文档库 最新最全的文档下载
当前位置:文档库 › 实时荧光Taqman 探针设计

实时荧光Taqman 探针设计

实时荧光Taqman 探针设计
实时荧光Taqman 探针设计

一、实时荧光Taqman 探针设计

总原则:探针选择要保守,引物选择要保守,因此必须找一段100-200bp相对要保守的片段来设计引物与探针。即real-time PCR的扩增片段是50bp----150bp。当找不到150bp的保守片段时,必须确保探针的片段是保守的。

在设计探针和引物时,要同时考虑在两条链上设计引物与探针。但要注意的是:在那条链上设计探针时,就应靠近在同一条链上设计的引物(即上游引物)。这样,可保证在将来扩增时,即便没有完全扩增,也有荧光信号报告出来。两者的距离最好是探针的5’端离上游引物的3’有一个碱基,但也可以重叠。

若在原序列中找不到合适的探针与引物(1主要是探针和上游引物的距离太远,而离下游引物的距离却较近时;2突变位点要求在探针的5’ 端也能检测到荧光信号,但却是在3’端),可在互补的序列中设计引物与探针。

另real-time PCR中的探针和引物的Tm值,均要高于平常PCR的引物和杂交的探针的Tm 值。

二、探针的设计

探针设计的基本原则:

1.保守:探针要绝对的保守,有时分型就单独依靠探针来决定。理论上有一个碱基不配对,就可能检测不出来。若找不到完全保守的片段,也只能选取有一个碱基不同的片段。且这个不同的碱基最好在探针的中间,对探针与目的片段的杂交影响不大,不相同的碱基最好不要在两端,因为两端不利于探针的杂交。且最好为A或T,而不能为G或A,因为A、T为双键,而G、A为三键。

2.探针长度

Taqman探针的长度最好在25-32bp之间,且Tm值在68-72℃之间,最好为70℃,确保探针的Tm值要比引物的Tm值高出10℃,这样可保证探针在煺火时先于引物与目的片段结合。因此探针最好是富含GC的保守片段,保证其的Tm值较高。现在有Taqman MGB探针,在TAMER之后再标记一个MGB,可使探针的Tm值较高,即使探针片段较短,也可达到Taqman探针的Tm值要求(68-70℃)。

3.探针的名称

应标记探针在基因组的位置及长度。

4.探针Tm值计算

用oligo或primer preiemer软件即可计算Tm值。确保探针中GC含量在30-80%。应避免探针中多个重复的碱基出现,尤其是要避免4个或超过4个的G碱基出现。

5.探针的评价

用DNAstar软件中的Primerselect软件,点击“log”菜单中的“create primer catalog”,在“name”中输入探针的名称、位置,按Tab键进入“sequence”,粘贴或输入要分析的探针序列。选中整个序列后,在“report”菜单下“primer self dimer”,分析探针的二聚体。弹出的窗口中就告诉此探针有多少个dimer,并对此探针用dG值进行评价(通常给出最差的dG值,理论上是dG值越大越好)。在“report”菜单下“primer hairpins”,分析探针的发夹结构。弹出的窗口中就告诉此探针有多少个hairpins,并对此探针的hairpins进行评价。多重荧光PCR时,要对多条探针进行“pair dimer”进行分析。

6.探针的5’端不能为G,因为即使单个G碱基与FAM荧光报告基团相连时,G可以淬灭FAM基团所发出的荧光信号,从而导致假阴性的出现。

7.Taqman探针与引物之间的位置

Taqman探针应靠近上游引物,即Taqman探针应靠近与其在同一条链上的上游引物。两者

的距离最好是探针的5’端离上游引物的3’有一个碱基,但也可以重叠,要保证Taqman探针的5’端离上游引物的5’端至少有4bp。

如:

forward primer Taqman probe

5’ →3’ 5’ FAM→3’染料

NNNNNNN NNNNNNN

发表序列:5’-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-3’

互补发表序列3’-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-5’

NNNNNNN

3’ ←5’

reverse primer

或:

reverse primer

5’ →3’

NNNNNNN

发表序列:5’-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-3’

互补发表序列3’-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-5’

NNNNNNN NNNNNNN

料染3’ ←MAF5’ 3 ’←5’

Taqman probe forward primer

Taqman probe forward primer

三引物的设计

1.上下游引物要保守

为了能够扩增出所需要的保守片段,必须对保守的100-200片段进行PCR扩增。所以引物的选取也要非常的保守,最好不要有不同的碱基,若不得不有时,也必须保证引物的3’端至少有4个碱基是完全保守才可。

在设计保守引物时,要在发表序列上分别找保守一致的区域,即在发表序列的5’端引物位置找的是3’端至少有5个bp保守,在即在发表序列的3’端引物位置找的是5’端至少有5个bp 保守。

5’NNNNNNN 3’

发表序列:5’-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-3’

3’NNNNNNNNN 5’

2.上下游引物的长度和Tm值

上下游引物的长度一般为18-25bp之间,且Tm值在58-60℃之间。确保引物中GC含量在30-80%。应避免引物中多个重复的碱基出现,尤其是要避免4个或超过4个的G碱基出现。引物的3’端最好不为G或/和C。引物3’端的5个碱基不应出现2个G或/和C。

上游引物应标记F(forword),且在基因组的位置及长度;下游引物应标记R(reverse),且在基因组的位置及长度。用oligo或primer preiemer软件即可计算Tm值。上下游引物的Tm 值相差最好不超过2℃,长度相差最好不超过4bp。

