文档库 最新最全的文档下载
当前位置:文档库 › 001-解析几何基础知识

001-解析几何基础知识

001-解析几何基础知识
001-解析几何基础知识

解析几何基础知识

直线与圆

一、直线的倾斜角、斜率及直线的方向向量

(一) 基础知识

1 直线的倾斜角

在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.

当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°. 可见,直线倾斜角的取值范围是0°≤α<180°.

2 直线的斜率

倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k =tan α(α≠90).

倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞).

3

直线的方向向量:若直线与非零向量d 平行,则称d

为直线的一个方向向量。

4

直线的法向量:若直线与非零向量n 垂直,则称n

为直线的一个法向量。

(二) 相互关系

1

直线的斜率为k ,则该直线的方向向量为d

=(1,k ),法向量为n

=(k,-1).

2

直线斜率k=tan θ与方向向量d

=(u,v)之间的关系:k=v u

(u ≠0),d

=(cos θ,sin θ)

3

直线斜率k=tan θ与法向量n

=(a,b)之间的关系:k=a b

-

(u ≠0),n

=(sin θ,-cos θ)

4 求直线斜率的方法

(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α.

(2)公式法:已知直线过两点P 1(x 1,y 1)、P 2(x 2,y 2),且x 1≠x 2,则斜率k =

1

212x x y y --.

(3)方向向量法:若d =(u,v)(u ≠0)为直线的方向向量,则直线的斜率k =v u

.

(4)法向量:n

=(a,b)为直线的一个法向量,则直线的斜率k =a b

-.

(5)平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率. (6)倾斜角与斜率关系为:

1)00(0,)0

2

2

(

)0

2

k k k k θπ

θπ

θπ

θπ==???∈>???=

???∈??

时,时,时,不存在,时,<2)arctan 0arctan ,02

k k k k k αππ?

?≥?

=+

二、直线方程的几种形式

n

(1)过定点P(x 0,y 0)的点方向式直线方程:

x x y y u

v --=

(uv ≠0)或

x x y y u

v

--=0

期中d

=(u,v)为直线的一个方向向量。其向量形式://PQ d ?

v(x -x 0)=u(y -y 0)

(2)过定点(x 0,y 0)的点法向式直线方程:a(x -x 0)+b(y -y 0)=0。n

=(a,b)为直线的一个法向量。 (3)斜截式:y =kx +b .点斜式:y -y 0=k (x -x 0). (4)截距式:

a

x +

b

y =1. (5)两点式:

1

21y y y y --=

1

21x x x x --.

(6)一般式:Ax +By +C =0。n

=(A,B)为直线的一个法向量,d

=(-B,A)为直线的一个方向向量。

若B ≠0,直线的斜率为A B

k =-。

三、两直线的位置关系

(一) 平行、垂直与相交。

1. 若直线l 1和l 2有斜截式方程l 1:11y k x b =+,l 2:22y k x b =+,则 (1) 直线l 1∥l 2的充要条件是k 1=k 2且b 1≠b

2. (2) 直线l 1⊥l 2的充要条件是k 12k 2=-1. 特殊情况

(1) 若l 1和l 2都没有斜率,则l 1与l 2平行或重合.

(2) 若l 1和l 2中有一条没有斜率而另一条斜率为0,则l 1⊥l 2. 2. 若直线l 1和l 2有一般式方程:A 1x+B 1y=C 1, A 2x+B 2y=C 2,则 (1) 直线l 1∥l 2或重合的充要条件是:

112

2

A B A B =0即A 1 B 2=A 2 B 1。

若112

2

C B C B 与112

2

A C A C 中至少有非零,则两直线平行;若两个均为零,则两直线重合。

(2) 直线l 1⊥l 2的充要条件是:A 1 A 2+B 1 B 2=0 (3) 直线l 1与l 2相交的充要条件是:112

2

A B A B ≠0。

(二) l 1到l 2所成的角

1. l 1到l 2所成的角的定义:

(1) 当l 1与l 2相交时,直线l 1绕着l 2逆时针旋转第一次与l 2重合时所成的角称为l 1 到l 2所成的角。

(2) 当l 1与l 2平行或重合时,规定l 1到l 2所成的角为0。 2. 设l 1到l 2所成的角为θ,则

(1) 当k 12k 2=-1或一条直线的斜率为0,另一条直线斜率不存在时,则l 1⊥l 2,θ=2

π

(2) 当l 1与l 2不垂直即θ≠2

π

时,则tan θ=

2112

1k k k k -+>0。

(三) 两直线的夹角:

1. 两直线的夹角的定义:

(1) 两条相交直线所成的锐角(或直角)称为两条相交直线的夹角;

(2) 如果两条直线平行或重合,规定它们的夹角为0。 2. 直线l 1与l 2的夹角α, (1)

当k 12k 2=-1或一条直线的斜率为0,另一条直线斜率不存在时,则

l 1⊥l 2,α=2

π

(2) 当l 1与l 2不垂直即α≠

2

π

时,则tan α=|

2112

1k k k k -+|。

(3) 若l 1:1110a x b y c ++=,l 2:2220a x b y c ++=

则cos α

四、点到直线的距离公式与两平行线之间的距离公式

1. 点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =

2

2

00|

|B

A C By Ax +++.

2. 两平行线l 1:Ax +By +C 1=0和l 2:Ax +By +C 2=0之间的距离d =2

2

12||B

A C C +-.

五、直线系方程:

(1)共点直线系:例:过点P(a,b)的直线系方程为x=a 或y-b=k(x-a). (2)平行直线系:例:和直线Ax+By+C=0平行的直线系方程为Ax+By+C 1=0. (3)过两直线交点的直线系:

过两直线1l :A 1x+B 1y+C 1=0,2l :A 2x+B 2y+C 2=0(A i 、B i 不全为0,i=1、2)交点的直线系方程: m(A 1x+B 1y+C 1)+n(A 2x+B 2y+C 2)=0(含1l 、2l )或A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0(含1l 不包括2l ) 六、对称问题

1. 点关于点成中心对称的对称中心,恰是这两点为端点的线段的中点。因此中心对称的问题,是

线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0).

2. 点关于直线成轴对称问题

由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对称点的坐标。一般情形如下:

设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有

0x x y y -'-'2k =-1,

2

y y +'=k 2

2

x x +'+b ,

特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0).

3. 曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里

既可选特殊点,也可选任意点实施转化).一般结论如下:

(1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0.

(2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由

可求出x ′、y ′.

(2)知,P 与P ′的坐标满足

0x x y y --2k =-1,

2

0y y +=k 2

2

0x x ++b ,

代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0。利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程.

4. 两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x );

(6)点(x ,y )关于直线y=x+m 的对称点为(y -m ,x+m );

(7)点(x ,y )关于直线y=-x+m 的对称点为(-y -m ,-x+m )。 注意:对一般的直线方程没有(6)(7)的代换方式。 七、与圆有关的基础知识

(一) 曲线的方程与方程的曲线。

1. 点P(x 0,y 0)是否在曲线C :F(x,y)=0上的判定。

① 若点P(x 0,y 0)的坐标满足方程F(x,y)=0,即F(x 0,y 0)=0,则称点P(x 0,y 0)在曲线C 上;

② 若点P(x 0,y 0)的坐标不满足方程F(x,y)=0,即F(x 0,y 0)≠0,则称点P(x 0,y 0)不在曲线C 上; 2. 曲线的方程与方程的曲线的定义:曲线C 与方程F(x,y)=0,若同时满足以下两个条件: ① 若曲线C 上任一点的坐标均是方程F(x,y)=0的解; ② 以F(x,y)=0的解为坐标的点,均在曲线C 上。

则称曲线C 为方程F(x,y)=0的曲线,而方程F(x,y)=0称为曲线C 的方程。 3. 求轨迹方程的常用方法:直接法、代入法、交轨法和参数法. 4. 求曲线方程通常有以下步骤:

(1) 建系――根据题设条件建立适当的直角坐标系; (2) 设点――假设动点(x,y),同时求出有关定点的坐标; (3) 列式――根据条件寻找等量关系; (4)

代入――用动点坐标代入等量关系;

(5) 化简――将所得关系式化简;

(6) 验证――说明所求曲线方程即为动点的轨迹方程。

(二) 圆的方程

1. 圆的标准方程:圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r

2.

说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆.

2. 圆的一般方程:二次方程x 2

+y 2

+Dx +Ey +F =0.(*)。将(*)式配方得

(x +

2

D )2

+(y +

2

E )2

=

4

42

2

F

E D

-+.

当D 2

+E 2

-4F >0时,方程(*)表示圆心(-

2

D ,-

2

E ),半径r =

2

1F E

D

42

2

-+的圆,把方

程x 2

+y 2

+Dx +Ey +F =0(D 2

+E 2

-4F >0)叫做圆的一般方程.

