。 3.局部保暖应用烤灯距离30-40cm照射局部,保持室温22-25°C,使局 部血管扩张,改善末梢循环。术后3-4日内持续照射。以后可于清晨、夜间气温较低时照射,术后1周即可停用。 4.用药护理及时、准确执行医嘱,正确使用解痉、抗凝药物,以降低红细 胞之间的凝集作用和对血管壁的附着作用,并可增加血容量,减低血液粘 稠度,利于血液流通及伤口愈合;用药过程中,需注意观察药物不良反应。 5.功能锻炼一般可于术后3-4周开始主动练习法,主动屈曲伸直各关节, 减少肌腱粘连。被动活动开始的时间要以手术缝合方式、愈合是否牢骨而 定。术后5周内不做与肌腱活动方向相反的被动或牵拉肌腱活动。

骨科常见疾病的诊疗指南2017

骨科常见疾病的诊疗指南 第一节儿童肱骨髁上骨 【概述】 肱骨髁上骨折是最常见的儿童肘部骨折,约占全部肘关节损伤的50% ~ 70%,常见于3一10岁的儿童,以5 ~7岁的男孩最多见,肱骨髁上骨折多发生在手的非优势侧。早期处理不当可致前臂骨筋膜室综合征,导致Volkmann挛缩,造成终身残疾。骨折畸形愈合形成肘内翻,影响患儿的肘关节外观,需行截骨术矫正畸形。因此,肱骨髁上骨折是儿童肘部的严重损伤。 【影像检查】 肱骨髁上骨折的诊断以普通X线片检查为主。因肘关节肿胀和疼痛,不能完全伸直肘关节,拍标准的肘关节正侧位片困难。怀疑肱骨髁上骨折时应拍肱骨远端正侧位片。若怀疑无移位或轻度移位骨折而正侧位片未发现骨折线,应拍斜位片。建议术前加照对侧肘关节,对于粉碎性骨折和陈旧性骨折常规行CT 检查。 【分类】 根据远端骨折块移位方向,可分为伸直型与屈曲型骨折。远端骨折块向后上移位者为伸直型骨折,向前上移位则为屈曲型骨折;伸直型骨折又可细分为伸直尺偏型(远端向尺侧移位);伸直桡偏型(远端向桡侧移位)。伸直尺偏型多见(75 % ),可能与肌肉轴线偏内侧和受伤时多处于伸肘、前臂旋前位有关,易合并肘内翻。伸直桡偏型虽仅占伸直型骨折的25 %,但易伴发血管、神经损伤。Gartland依据骨折块移位程度,将伸直型骨折细分为三型: 1、I型骨折无移位; 2、Ⅱ型仅一侧皮质断裂,通常后侧皮质保持完整,骨折断端有成角畸形。 3、Ⅲ型前后侧皮质均断裂,骨折断端完全移位。 【诊断】 严重移位骨折容易诊断,但要注意有无其他伴发骨折和神经血管损伤。约5%的患儿同时伴发同侧其他骨折(通常为桡骨远端骨折)。因而对诊断肱骨髁上骨折的患儿,应作详细检查,以免漏诊。查体可见肘关节肿胀,髁上处有环形

骨科常见疾病名称

1.锁骨骨折 2.肩锁关节脱位 3.肩关节脱位 4.肱骨外科颈骨折 5.肱骨干骨折 6.肱骨髁上骨折 7.肘关节脱位 8.前臂双骨折 9.桡骨下端骨折 10.手外伤 11.断指再植 12.髋关节脱位 13.股骨颈骨折 14.股骨转子间骨折 15.股骨干骨折 16.髌骨骨折 17.髌骨脱位 18.膝关节韧带损伤 19.膝关节半月板损伤 20.胫骨平台骨折 21.胫腓骨骨折 22.踝部骨折 23.踝部扭伤 24.跟腱断裂 25.跟骨骨折 26.跖骨骨折 27.趾骨骨折 28.颞下颌关节脱位 29.脊柱骨折