3.引物的评价

用DNAstar软件中的Primerselect软件,点击“log”菜单中的“create primer catalog”,在“name”中输入引物的名称、位置,按Tab键进入“sequence”,粘贴或输入要分析的引物序列。选中整个序列后,在“report”菜单下“primer self dimer”,分析引物的二聚体。弹出的窗口中就告诉此引物有多少个dimer,并对此引物用dG值进行评价(通常给出最差的dG值,理论上是dG值越大越好)。在“report”菜单下“primer hairpins”,分析引物的发夹结构。弹出的窗口中就告诉此引物有多少个hairpins,并对此引物的hairpins进行评价。再选择所需要的上下游引物,在“report”菜单下“primer pair dimers”,分析上下游引物的dimers。弹出的窗口中就告诉此对引物有多少个dimer,并对此对引物用dG值进行评价(通常给出最差的dG值,理论上是dG值越大越好(dG值通常为负值),绝对值超过4.5kcal/mol易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行)。不必考虑引物与探针之间的配对与发夹结构,因为探针的Tm值非常之高。

4.上下游引物与探针的距离(上下游引物的位置)

理论上讲,上游引物的3’端离探针的5’端为1-20bp,最佳是1bp,最近为上游引物的3’端离探针的3’端为4bp;下游引物要与探针有一定的距离,但要保证下游引物的3’端离探针的3’端最为15-150bp。整个目的片段的长度最好在50-150bp之间,最长不超过200bp。5.简并引物的设计

当为了能够同时扩增即使在引物位点也有突变的目的片段,若多个碱基出现的概率相同,就要在此位点,设计一个代表多个碱基的简并子。在合成引物时,在合成到此位点时,就不是加入一个碱基,而是同时加入简并子所代表的多个碱基。这样,实质合成的引物是多条引物,只不过是在简并子位置碱基不同而已。但简并引物要考虑每条引物的Tm值,确保简并子所代表的不同碱基的不同引物Tm值相差不超过2℃。若超过2℃,在确保引物的3’端引物相同时,在Tm值较低的碱基引物的5’端加入几个碱基,使其的Tm值相同。但这时就不是简并引物,而是分别合成长度不同,简并子位点碱基不同,但Tm值相同的两条引物,最后在进行等浓度的混合即可。

5’ →3’

NNNANNN

NNNGNNN

序列:5’-NNNNNNNNNA/GNNNNNNNNNNNNNNNNNNNNNNNN-3’

R

R

四、实时多重PCR探针的选择:

1.多重实时PCR的多种含意有两种:一为选择保守的探针和引物,利用不同的染料标记探针,在检测时可根据荧光的颜色来判定不同的产物。另一种为选择保守的引物,扩增不同长度的目的片段,反应中加入SYBRN染料,最后根据不同目的片段的Tm值来判定不同的物品。

2.多重实时PCR的荧光探针应为同一类型:如同时为Taqman 探针、或同时为MGB探针、或同时为Beacon 探针。

3.MGB探针的优点:

a.MGB探针较短(14-20bp),更容易找到所有排序序列的较短片段的保守区。

b.短片段探针(14-20bp)加上MGB后,Tm值将提高10℃,更容易达到荧光探针Tm值的要求。

4.MGB探针的设计原则

1)探针的5’端避免出现G,即使探针水解为单个碱基,与报告基团相相连的G碱基仍可淬灭基团的荧光信号。

2)用primerexpress软件评价Tm值,Tm值应为65-67℃。

3)尽量缩短Taqman MGB探针,但探针长度不少于13bp。

4)尽量避免出现重复的碱基,尤其是G碱基,应避免出现4个或4个以上的G重复出现。

5)原则上MGB探针只要有一个碱基突变,MGB探针就会检测到(MGB探针将不会与目的片段杂交,不产生荧光信号)。因此,在进行SNP检测时,为了检测到突变子,即Taqman MGB 不与目的片段杂交,不产生荧光信号,探针目的片段产生荧光信号检测将探针的突变位点尽量放在中间1/3的地方。注意:为了满足上述要求的4个条件,探针的突变位点可向3’端移动,但突变位点至少在离3’端2个碱基的前方(即必须确保探针的后两个碱基是绝对的保守),以进行SNP检测。反过来,若要进行同类检测,找的是保守片段区,探针中不应有突变位点。若探针即便是只有13个bp,探针仍不完全保守。有几个突变,突变位点也应靠近探针的5’端,这样,即便是突变,探针也可与目的片段杂交,产生荧光信号。另一种方法是设计简并探针,也可达到即使是突变,仍可检测到突变。

5.在多重PCR中,多重PCR的各个引物之间相互干扰和各个探针之间相互干扰分析

设计好各对引物和探针后,重新在用DNAstar软件中的Primerselect软件,打开保守在同一文件中的多重PCR的引物文件,然后两两分别选中所设计的多重引物或两两分别选中所设计的多重探针后,在“report”菜单下“primer pair dimers”,分析上下游引物的dimers。弹出的窗口中就告诉此对引物有多少个dimer,并对此对引物用dG值进行评价(通常给出最差的

dG值,理论上是dG值越大越好)。

6.多重实时荧光PCR扩增片段影响

最好每重扩增相同长度的目的片段,但长度不以相差太大。

7.同种亚型明显分为几群,而又想同时扩增整个亚型的引物与探针设计策略。

先对各个亚群设计各自保守的引物与探针,然后探针用同一染料标记,这样在实时PCR反应中,虽然是多重PCR反应,但报告却是同一个染料报告。

8. 基康公司有多种染料探针合成,可满足ABI7700荧光定量PCR仪多重PCR检测标准。希望以上资料对你有所帮助!!!