说明:1、圆的一般方程体现了圆方程的代数特点:(1)x 2、y 2项系数相等且不为零.(2)没有xy 项.

2、当D 2+E 2-4F =0时,方程(*)表示点(-

2

D ,-

2

E ),当D 2+E 2-4

F <0时,方程(*)不

表示任何图形.

3、据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程.

从中解出x 0、y 0,

4、圆的参数方程

①圆心在O (0,0),半径为r 的圆的参数方程为:cos sin x r y r θθ

=??

=?(θ为参数)①

②圆心在O 1(a ,b ),半径为r 的圆的参数方程为cos sin x a r y b r θθ=+??=+?

(θ为参数)②

说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程.

3. 二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件

若上述二元二次方程表示圆,则有A =C ≠0,B =0,这仅是二元二次方程表示圆的必要条件,不充分. 在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A

D x +

A

E y +

A

F =0,

当且仅当(

A

D )2+(

A

E )2-42

A

F >0,即D 2+E 2-4AF >0时表示圆.

故Ax 2

+Bxy +Cy 2

+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0. (三) 直线与圆的位置关系 1. 直线和圆位置关系的判定

(1) 方法一是方程的观点。即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置

关系.

①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.

(2) 方法二是几何的观点。即把圆心到直线的距离d 和半径R 的大小加以比较.

①d <R ,直线和圆相交.②d =R ,直线和圆相切.③d >R ,直线和圆相离.

2.

直线和圆相切,这类问题主要是求圆的切线方程.

求圆的切线方程主要可分为:已知斜率k 或已知直线上一点两种情况。而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

(1) 已知圆C 的方程为222)()(r b y a x =-+-,过圆C 上一点M(x 0,y 0)的圆的切线方程:

(x 0-a)( x -a)+(y 0-b) (y -b)=()()()()2

00x a x a y a y a r --+--=

特殊情况:过圆2

2

2

r y x =+上一点M(x 0,y 0)的圆的切线方程为:x 0x+y 0y =r 2。

(2) 一般地,对二次曲线Ax 2+Bxy+Cy 2+Dx+Ey+F=0,过其上一点M(x 0,y 0)的切线方程可通过如

下方式得到:将x 2换成x 0x ,y 2

换成y 0y ,x 换成

2

x x +,y 换成

2

y y +。

3. 过一点作圆的切线,求切线方程的常用方法:

① 首先判断该点是否在曲线上,若在曲线上用公式法或切线的性质求解;若不在曲线上用下述方法求解。

② 圆心到直线的距离等于半径。

4. 直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

1. 过圆2

2

2

r y x =+外一点P(x 1,y 1)作圆的切线,切点弦方

程为x 1x+y 1y=r 2

2. 过圆2

2

2

)()(r b y a x =-+-外一点P(x 1,y 1)作圆的切

线,则切线长:|PT|=22||||OT PO -=F Ey Dx y x ++++112121

2

3. 弦长公式:|AB |=222||||OC OB -=222d r -

(四) 两圆的位置关系:相离、外切、相交、内切、内含。 (五) 圆系方程

1. 过直线0=++C By Ax 与圆C :022=++++F Ey Dx y x 交点的圆系方程:

0)(2

2

=+++++++C By Ax F Ey Dx y x λ

2. 过圆C 1:011122=++++F y E x D y x 与圆C 2:022222=++++F y E x D y x 交点的圆系方程为:0)()(2222211122=+++++++++F y E x D y x n F y E x D y x m 或0)(2222211122=+++++++++F y E x D y x F y E x D y x λ不包括圆C 2

3. 若圆C 1与圆圆C 2相交,则经过两圆交点的直线方程(相交弦方程)(根轴)为:0)()(212121=-+-+-F F y E E x D D

圆锥曲线

一、 椭圆

三、抛物线

一、基础知识

1. 定义 平面上一动点到一定点的距离与到一定直线(定点不在定直线上)距离的比等于1,则动点

的轨迹是抛物线,此定点称为抛物线的焦点,定直线称为抛物线的准线。 2. 方程与性质:

(1)顶点在原点,对称轴在坐标轴上:

)0,0(222

2

2≠>=???

???-==a p ax y px

y

px y

)0,0(222

2

2≠>=???

???-==a p ay x py

x

py x

(2)顶点在(x 0,y 0),对称轴平行于坐标轴。

)

0,0()()()(2)()(2)(02

002002

0≠>-=-???