30.脊髓损伤 31.骨盆骨折 32.周围神经损伤 33.上肢神经损伤 34.下肢神经损伤 35.腰肌劳损 36.棘上棘间韧带损伤 37.滑囊炎 38.狭窄性腱鞘炎 39.腱鞘囊肿 40.肱骨外上髁炎 41.肩关节周围炎 42.疲劳骨折 43.月骨无菌性坏死 44.髌骨软化症 45.胫骨结节骨软骨病 46.股骨头骨软骨病 47.椎体骨软骨病 48.腕管综合征 49.肘管综合征 50.旋后肌综合征 51.梨状肌综合征 52.脊柱骨折和脱位 53.脊柱椎弓崩裂 54.脊椎滑脱 55.椎间盘突出 56.腰扭伤 57.腰背筋膜脂肪疝 58.腰肌劳损

59.腰3横突综合征 60.臀上皮神经炎 61.椎管陈旧性骨折脱位 62.椎管畸形 63.硬脊膜囊肿 64.脊柱结核 65.脊柱骨髓炎 66.强直性脊柱炎 67.类风湿性关节炎 68.软组织纤维质炎 69.软组织筋膜炎 70.血管炎 71.神经炎 72.蛛网膜炎 73.硬膜外感染 74.脊髓炎 75.神经根炎 76.腰椎骨关节炎 77.小关节紊乱 78.骨质疏松症 79.椎体后缘骨赘 80.椎管狭窄 81.黄韧带增厚 82.脊柱裂 83.先天性脊柱侧弯 84.退变性脊柱侧弯 85.移行椎 86.水平骶椎 87.脊肌瘫痪性侧弯

骨伤科常用医疗技术操作规范

骨伤科常用医疗技术操作规范 骨牵引 一、穿针原则 1、术前征得患者同意,签手术知情同意书; 2、熟悉穿针部位的血管神经走行。原则是在重要结构的一侧穿针,以避免损伤这些重要的结果。 3、遵循无菌操作的技术进行皮肤准备。 4、麻醉以1%利多卡因局部浸润麻醉皮肤,但要告知病人完全将骨膜阻滞是困难的,在操作中可能会有疼痛。 5、皮肤切口穿针前,应用小尖刀片预先做一小切口,再行穿针,针眼处每日以酒精消毒,可减少针道的感染。 6、尽量用手摇钻而不用动力钻,以避免高温高热造成骨坏死。 7、穿刺针最好位于干骺端避免损伤骺板,理想的穿刺针是只穿过皮肤、皮下和骨骼,避开肌肉和肌腱。 8、不要破坏骨折血肿以免人为将闭合骨折变为开放状态。 9、不要穿入关节否则会造成化脓性关节炎的发生。 10、其它如在穿刺过程中针不要弯曲;要选择合适的牵引弓;牵引的力线要与骨折的纵轴一致;要注意牵引重量,不要过牵;随时给予X线检查。 二、常用部位骨牵引 1、胫骨结节胫骨结节向后一横指,在其平面下部,由外向内穿针。 2、跟骨外踝顶点下2㎝,再向后2㎝或内踝顶点下3㎝,由内向外穿针。 3、股骨下端髌骨上缘2㎝或内收肌结节上2横指处,由内向外穿针。

4、尺骨鹰嘴由鹰嘴尖端向远端⒈5横指处,由内向外穿针。 5、指骨指骨远节基底远侧。 6、颅骨双侧外耳道经顶部的连线与两眉弓外缘向枕部划线的交点。 皮牵引 一、牵引机制 将胶布和皮肤之间的摩擦力通过浅筋膜、深筋膜及肌间隔等传导到骨骼上。 二、牵引方法 胶布宽度为肢体最细周径的一半,上端在骨折部位,下端超过肢体远端10㎝。也有特制的泡沫塑料带牵引。 三、注意事项 1、适用于儿童、老人或作为一种最初的、暂时的治疗手段; 2、仔细检查牵引处皮肤,祛除污物; 3、保护骨突起部位,避免胶布粘贴骨突起; 4、最大牵引重量一般为5㎏,具体因人而异; 5、抬高患肢,防止水肿; 6、每天检查肢体长度,调整牵引力度。 五、常用皮牵引 1、上肢皮牵引; 2、下肢皮牵引。 石膏固定 一、适应证 1、用于骨折,脱位,韧带损伤和关节感染性疾病,用来缓解疼痛,促进愈合;