对你有用的话请顶一下!!!

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

2017肿瘤检测相关公司汇总

厦门艾德 K-ras ;BRAF ;PIK3CA ;NPM1; 突变检测或多态性检测;荧光定量/毛细管电泳 EGFR ;EML4-ALK 有无医疗器械证 江苏为真 EGFR ;KRAS ;EML4-ALK ;KRAS ;BRAF ;PI3K ;C-kit ;P DGFRA Taqman-ARMS qPCR-HRM ERCC1; BRAC1; TUBB3; BRAC1; STMN1; RRM1; RRM1; EGFR 荧光定量PCR CYP19A1;UGT1A1;CYP2D6;MTHFR ;DPD ;ERCC1;GSTP1; XRCC1 荧光定量PCR+高分辨率熔点曲线 分析(HRM ) EML4-ALK 融合基因检测试剂盒 通过RT-PCR 方法检测EML4-ALK 的多种融合突变 武汉友芝友 人类EGFR 基因29种突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧 光定量技术 人类KRAS 基因7种突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧 光定量技术 人类BRAF V600E 突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧光定量技术 北京雅康博 人EGFR 基因突变检测试剂盒(荧光PCR 法) 采用荧光PCR 技术 人KRAS 基因突变检测试剂盒(荧光PCR 法) 采用荧光PCR 技术 人PIK3CA 基因突变检测试剂盒(荧光PCR 法) 人EML4-ALK 融合基因检测试剂盒(荧光PCR 法) 人VEGF 基因表达量检测试剂盒(荧光PCR 法) 人RRM1基因表达量检测试剂盒(荧光PCR 法) 人ERCC1基因表达量检测试剂盒(荧光PCR 法)

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman 探针、引物设计原则 遗传物质DNA 首先要把所携带的遗传信息转录成为信使RNA (mRNA ),携带遗传信息的mRNA 从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA 携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA 完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA 的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA 含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR 仪是在普通PCR 仪的基础上加装了荧光激发装臵和荧光检测装臵,PCR 扩增和检测同时进行;在PCR 反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems 公司推出,由于该技术不仅实现了PCR 从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR 污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR 常用的三个常用概念 扩增曲线、荧光阈值、Ct 值 扩增曲线:反映PCR 循环次数和荧光强度的曲线,定量PCR 仪每次轮PCR 扩增都会自动记录 荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动 设臵的原则要大于样本的荧光背 景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT 值: PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 扩增曲线 阈值及CT 值 荧光定量PCR 的数学原理 理想的PCR 反应: X=X0*2n 非理想的PCR 反应: X=X0* (1+Ex)n (n :扩增反应的循环次数;X :第n 次循环后的产物量;X0:初始模板量;Ex :扩增效率) 在扩增产物达到阈值线时 : C(t) value

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

荧光探针汇总

精心整理 1. Fluo-3AM (钙离子荧光探针) 原理Fluo-3AM 是一种可以穿透细胞膜的荧光染料。Fluo-3AM 的荧光非常弱,进入细胞后可以 被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2. Mag-fura-2AM (钙离子荧光探针) 原理Fura-2AM 是一种可以穿透细胞膜的荧光染料。Fura-2 AM 进入细胞后可以被细胞内的酯 3 4. 成5. 原理本身无荧光,在超氧化酶存在时可被过氧化氢(H2O2)氧化,转变成发射绿色荧光的罗丹明 123(Rhodamine123),因此广泛应用于检测细胞内活性氧(ROS),如过氧化物,次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6. RhodamineI23(线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料,能够迅速被活线粒体摄取,而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515~575nm (绿色) 生理意义检测线粒体膜电位

备注正在使用 7.Hoechst33342(DNA荧光探针) 原理Hoechst33342是一种可对DNA染色的细胞核染色试剂,常用于细胞凋亡检测。Hoechst 染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强 烈的蓝色荧光。 生理意义标记双链DNA 激发波长355nm发射波长465nm(蓝色) 备注正在使用 8.FDA 原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。 生理意义反映细胞膜完整性和细胞活力 9.PI( 倍。 10.EB 11.DAPI 20 12.CalceinAM 原理Calcein-AM由于在Calcein(钙黄绿素)的基础上加强了疏水性,因此能够轻易穿透活细胞膜。当其进入到细胞质后,酯酶会将其水解为Calcein(钙黄绿素)留在细胞内,发出强绿色 荧光,且细胞毒性很低,适合用于活细胞染色。 生理意义检测细胞膜完整性 激发波长494nm发射波长517nm(绿色) 备注跟FDA功能类似,细胞毒性很低,可以长时间标记细胞,但价格比较贵 13.BCECF-AM(pH荧光探针) 原理BCECF-AM是一种可以穿透细胞膜的荧光染料,BCECF-AM没有荧光,进入细胞后被细胞内的酯酶水解成BCECF,从而被滞留在细胞内。BCECF在适当的pH值情况下可以被激发 形成绿色荧光。 生理意义检测细胞内pH

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman探针、引物设计原则 遗传物质DNA首先要把所携带的遗传信息转录成为信使RNA(mRNA),携带遗传信息的mRNA从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR仪是在普通PCR仪的基础上加装了荧光激发装置和荧光检测装置,PCR扩增和检测同时进行;在PCR反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems公司推出,由于该技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR常用的三个常用概念 扩增曲线、荧光阈值、Ct值 扩增曲线:反映PCR循环次数和荧光强度的曲线,定量PCR仪每次轮PCR扩增都会自动记录荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动设置的原则要大于样本的荧光背景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT值: PCR扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 C(t) value 扩增曲线阈值及CT值 荧光定量PCR 的数学原理

SNP检测方法汇总

现在SNP的常用检测方法主要有:Taqman法、质谱法、芯片法、测序法。Taqman法:准确性高,适合于大样本、少位点,价格比较贵;质谱法:准确性高,适合于大样本、多位点(能检测25个位点);芯片法:准确性较低,适合于超多位点分析;测序法:非常准确,但是价格也非常的高,但是对于少样本、超多位点还是非常好的选择。 SNP检测方法汇总 分析SNP的方法有许多种,本文收集目前还在用的方法,按通量从高到低排列: 全基因组测序 这是最贵的方法,但也是看SNP最全的方法 大概一个人样本,花2万元 外显子组测序 外显子组测序,也可以得到较全面的SNP信息 大概一个人样本,花1.5万元 随着人全基因组测序的价格降到2万元左右,外显子组测序会很快退出市场 全基因组SNP芯片 原理,核酸杂交,荧光扫描

Illumina和Affymetrix都有很著名的全基因组SNP芯片,例如: Affymetrix: CytoScan,SNP 6.0, Illumina: 660,中华,450K等 SNP芯片,在2000~5000元每样本,还是比全基因组测序的2万元一个样本的价格要低质谱法 原理,精确测量PCR产物的分子量,就可以知道SNP位点上是A/C/G/T中的哪一个Sequenome MassArray法测中等通量的SNP位点是十分准确的 单个位点、单个样本的费用约2元人民币 无需预制芯片、预订荧光探针,只要合成常规的PCR引物就可以做实验了 如果测几十个点,到上百个点,是很方便的方法 SNPseq法 此方法为天昊公司所创,一次测几百个位点 原理: 用Goldgate法做出针对某些位点的多重PCR片段

实时荧光定量 原理 taqman 探针简介

实时荧光定量 PCR技术原理与应用 聚合酶链式反应 ( PCR) 可对特定核苷酸片断进行指数级的扩增。在扩增反应结束之后,我们可以通过凝胶电泳的方法对扩增产物进行定性的分析,也可以通过放射性核素掺入标记后的光密度扫描来进行定量的分析。无论定性还是定量分析,分析的都是 PCR 终产物。但是在许多情况下,我们所感兴趣的是未经 PCR 信号放大之前的起始模板量。例如我们想知道某一转基因动植物转基因的拷贝数或者某一特定基因在特定组织中的表达量。在这种需求下荧光定量 PCR 技术应运而生。所谓的实时荧光定量 PCR 就是通过对 PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量 PCR 反应中,引入了一种荧光化学物质,随着 PCR 反应的进行, PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图 ( 如图 1) 。 图 1 实时荧光扩增曲线图 一般而言,荧光扩增曲线扩增曲线可以分成三个阶段:荧光背景信号阶段 , 荧 光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号被荧光 背景信号所掩盖,我们无法判断产物量的变化。而在平台期,扩增产物已不再

呈指数级的增加。 PCR 的终产物量与起始模板量之间没有线性关系,所以根据最终的 PCR 产物量不能计算出起始 DNA 拷贝数。只有在荧光信号指数扩增阶段, PCR 产物量的对数值与起始模板量之间存在线性关系,我们可以选择在这个阶段进行定量分析。为了定量和比较的方便,在实时荧光定量 PCR 技术中引入了两个非常重要的概念:荧光阈值和 CT 值。荧光阈值是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,但一般我们将荧光域值的缺省设置是 3-15 个循环的荧光信号的标准偏差的10 倍。每个反应管内的荧光信号到达设定的域值时所经历的循环数被称为 CT 值( threshold value )(如图 2 所示)。

荧光定量pcr法原理汇总

我们前面比较详细地介绍了荧光染料法做定量PCR的有关技术和产品,显然,作为定量PCR的初期阶段的荧光染料法还是有局限性的,比如,由于染料不能区分特异性PCR产物和引物二聚体等非特异产物,也不能区分不同探针,所以检测的特异性始终不如后来出现的探针法;需要在PCR后进行熔链曲线分析;也不能做多重PCR检测(Multiplex)。 上个世纪90年代原美国Perkin Elmer( PE)公司开发出了Taqman荧光探针定量技术,将定量PCR带入了更广阔的应用空间。Taqman探针法的出现是定量PCR技术的重要里程碑,之后在此基础上发展出了杂交探针法,以及荧光引物法,是对探针法的不断改进和简化。如果希望全面掌握定量PCR技术的研究人员就不能错过这些定量检测技术。 要提到荧光探针或者荧光引物,有一个基础概念需要首先明确,那就是荧光共振能量转移(fluorescence resonance energy transfer, FRET):一对合适的荧光物质可以构成一个能量供体 (donor) 和能量受体 (acceptor) 对, 其中供体的发射光谱与受体的吸收光谱重叠,当它们在空间上相互接近到一定距离(1—10 nm)时,激发供体而产生的荧光能量正好被附近的受体吸收,使得供体发射的荧光强度衰减,受体荧光分子的荧光强度增强。能量传递的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等有关。定量PCR所涉及的荧光探针和荧光引物的检测都这个FRET原理相关。 实时荧光PCR中另一个很重要的概念,即Ct值.C代表循环(Cycle),T代表阈值(Threshold).Ct值是指每个反应管内的荧光信号到达设定的阈值时所经历的循环数.。一般取PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光阈值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍。研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可做出标准曲线.因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 一:水解探针法 TaqMan技术