骨科常见疾病名称

. 1.锁骨骨折 2.肩锁关节脱位 3.肩关节脱位 4.肱骨外科颈骨折 5.肱骨干骨折 6.肱骨髁上骨折 7.肘关节脱位 8.前臂双骨折 9.桡骨下端骨折 10.手外伤 11.断指再植 12.髋关节脱位 13.股骨颈骨折 14.股骨转子间骨折 15.股骨干骨折 16.髌骨骨折 17.髌骨脱位 18.膝关节韧带损伤 19.膝关节半月板损伤 20.胫骨平台骨折 21.胫腓骨骨折 22.踝部骨折 23.踝部扭伤 24.跟腱断裂 25.跟骨骨折 26.跖骨骨折 27.趾骨骨折 28.颞下颌关节脱位 29.脊柱骨折

. 30.脊髓损伤 31.骨盆骨折 32.周围神经损伤 33.上肢神经损伤 34.下肢神经损伤 35.腰肌劳损 36.棘上棘间韧带损伤 37.滑囊炎 38.狭窄性腱鞘炎 39.腱鞘囊肿 40.肱骨外上髁炎 41.肩关节周围炎 42.疲劳骨折 43.月骨无菌性坏死 44.髌骨软化症 45.胫骨结节骨软骨病 46.股骨头骨软骨病 47.椎体骨软骨病 48.腕管综合征 49.肘管综合征 50.旋后肌综合征 51.梨状肌综合征 52.脊柱骨折和脱位 53.脊柱椎弓崩裂 54.脊椎滑脱 55.椎间盘突出 56.腰扭伤 57.腰背筋膜脂肪疝 58.腰肌劳损

. 59.腰3横突综合征 60.臀上皮神经炎 61.椎管陈旧性骨折脱位 62.椎管畸形 63.硬脊膜囊肿 64.脊柱结核 65.脊柱骨髓炎 66.强直性脊柱炎 67.类风湿性关节炎 68.软组织纤维质炎 69.软组织筋膜炎 70.血管炎 71.神经炎 72.蛛网膜炎 73.硬膜外感染 74.脊髓炎 75.神经根炎 76.腰椎骨关节炎 77.小关节紊乱 78.骨质疏松症 79.椎体后缘骨赘 80.椎管狭窄 81.黄韧带增厚 82.脊柱裂 83.先天性脊柱侧弯 84.退变性脊柱侧弯 85.移行椎 86.水平骶椎 87.脊肌瘫痪性侧弯

骨科常见专科诊断

上肢及上肢带骨骨折 锁骨骨折[类病鉴别] 1、肩锁关节脱位:锁骨外端高于肩峰,甚至形成梯状崎形,向下牵拉上肢时,骨外端隆起更明显;向下按压骨外端可回复,松手后又隆起;X线片显示肩锁关节脱位。 2、胸锁关节脱位:两侧胸锁关节不对称,可有异常活动,锁骨内端可突出或空虚。 3、臂丛神经瘫疾:易与婴幼儿锁骨骨折相混淆。前者锁骨仍完整,同时可见典型的肩部内收内旋、肘部伸直畸形;一般在2个月—3个月后可有显著恢复。 肩胛骨骨折〔类病鉴别〕 1、肋骨骨折:伤后胸部疼痛,咳嗽及深呼吸时疼痛加重;挤压胸廊时,骨折部分疼痛加剧;有时可合并气、血胸;X线片示肋骨骨折。 2、肱骨外科颈骨折:多为传达暴力所致,上臂内侧可见瘀斑,有疼痛、压痛、功能障碍,可触及骨擦感及异常活动。 肱骨大结节骨折〔类病鉴别〕 l、肩关节前脱位:受伤机制与本病相近,也表现为肩部肿痛,活动受限.但有方肩畸形,可扪及异位肱骨头,肩关节弹性固定.有时两者常合并存在。 2、肩峰骨折:均为肩部肿痛,但压痛点位于肩峰部,被动外展时可有一定的活动度;x 线片可见肩峰骨折。 3、肱骨外科颈骨折:症状、体征相似,但本病肿胀及瘀斑较明显,肱骨上端环形压痛,可有异常活动;X线片见骨折线位于肱骨外颈.亦可两者合并存在。 肱骨外科颈骨折〔类病鉴别〕 1、肩关节前脱位:亦表现肩部疼痛、压痛、活动受限,典型方肩畸形;但伤肢外展25°一30°位弹性固定,搭肩试验阳性;X线可鉴别.有时两者合并存在。 2、肱骨大结节骨折:肩外侧大结节处压痛,外展活动受限,上臂内侧无瘀斑,无环形压痛。 3、肩部挫伤:系直接暴力所致.局部皮肤有擦伤、瘀斑,肿胀、压痛局限于着力部位,无环形压痛及纵向叩击痛;X线片无骨折征象。 肱骨干骨折〔类病鉴别〕 1、肱骨外科颈骨折:肿痛在肩部,肱骨上端压痛;X线正位片及穿胸位可显示骨折线在肱骨解剖颈下2厘米一3厘米;治疗后骨折多能愈合。 2、肱骨肱骨上骨折:多发生于儿童,肘部肿胀较明显,呈靴状畸形;X线片示骨折线在肱骨下端扁薄处;治疗后常遗有肘内翻畸形。 3、上臂扭伤:压痛局限于损伤部位,有牵拉痛,上臂功能障碍较轻;无环形压痛及纵向叩击痛,无异常活动。 肱骨髁上骨折〔类病鉴别〕

常用骨科鉴别诊断模板

常用骨科鉴别诊断 上肢及上肢带骨骨折 锁骨骨折 1、肩锁关节脱位:锁骨外端高于肩峰,甚至形成梯状畸形,向下牵拉上肢时,骨外端隆起更明显;向下按压骨外端可恢复,松手后又隆起;X线片显示肩锁关节脱位。 2、胸锁关节脱位:两侧胸锁关节不对称,可有异常活动,锁骨内端可突出或空虚。 3、臂丛神经瘫疾:易与婴幼儿锁骨骨折相混淆。前者锁骨仍完整,同时可见典型的肩部内收内旋、肘部伸直畸形;一般在2-3个月后可有显著恢复。 肩胛骨骨折 1、肋骨骨折:伤后胸部疼痛,咳嗽及深呼吸时疼痛加重;挤压胸廓时,骨折部分疼痛加剧;有时可合并气、血胸;X线片示肋骨骨折。 2、肱骨外科颈骨折:多为传达暴力所致,上臂内侧可见瘀斑,有疼痛、压痛、功能障碍,可触及骨擦感及异常活动。 肱骨大结节骨折 1、肩关节前脱位:受伤机制与本病相近,也表现为肩部肿痛,活动受限,但有方肩畸形,可扪及异位肱骨头,肩关节弹性固定,有时两者常合并存在。 2、肩峰骨折:均为肩部肿痛,但压痛点位于肩峰部,被动外展时可有一定的活动度;X线片可见肩峰骨折。 3、肱骨外科颈骨折:症状、体征相似,但本病肿胀及瘀斑较明显,肱骨上端环形压痛,可有异常活动;Ⅹ线片见骨折线位于肱骨外颈,亦可两者合并存在。 肱骨外科颈骨折 1、肩关节前脱位:亦表现肩部疼痛、压痛、活动受限,典型方肩畸形;但伤肢外展250一300位弹性固定,搭肩试验阳性;X线可鉴别,有时两者合并存在。 2、肱骨大结节骨折:肩外侧大结节处压痛,外展活动受限,上臂内侧无瘀斑,无环形压痛。

3、肩部挫伤:系直接暴力所致,局部皮肤有擦伤、瘀斑,肿胀、压痛局限于着力部位,无环形压痛及纵向叩击痛;X线片无骨折征象。 肱骨干骨折 1、肱骨外科颈骨折:肿痛在肩部,肱骨上端压痛;X线正位片及穿胸位可显示骨折线在肱骨解剖颈下2一3cm;治疗后骨折多能愈合。 2、肱骨髁上骨折:多发生于儿童,肘部肿胀较明显,呈靴状畸形;X线片示骨折线在肱骨下端扁薄处;治疗后常遗有肘内翻畸形。 3、上臂扭伤:压痛局限于损伤部位,有牵拉痛,上臂功能障碍较轻;无环形压痛及纵向叩击痛,无异常活动。 肱骨髁上骨折 1、肘关节后脱位:儿童肘关节后脱位极少见,脱位后肘后三角关系改变,患肢缩短,屈肘弹性固定;X线片可确诊。 2、肱骨外髁骨折:肿胀及压痛局限于肘外侧,有时可触及骨折块;X片摄片桡骨纵轴线不通过肱骨小头骨化中心。 肱骨髁间骨折 1、肱骨髁上骨折:多发生于儿童,肘部肿胀疼痛相对较轻;X线片示骨折线未波及关节面;治疗后肘关节功能恢复较好。 2、肘关节后脱位:弹性固定于135°左右,肘窝前方饱满,可扪及肱骨滑车;肘后鹰嘴异常后突,上方凹陷、空虚;X线摄片有脱位征象,无骨折。 肱骨外髁骨折 1、肱骨髁上骨折:肿痛较明显,呈环周压痛;X线片示骨折线不波及关节面,桡骨纵轴线通过肱骨小头骨化中心。