分子荧光的机理和荧光探针原理

1.3荧光分子探针识别机理 1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET) 典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。 图1-1 PET荧光探针的一般原理图LUMO 图1-2 PET荧光探针的前线轨道原理图 已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。de Silva研究小组利用类似于EDTA

PCR和定量PCR的引物和探针设计

引物和探针设计 – PCR 和定量PCR 基本原理 引物设计的重要因素 针对特殊应用的其他提示 引物的质量和纯度目录 1247

基本原理 引物是短的寡核苷酸,充当DNA复制的起始点。因为几乎所有DNA聚合酶都不能从头合成,所以它们需要一个3'-羟基作为DNA合成的起始点。这个3'-羟基由相配的引物提供。引物在体内由RNA聚合酶(称为引物酶)生成。这些引物(在此为小RNA)由DNA聚合酶用作延长的起始点。在延长过程中,RNA引物降解并由DNA取代。 体外扩增反应,如聚合酶链反应(PCR)或逆转录(RT),需要引物。通过选择特异的引物序列,DNA 片段的所需区域可得到扩增。 对于大多数PCR反应,决定整个反应成功与否的最重要因素是引物的序列和质量。 在开始引物设计之前,必须弄清以下几点: PCR的目的(例如定量检测、克隆、基因分型) PCR类型(定量PCR、RT-PCR、长片段PCR) 样品材料(基因组DNA、RNA、微小RNA) 可能的问题(例如假基因、SNP) 1

引物设计的重要因素 2 有一些不同的软件工具可用于引物设计和序列分析。它们能简化相配引物对的搜索,一般考虑以下标准。 最流行的软件为Primer 3(https://www.wendangku.net/doc/e18818759.html,),它是大多数基于网络引物设计应用的基础。典型的引物长度为18-30个碱基。 短的引物(15个核苷酸以下)能非常高效地结合---但是它们的专一性不够。 非常长的引物能提高专一性,但是退火效率低,从而导致PCR 产物量低下。 应避免编码单一序列和重复序列的引物。 引物长度和专一性 引物的GC 含量应介于40%和60%之间。应避免聚-(dC )-或聚(dG )-区域,因为它们会降低退火反应的专一性。聚-(dA )-和聚(dT )-也应避免,因为这会生成不稳定的引物-模板复合物,从而降低扩增效率。 平衡GC含量,避免GC-和AT-富集区域 退火温度是基于引物的解链温度(Tm )计算。最常用的解链温度计算公式显示如下。“2+4”法则,亦称华莱士法则,对于极短的寡核苷酸(最多14个碱基)有效,该法则提出每个AT 对能将双链DNA 的解链温度提高2°C ,每个GC 对则能提高4°C 。 GC 法则(适用于长于13个碱基的序列)也是一种简单但同时相当不准确的方法。 两种法则都假设退火发生于以下标准条件下: 50 nM 引物、50 mM Na + 和pH 7.0。 “盐调整”法稍微准确一些,考虑到了反应缓冲液中的Na+离子浓度。 最复杂的方法称为“碱基堆积”法。这里的计算中包括了杂交期间的焓(H )和熵(S )。 计算出的解链温度可用于估算最佳退火温度。 但是,经常需要经验性地估算最佳温度。 所选引物的解链温度应允许退火温度介于55°C 和65°C 之间。一个引物对的两条引物都应具有相同或极相近的解链温度。 退火温度 Tm = 2 °C ? (A + T) + 4 °C ? (G + C) Tm = 64.9 °C + 41 °C ? (G + C -16.4)(A + T + G + C) Tm = 100.5 °C + 41 °C ? ? 16.6 ? log 10([Na + ]) C + G A + C + G + T 820A + C + G + T 提示

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

基因组学总结

Roche 454(GS FLX Titanium System)超高通量测序技术原理 2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序的先河。2007年又推出了性能更优的第二代基因组测序系统——Genome Sequencer FLX System。2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。 GS FLX 测序原理:GS FLX系统的测序原理和GS 20一样,也是一种依靠生物发光进行DNA序列分析的新技术;在DNA 聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来(图1)。通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。 Roche GS FLX System是一种基于焦磷酸测序原理而建立起来的高通量基因组测序系统。在测序时,使用了一种叫做“Pico TiterPlate”(PTP)的平板,它含有160多万个由光纤组成的孔,孔中载有化学发光反应所需的各种酶和底物。测序开始时,放置在四个单独的试剂瓶里的四种碱基,依照T、A、C、G的顺序依次循环进入PTP板,每次只进入一个碱基。如果发生碱基配对,就会释放一个焦磷酸。这个焦磷酸在各种酶的作用下,经过一个合成反应和一个化学发光反应,最终将荧光素氧化成氧化荧光素,同时释放出光信号。此反应释放出的光信号实时被仪器配置的高灵敏度CCD捕获到。有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列。 测序实验流程: 1、文库制备:根据样品的种类和实验目的,将基因组DNA/cDNA片段化处理至400-800bp间,经末端修复与特异性接头连接等修饰后变性处理回收单链的DNA(sstDNA); 2、Emulsion PCR:特定比例的单链DNA文库被固定在特别设计的DNA捕获磁珠上,使大部分磁珠磁珠携带了一个独特的单链DNA片断。磁珠结合的文库被扩增试剂乳化,形成油包水的混合物,每个独特的片断在自己的微反应器里进行独立的扩增,而不受其他的竞争性或者污染性序列的影响。整个片段文库的扩增平行进行。扩增后产生了几百万个相同的拷贝。随后,乳液混合物被打破,扩增后仍结合在磁珠上的片段既可被回收纯化用于后续的测序实验; 3、测序反应:携带DNA的珠子与其他反应物混合物,随后放入PTP板中进行后继的测序。PTP孔的直径(29um)只能容纳一个珠子(20um)。然后将PTP板放置在GS FLX中,测序开始。每一个与模板链互补的核苷酸的添加都会产生化学发光的信号,并被CCD照相机所捕获; 4、数据分析:GS FLX系统在10小时的运行当中可获得100多万个读长,读取超过4-6亿个碱基信息,通过GS FLX系统提供两种不同的生物信息学工具对测序数据进行分析。 技术特点:? 速度快,一个测序反应耗时10个小时,获得4-6亿个碱基对。比传统的Sanger测序的方法快100倍;? 读长长,单个序列的读长更长,平均可达到450个碱基左右;? 通量高,每个反应可以得到超过100万个序列读长,成本大大降低;? 准确度高,读长超过400bp时,单一读长的准确性可以超过99%;? 一致性好,测序结果一致性超过99.99%;? 可以进行Pair-End测序研究;? 简便高效,不需要进行建库、克隆挑取、质粒提取等工作,一个人可以在一天内完成一个微生物物种的测序工作。 GS FLX系统的应用:自从2005年底GS 超高通量基因组测序系统问世以来,已经相继在世界上各大测序实验室成功落户。这项技术的第一个“试验品”就是来自有“DNA之父”之称的James D Waston,他向454公司提供了自己的血液样本。目前GS系统的用户在Nature,Science,PNAS等世界顶级的期刊杂志上已经发表了五十多篇的学术论文。(详细列表请查询https://https://www.wendangku.net/doc/e18818759.html,/sis/sequencing/genome/index.jsp)。与GS 20系统相比较,硬件配置和软件系统方面的革新改进,使得GS FLX系统具有了广泛的应用:全基因组测序;多达120 Mb的未知基因组的测序;-生成基因组结构概图;-研究DNA序列的组织,分布和信息;-基因筛查:寻找新基因,定位和功能;-和其他基因组进行比较研究;全基因组进行从头鸟枪法测序,例如微生物基因,BAC和YAC克隆测序。比较基因组研究;-识别单碱基突变;-识别突变热点和保守区域;-识别插入或者缺失的基因;-断定基因型和表型之间的相关关系(比如,研究药物抗性的遗传基础);-基于基因测序变化进行毒性预测;-进行流行病学分析;-了解工业生产菌株和它们的亲代菌株序列上的差异作为进行工业生产菌株开发的遗传基础;-进行宏基因组(metagenomics)研究;-古代化石DNA 测序研究;利用配对末端方法(Pair-End Tag)将Contigs拼接成Scaffolds。转录组和基因调节研究;基于短Tags,ESTs, ChIP,或者GIS-PET序

HPV检测技术及市场概况(完整资料).doc

【最新整理,下载后即可编辑】 HPV检测技术及市场概况 一、杂交法(达安19种分型、凯普21种、亚能23种、透景 26种);实时荧光PCR(达安8种、上海之江13种高危分型、港龙生物(可定量);第二代杂交捕获法(HC2)等 二、已获SFDA批准注册HPV试剂盒(详见附件)

2012年,国家临检中心以凯普21分型产品作为全国医院评估的标准产品,以凯普为标准检验医院检测水平,凯普成为国内HPV检测行业的标准。中国宫颈癌防治工程唯一指定使用HPV检测产品。扩增控制和杂交控制的双重质控技术。 2. 中山大学达安基因股份有限公司 核酸诊断试剂是达安基因的主要产品,占营业收入的50%左右,市场份额在60%。达安基因具备荧光探针和核心酶体系自给的核心竞争优势。参股公司安必平主要提供以宫颈癌检查为主的病理诊断产品,提出“HPV DNA+液基细胞”一站式解决方案,在“两癌筛查”大背景下取得了快速增长,2010年贡献净利润约446万。 3. 凯杰生物工程(深圳)有限公司(QINGEN) 目前唯一经美国食品和药品监督管理局(FDA)、欧洲CE 和中国食品药品监督管理局(SFDA)共同认证的检测技术,传统金标准。

4.港龙生物技术(深圳)有限公司 采用基因芯片法,是市场中检测分型种类最多的试剂盒,26种,包括HPV16、18、31、33、35、39、45、51、52、56、58、 59、68、6、11、40、42、43、44、53、54、55、57、66、67、 73。 五、HPV临床应用情况 三级医院一般均已开展人乳头瘤病毒(HPV)检测,主要在检验科、病理科、妇产科进行,以北京地区医院为例: 中国医学科学院肿瘤医院,检验科 北京军区总医院,病理科 北京大学第一医院,妇产科宫颈病变诊治中心 六、物价参考