(完整版)骨科常见护理诊断与措施

骨科常见护理诊断与措施 1.疼痛:与创伤、骨折、手术切口有关; 措施:根据疼痛的刺激源,给予不同的方法,如遵医嘱给予止痛剂,护患沟通,转移患者对疼痛的注意力,或采用中医疗法,针刺止痛、按摩等以活血化瘀,疏通经络等,也有很好的止痛效果,也可物理止痛,如冷疗、热疗等。 2.知识缺乏:与角色突变,未接受相关知识有关; 措施:根据患者的健康状况,疾病的性质、原因、向患者及家属宣教医学知识,介绍有关治疗护理的方法和意义, 3.焦虑、恐惧:与意外受伤,无思想准备,担心不良预后有关; 措施:鼓励患者讲出自身感受(心理、生理等)给予针对性处理,介绍疾病相关知识,讲解成功病例,鼓励患者有战胜疾病的信心。 4.生活自理缺陷:与疾病和治疗限制,骨折后患肢功能受限有关; 措施:指导病人使用呼叫器,将常用物品放置病人易取到的地方,及时给予生活上的护理,协助病人使用拐杖、助行器、轮椅等,使其进行力所能及的自理活动,鼓励病人完成病情允许的自理活动或部分自理活动,使病人的生活需要得到满足。 5.躯体移动障碍:与受伤后肢体功能障碍和治疗限制有关; 6.有皮肤完整性受损的可能;与长期卧床有关; 7.有废用综合症的危险:与长期卧床及患肢制动,活动受限和减少有关; 措施:医护合作,鼓励并指导患者进行功能锻炼,做示范动作,教会病人并检查患者是否掌握。 8.睡眠形态紊乱:与疾病、心理因素、治疗限制和环境改变有关; 措施:给予心理护理,减轻患者对疾病及相关因素的紧张情绪,针对患者主诉及症状,配合医生给予相应的处理,保持病室环境安静整洁舒适,并给予患者讲解促进睡眠的方法。 9.体温升高:与手术创伤、感染有关; 措施:给予必要的解释工作,根据病因,遵医嘱给予降温措施,指导患者多饮水,按时进行病室内空气净化消毒。 10.潜在并发症:肺部感染、泌尿系感染、压疮、深静脉血栓、便秘、心脑血管意外等 措施: (1)预防心脑血管疾病:如老年人骨折后,循环系统发生明显衰退性变化,心血管系统不能适应应激状态,加之受伤后疼痛刺激,易导致心脑血管疾病发生,要多巡视病房,严密观察血压、脉搏、患者神志、表情变化等,多与病人交流,倾听患者主诉,及时了解病情,发现问题及时处理。 (2)预防消化系统疾病:患者患病后由于长时间卧床,个别病人因生活不能自理,怕给他人增添麻烦,为减少大小便次数,而控制饮食。这样的病人应向其说明营养的重要性。因为胃肠蠕动慢,排空慢,易引起腹胀,便秘,应鼓励患者多进行顺时针按摩腹部,增强肠蠕动,从而预防并减轻腹胀、便秘。另外督促患者多饮水,饮食平衡,多吃新鲜蔬菜及粗粮等,饮食有规律、定时定量,并养成定时排便的习惯,必要时给予缓泻剂。 (3)预防呼吸系统疾病:老年人骨折后,呼吸功能相对减弱,长期卧床及术后病人易发生肺部并发症。因此病人入院,要求不吸烟,讲清吸烟对术后身体的危害性。鼓励病人咳嗽、作深呼吸,上肢能活动的作扩胸运动,增加肺活量。在协助病人翻身时,给予叩背,使积痰易于排出,怕疼痛、不能咳嗽的病人鼓励病人尽量把痰咳出,若痰液粘稠可给予雾化吸入。病房应经常开窗通气,保持空气新鲜,注意保暖,预防感冒。 (4)预防泌尿系统疾病:患者因卧床时间长,加之骨折处疼痛,怕多饮水排尿不方便,易发生泌尿系感染。要鼓励患者多饮水,定时改变体位,有利于尿沉渣的排出,保持会阴部清