化学生物学总结

第 1 章多肽和蛋白质 【内容】 1. 蛋白质的定义:蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(peptide bond) 相连形成的高分子含氮化合物。 2. 天然氨基酸的种类和构型: 存在自然界中的氨基酸有300余种,但组成人体蛋白 质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外)。 氨基酸的分类: 3. 多肽合成原理: 多肽的合成就是形成肽键的过程,即一个氨基酸(AA)氨基亲核进攻另一个氨基酸被活化的羧基部分,形成肽键。氨基酸的活性基团必须进行保护。 4. 化学合成多肽方法:肽键形成步骤:制备部分保护的氨基酸,形成只有单一活性位

点的氨基酸衍生物;将氨基保护的氨基酸羧基部分活化,形成活性中间体,再与自由氨基反应形成酰胺键;脱除氨基酸的保护基。 5. 固相多肽合成步骤:步骤: ①多肽的C端氨基酸通过linker键连到树脂上; ②脱除氨基上的临时保护基; ③与下一个氨基酸缩合; ④反复进行脱保护和缩合两个步骤; ⑤脱除半永久性保护基; 6. 表达蛋白连接及其优点: 利用蛋白质剪接技术。硫酯是NCL和EPL的活性关键 基团,蛋白硫酯通过重组表达获得。利用蛋白剪接制备硫酯。优点:一、可在蛋白质中引入数量不限的非天然氨基酸;二、能实现大范围的蛋白修饰。 第2章核酸 【内容】 1.DNA复性和增色效应: DNA复性的定义:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。 增色效应:DNA变性时其溶液OD260增高的现象 2.核小体的组成和核苷酸的组成 核小体的组成:DNA:约200bp 组蛋白:H1 H2A H2B H3 H4 核苷酸的组成-------碱基、戊糖、磷酸 3.真核和原核生物rRNA的种类 真核生物5S rRNA,28S rRNA,5.8S rRNA,18S rRNA 原核生物5S rRNA,23S rRNA,16S rRNA 4.tRNA的二级结构和三级结构 tRNA的二级结构——三叶草形氨基酸臂DHU环反密码环额外环TΨC环 tRNA的三级结构——倒L形 tRNA的功能活化、搬运氨基酸到核糖体,参与蛋白质的翻译 5.核酸体外的合成方法(1)核酸的PCR合成技术:一种在体外选择性的将DNA 某个特定区域快速扩增的技术。2)核酸的固相合成技术。单体:核苷亚磷酰胺 原理:先将目标核酸链的3’端核苷固定在一个不溶性固相载体上,后沿3’-5’方向依次添加核苷酸至合成所需的长度,再将寡核苷酸链从固相载体上切下,并脱保护基。 6.核酸适体及其应用 核酸适体:一类有三维空间结构的单链核酸小分子,与特异靶分子相结合,对靶标分子识别有高度专一性和强亲和力,调节靶标分子的功能。 适体的应用:A.荧光修饰的适体用于药物分子的高通量筛选。B.本身可作为药物,

EAST装置的磁探针设计

第28卷 第1期 核 聚 变 与 等 离 子 体 物 理 V ol.28, No.1 2 0 0 8年 3 月 Nuclear Fusion and Plasma Physics March 2008 文章编号:0254?6086(2008)01?0073?04 收稿日期:2007?03?07;修订日期:2007?09?06 基金项目:国家自然科学基金资助项目(10405024) 作者简介:奚维斌(1970?),男,安徽肥东人,博士研究生,研究方向:EAST 电磁测量系统研究和设计。 EAST 装置的磁探针设计 奚维斌,武松涛,沈 飚,万宝年,宋云涛 (中国科学院等离子体物理研究所,合肥 230031) 摘 要:介绍了EAST 装置中磁探针设计中的结构、安装位置、匝面积的标定、幅频响应,并给出了该磁探针的标定误差和Mirnov 线圈幅频响应特征图。两轮EAST 放电试验表明,电磁测量的信号满足装置运行和等离子体控制的需要。 关键词:EAST 装置;磁探针;幅频响应;工程设计 中图分类号:TL65+5 文献标识码:A 1 引言 EAST 是全超导托卡马克核聚变实验装置,它的物理目标[1]是研究并实现稳态的高参数等离子体。为了实现确定的物理目标,电磁测量中磁探针的设计是重要的。在托卡马克中安装在等离子体边界处的磁探针是一种最简单、最重要的提供运行等离子体信息的工具。这些磁探针也提供用于对等离子体的位置、位形和磁流体动力学(MHD)不稳定控制所需要的各种信号。 本文首先介绍磁探针设计的原理;其次详细地叙说EAST 装置中磁探针的结构、安装位置、匝面积标定及幅频响应;最后给出该磁探针的标定误差及幅频响应特征图。 2 磁探针的测量原理 磁探针是安装在等离子体中或边界处的小螺线管线圈,其工作原理是根据电磁感应定律,当线圈所在空间中的磁场发生了变化时,由于穿过线圈横截面的磁通Φ发生变化,在线圈两端将产生一个感应电动势ε: t B S t Φd d d d eff ?=?=ε (1) 式中,B 为磁探针所在空间磁感应强度在线圈轴向的分量;S NS S Δ+=eff ,N 为线圈匝数,S 为线圈 横截面,?S 是引出线和接头所形成的附加的杂散面积。在EAST 装置中设计了两种骨架尺寸相同的磁探针。一种是测量等离子体位置和形状的磁探针叫小探针。小探针测量的信号经过积分器积分,即ε积分就得到小探针几何中心处的磁场B ,磁场方向是线圈的轴线方向。在托卡马克中一般在垂直于等离子体小环方向的截面上安装一组小探针,来反演等离子体的位置和形状。另一种是测量MHD 的不稳定性的磁探针,叫Mirnov 线圈。Mirnov 线圈测量的信号不经过Mirnov 积分器积分。在托卡马克中Mirnov 线圈安装位置和数量都与小探针相同。 满足EAST 装置电磁测量要求的磁探针必须满足如下条件: a. 所有磁探针安装的空间位置精确; b. 所有磁探针有标定精确的匝面积; c. Mirnov 线圈有100kHz 频率响应, 以使探针输出的信号能真实反映磁场的变化。 3 磁探针的设计 3.1 EAST 装置磁探针结构和安装位置 在EAST 装置中,磁探针是安装在真空为1×10?6Pa 、内部部件的烘烤温度为350℃,承受的磁场为3.5T ,等离子体电流为1MA 的真空室内部。磁探针线圈是采用玻璃丝布套管绝缘的裸铜线。玻