特殊名称骨折及骨科评分--汇总速记

特殊名称骨折 上肢: 【bankart骨折】指肩关节盂前下边缘骨折,伴或者不伴有肩前脱位。英国骨科医生Arthur Sydney Blundell Bankart(1879-1951)首先命名这类损伤。 【Hill-Sachs损伤】指肱骨头压缩性骨折,当肩关节前脱位时,关节盂前缘撞击导致肱骨头后外侧压缩骨折。两位美国圣地亚哥放射科医生HaroldArthurHill(1901–1973)和MauriceDavidSachs(1909–1987) 首先报道该病故此得名。 【Holstein—Lewis骨折】肱骨远端1/3骨折伴桡神经嵌压。 【Posadas骨折】经髁的肱骨骨折,伴有骨折碎块向前移位,以及因双髁骨折造成尺桡骨的脱位。 【Kocher骨折】肱骨小头骨折(分四型,Ⅰ型为Hahn-steinthal骨折;Ⅱ型为Kocher-lorenz 骨折;Ⅲ型粉碎性骨折;Ⅳ型软骨挫伤。) 【Hahn-steinthal骨折】全肱骨小头骨折,为一种少见的关节骨折,多见于成年人。 【Hume骨折】译休姆 【Monteggia骨折】孟氏骨折定义孟氏骨折Monteggiafractures指桡骨头脱位合并尺骨骨折。孟氏骨折孟氏骨折Bado分类(1967)I型:尺骨干骨折向前成角,桡骨头向前脱位,约占60%,石膏固定于屈肘110°,前臂旋后II型:尺骨干骨折向后成角,桡骨头向后脱位,约占15%,石膏固定于屈肘70°,前臂旋后III型:儿童尺骨近端干骺端骨折合并桡骨头前/外侧脱位,约占20% IV:型尺骨近端1/3骨折,桡骨头脱位。约占5%。 【肘关节恐怖三联征】特指伴有桡骨头和尺骨冠突骨折的肘关节后脱位,属于肘关节复杂骨折脱位的一种类型。这类损伤均同时伴有肘外侧副韧带的撕裂,但不伴有尺骨鹰嘴骨折。 【Essex—Lopresti骨折】指桡骨颈骨折伴有远端尺桡关节分离。英国Birmingham外科医生PeterGordon Essex-Lopresti(1918–1951)首先描述这类骨折,故此得名。 【Galeazzi骨折】指桡骨干骨折伴下尺桡关节脱位脱位。意大利外科医生Ricardo Galeazzi (1866–1952)首先命名此类骨折,故此得名。 【双极骨折】即Monteggia骨折合并Galeazzi骨折. 【夜盗(杖)骨折】即尺骨干骨折 【警棍骨折】(Night-stick fracture)前臂单纯的尺骨骨折

骨科常见疾病名称

1锁骨骨折 2?肩锁关节脱位 3.肩关节脱位 4.肱骨外科颈骨折 5.肱骨干骨折 6.肱骨髁上骨折 7.肘关节脱位 8.前臂双骨折 9.桡骨下端骨折 10.手外伤 11.断指再植 12.髋关节脱位 13.股骨颈骨折 14.股骨转子间骨折 15.股骨干骨折 16.髌骨骨折 17.髌骨脱位 18.膝关节韧带损伤 19.膝关节半月板损伤 20.胫骨平台骨折 21.胫腓骨骨折 22.踝部骨折 23.踝部扭伤 24.跟腱断裂 25.跟骨骨折 26.跖骨骨折 27.趾骨骨折 28.颞下颌关节脱位

29.脊柱骨折 30 ?脊髓损伤 31.骨盆骨折 32.周围神经损伤 33.上肢神经损伤 34.下肢神经损伤 35.腰肌劳损 36.棘上棘间韧带损伤 37.滑囊炎 38.狭窄性腱鞘炎 39.腱鞘囊肿 40.肱骨外上髁炎41?肩关节周围炎 42.疲劳骨折 43.月骨无菌性坏死 44.髌骨软化症 45.胫骨结节骨软骨病 46.股骨头骨软骨病 47.椎体骨软骨病 48.腕管综合征 49.肘管综合征 50.旋后肌综合征 51.梨状肌综合征 52.脊柱骨折和脱位 53.脊柱椎弓崩裂 54.脊椎滑脱 55.椎间盘突出 56.腰扭伤

57.腰背筋膜脂肪疝 58.腰肌劳损

59 ?腰3横突综合征 60.臀上皮神经炎 61 ?椎管陈旧性骨折脱位 62.椎管畸形 63.硬脊膜囊肿 64.脊柱结核 65.脊柱骨髓炎 66.强直性脊柱炎 67.类风湿性关节炎 68.软组织纤维质炎 69.软组织筋膜炎 70.血管炎 71.神经炎 72.蛛网膜炎 73.硬膜外感染 74.脊髓炎 75.神经根炎 76.腰椎骨关节炎 77.小关节紊乱 78.骨质疏松症 79.椎体后缘骨赘 80.椎管狭窄 81.黄韧带增厚 82.脊柱裂 83.先天性脊柱侧弯 84.退变性脊柱侧弯 85.移行椎

骨科常见手术

第一篇脊柱 第一章颈椎前后路手术 第一节颈前路齿突骨折中空加压螺钉内固定术第二节经皮前路齿状突螺钉内固定术 第三节经皮前路寰枢关节突螺钉内固定术 第四节寰枢椎后路钢丝或椎板夹内固定术 第五节双开门侧块固定植骨术 第六节颈椎后路椎管扩大椎板成形术 第七节颈椎椎弓根螺钉内固定术 第八节无骨折脱位型颈髓损伤的手术治疗 第二章脊柱结核的手术治疗 第一节寰枢椎结核经口腔病灶清除术 第二节胸椎结核胸膜外病灶清除术 第三节胸椎结核合并截瘫前外侧减压术 第三章肌源性斜颈的手术治疗 第一节胸锁乳突肌下端切断术 第二节胸锁乳突肌上端切断术 第三节胸锁乳突肌切除术 第四章胸廓出口综合征的手术治疗 第一节前斜角肌切断及颈肋切除术 第二节锁骨上第一肋骨切除术 第三节经腋路第一肋骨切除术 第五章脊柱侧弯合并胸廓塌陷的手术治疗 第一节颅盆牵引下胸廓塌陷成形术 第二节分叉棍提肋固定矫正胸廓塌陷 第三节肋骨后移胸廓塌陷成形术 第六章胸腰椎椎弓根螺钉植入术 第一节胸椎椎弓根螺钉植入术 第二节腰椎椎弓根螺钉植入术 第七章胸椎全椎板切除减压术 第一节胸椎管狭窄症全椎板切除减压术 第二节胸椎黄韧带骨化症的手术 第八章腰椎间盘突出症的手术治疗 第一节咬骨钳开窗椎间盘摘除术 第二节单侧椎板间骨刀开窗椎间盘摘除术 第三节极外侧型腰椎间盘摘除术 第四节腰椎间盘微创摘除术 第五节腰椎间盘突出伴马尾神经损伤