甲基化引物探针设计方法

本文叙述了一种用于甲基化分析的探针法定量PCR的引物和探针设计方法,目前用于甲基化检测的引物探针设计工具非常多,都有使用成功的案例,经过初步多方尝试,本文中叙述的为本人认为较为靠谱的方法。Oligo7的优势在于专业,参数详尽且可自由设置,模块化设计,学会后使用便利。专业的活就是要专业的用专业的工具干。

首先是进行序列转换,有较多的在线工具和联机软件都可实现,这里使用https://www.wendangku.net/doc/e18818759.html,/methprimer/,较为简单直观。

直接将目标序列放入如上图的编辑框中,此网站也可直接用于相关引物的设计,不过本人没使用过,因为不能设计探针。submit后就有转化后的序列信息,如下图: 以上详细标记了CpG位置和非CpG位置的C,可直接复制到Word内标注使用,下面就可以使用Oligo7利用上边的序列设计引物和探针了,如果是设计非甲基化引物探针,则使用原始序列。

关于引物和探针的一些主要参数,主要参考invtrogen的建议: Primer设计的基本原则: a)引物长度一般在18-35mer。 b)G-C含量控制在40-60%左右。 c)避免近3’端有酶切位点或发夹结构。 d)如果可能避免在3’端最后5个碱基有2个以上的G或C。 e)如果可能避免在3’端最后1个碱基为A。 f)避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。 g)退火温度Tm控制在58-60C左右。 h)如果是设计点突变引物,突变点应尽可能在引物的中间。 TaqMan 探针设计的基本原则: a)TaqMan 探针位置尽可能靠近扩增引物(扩增产物50-150bp),但不能与引物重叠。 b)长度一般为18-40mer 。 c)G-C含量控制在40-80%左右。 d)避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。 e)在引物的5’端避免使用G。 f)选用比较多的碱基C。 g)退火温度Tm控制在68-70℃左右。 另:目标变异碱基最好在3’末端或3’末端-1位置,保证扩增特异性,对于甲基化,则最好是C。

铅离子与牛血清蛋白相互作用光谱分析—大学课程设计方案

编号: 本科毕业设计<论文) 题目:铅离子与牛血清蛋白相互作用的光谱分析 Spectroscopic investigations on the interaction of Pb2+with bovine serum albuminn 学院学院 专业 班级 学号 姓名 指导教师 职称 完成日期

牛血清蛋白和铅离子相互作用的光谱分析 摘要:本文综合运用荧光光谱法、紫外光谱法、红外光谱法分析铅离子和牛血清蛋白相互作用的光谱特征。探究了不同的实验条件:pH、牛血清蛋白浓度、铅离子浓度、离子强度对铅离子-牛血清蛋白体系光谱的影响,以及最佳实验条件,利用紫外光谱中峰值变化或者位移初步判断铅离子与BSA发生了作用。荧光光谱测定出铅离子可以引起牛血清蛋白的荧光猝灭,利用红外光谱分析铅离子对蛋白质二级结构的影响,可知β-转角增加,α-螺旋减小,β-片层增加。 关键词:铅离子;牛血清蛋白;荧光光谱;紫外可见光谱;红外光谱 Abstract: In this paper,The interaction ofPb2+and bovine serum albumin (BSA> was studied by fluorescence,UV Spectrum,and infrared spectroscopy.It is exploredthe impact of different experimental conditions:pH,the concentration of the bovine serum albumin,the concentration of the lead ion .UV Spectrum shows that Pb2+ froms a compound with BSA.The results revealedthatPb2+caused the fluorescencequenching of BSA.Infrared spectroscopy shows theinteractionbetweenPb2+andBSA couldresultinthechange ofconformation of BSA.Thushelix structure in BSA was decreased the β-sheet was increased. Keywords:lead ion;bovineserum albumin。fluorescencespectrometry;UV Spectrum;infrared spectroscopy 目录

相关文档
相关文档 最新文档