第六节高位腰椎间盘突出症手术的前外侧入路第七节高位椎间盘突出症手术的后正中入路第八节高位腰椎间盘切除植骨内固定术 第九章腰椎管狭窄症的手术治疗 第一节半椎板切除全椎管减压术 第二节腰椎管狭窄全椎板切除减压术 第十章胸腰椎骨折的手术治疗 第一节胸腰椎椎体切除术 第二节经椎弓根钉内固定治疗胸腰椎骨折脱位第十一章腰椎前后路融合术 第一节腰椎前路椎体间融合术(ALIF) 第二节腰椎后外侧融合术 第三节腰椎后路椎间融合术(PLIF) 第四节腰椎经椎问孔椎体间融合术(TLIF) 第十二章RF内固定治疗腰椎滑脱症 第十三章重度脊柱弯曲的手术治疗 第一节颅盆环牵引术 第二节全脊柱截骨术 第十四章半椎体截骨切除术 第一节侧旁半椎体截骨切除术 第二节后侧半椎体截骨切除术 第十五章脊柱侧弯合并胸椎前凸的手术治疗第一节生长棒椎板下钢丝固定术 第二节肋骨成形术矫正胸椎前凸 第十六章多节段截骨矫正青年性脊柱后凸 第十七章强直性脊柱炎后凸截骨术 第一节椎板横形截骨术 第二节椎板V形截骨术 第三节椎弓椎体次全截骨术 第四节颈胸段截骨术 第十八章成人脊髓栓系综合征的手术治疗 第十九章椎体压缩骨折后凸成形术 第二篇四肢、骨盆 第二十章手部骨折的手术治疗 第一节掌骨骨折切开复位内固定术 第二节第一掌骨基底部骨折切开复位内固定术第三节指骨骨折切开复位内固定术

骨科各种手术记录大全概要

骨科各种手术记录大全(上) 来源:骨今中外编辑:Q 添加日期:2014-08-23 浏览次数:1934 次 1、髌骨骨折 1.平卧位 2.常规消毒铺巾。 3.在右膝关节作横弧形切口,切开筋膜层,显露髌骨骨折端,及断裂的髌韧带扩张部,冲洗膝关节腔,清除血肿,见骨折粉碎,移位,将骨折复位,以巾钳维持,平行髌骨纵向钻入两枚克氏针,再以钢丝“8”字环绕绑扎,取1—0Dexon线环绕髌骨缝扎两周,以固定。 4.冲洗术野,彻底止血,逐层缝合。 2、髌骨骨折切开复位内固定术 1.麻醉平稳后,患者仰卧位,常规消毒铺单,取右膝前正中长约8厘米纵行切口,切开皮肤浅深筋膜,分离显露骨折处。 2.术中可见髌骨骨折,呈粉碎性,关节腔可见有大量凝血块,髌腱膜于骨折处横断。 3.手术清除骨折端处凝血块,将骨折复位后,暂用巾钳固定。于髌骨旁纵行切开关节囊,手指探查髌骨关节面复位良好,以髌骨记忆合金张力钩固定,用生理盐水充分冲洗关节腔及切口,用粗丝线缝合修补髌腱膜及关节囊。 4.清点器械无误后缝合皮下组织及皮肤。手术顺利,术中出血不多,术后患者安返病房。

3、肱骨骨折 手术程序: 1.臂丛麻醉成功后,患者取平卧位,左上臂置于胸前,左上臂根部绑止血带,常规手术野皮肤消毒铺巾。 2.驱血至300mmHg,上止血带,自尺骨鹰嘴至肱骨下段后方切开约长10cm,切开皮肤及皮下组织,显露肱三头肌及腱膜,显露出尺神经,牵开尺神经以免损伤,自肱三头肌中线切开直至肱骨骨膜,将肱三头肌向两侧拉开,显露肱骨骨折端,见远端向前成角移位,将骨折端血肿清除,牵引复位骨折并维持,取5孔肱骨重建钢板预弯后置于肱骨后侧,钻孔,攻螺纹,拧入螺钉固定,并使骨折端加压,检查骨折固定稳定,肘关节活动不受影响。 3.冲洗伤口,彻底止血,留置胶管引流1条,逐层缝合。 4.麻醉满意,术程顺利,术后予左上肢石膏托外固定。 4、左肱骨骨折内固定术后再次骨折 1.麻醉平稳后,患者取仰卧位,常规消毒铺单。 2.沿原手术切口切开,逐层切开皮肤、皮下组织,分离显露桡神经,游离桡神经并牵开保护,充分显露骨折断端,可见左肱骨骨折,内固定物松脱,骨折断端处有大量肉芽组织形成,有碎骨块,骨折断端错位成角,骨折端骨质硬化,髓腔封闭。 3.手术取出内固定物,清理骨折断端处肉芽组织,咬除骨折断端硬化骨质,打通髓腔,于右髂骨处凿除部分髂骨,于肱骨大结节上方开口并以髓腔锉依次扩髓,打入8×220毫米带锁髓内针主针,针尾

相关文档