???--=--=-a p x x a y y x x p y y x x p y y

)0,0()()()

(2)()(2)(02

0020020≠>-=-???

???--=--=-a p y y a x x y y p x x y y p x x

3. 参数方程

4. 弦长公式:

(1) 令直线l :y=kx+b 与抛物线交于两点的坐标为M(x 1,y 1),N(x 2,y 2),则

|MN|=||1212x x k -+或||11212

y y k

-+

(2) 若过抛物线y 2=2px 的焦点的直线的倾斜角为α,|MN|=x 1+x 2+p 或

α

2

sin

2p 。

四、直线与圆锥曲线的位置关系 一、直线与圆锥曲线的位置关系: 1. 直线y kx m =+(m ≠0)与椭圆

222

2

1x y a

b

+

=相离、相切、相交的充要条件。

解:2222

a k

b m +<时,?<0,直线与椭圆相离;

2

2

2

2

a k

b m +=时,?=0,直线与椭圆相切; 2

2

2

2

a k

b m +>时,?>0,直线与椭圆相交。

2. 直线y kx m =+(m ≠0)与双曲线

222

2

1x y a

b

-

=相离、相切、相交的充要条件。

解:2

2

2

2

2

2

2

2()2()0b a k x kma x a m b ---+=,222222

4()a b b m a k ?=+-

①相离?2222b m a k +<;②相切?2222b m a k +=;③相交?2222b m a k +>

注意..:平行于渐近线的直线与双曲线只有一个公共点,与双曲线相切的直线与双曲线也只有一个公共点。

直线y kx m =+与抛物线y 2

=mx(m ≠0)和x 2

=my(m ≠0)相离、相切、相交的充要条件。

坐标系平移

一、基础知识

1. 坐标系平移的定义:坐标轴方向和单位长度都不变,xOy 坐标系平行移动到x /O /y /

坐标系使原点

O 到点O /的位置这种坐标系的变换叫做坐标系的平移。,简称移轴。

2. 坐标系平移公式

在坐标系xOy 中,点O /的坐标是(h,k),平面内任一点M 的坐标是(x,y),点M 在坐标系x /O /y /中的坐标是(x /,y /),那么(x,y)和(x /,y /)的关系是

??

?-='-='k

y y h

x x ,这个关系式叫做坐标平移公式。 OP =O O '+P O ',(x,y)=(h,k)+( x /,y /

)????+'=+'=k

y y h x x

对称轴平行于坐标轴,中心(顶点)不在原点的圆锥曲线方程。

参数方程与极坐标

一、 参数方程

(一) 基础知识:

1 参数方程定义:一般地,在平面直角坐标系中,如果曲线C 上任意一点的坐标x 、y 都是某

个变数t 的函数??

?==)

()(t g y t f x ,t ∈D ……⑴,并且对于t 的每一个允许值,由方程⑴所确定的

点P(x,y)都在这条曲线C 上,那么方程组⑴就叫做这条曲线的参数方程。变题t 叫做参变量或参变数,简称参数。

2 普通方程:相对于参数方程来说,前面学过的直接给出曲线上点的坐标x,y 间关系的方程F

(x,y )=0叫做普通方程。

二、 极坐标

(一) 基础知识

1. 极点、极径、极角、极坐标

2. 由极坐标作点。由点写出极坐标,指出极坐标的多值性

3. 极坐标与直角坐标的互化:???==θρθρsin cos y x ,??

?

??≠=+=)

0(,2

2x x y

y x ρρ 例1、 点P 的直角为(1,-3),则点P 的极坐标为

例2、 设两点极坐标P (ρ1,θ1),Q (ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,则P 、Q 两

点的位置关系是 ,

例3、 把极坐标方程ρ=2sin(

3

π

+θ)化为直角坐标方程为 。

例4、 极坐标方程ρcos θ=sin2θ表示的曲线是 。 例5、 (1)把直角坐标方程(x 2+y 2)3-4a 2x 2y 2=0化为极坐标方程。

X

Y

Y

X 1

O

O /

1

'j

'i

i

j

P P(ρ,θ)

P(-ρ,θ)

(2)把极坐标方程:ρ2=a2tan2θ化为直角坐标方程。(二)求曲线的极坐标方程

1.直线

2.圆:

)

ρ=2acos(θ-?)

ρ=-2asinθ

X

ρ=-2acosθ

X

O

P(ρ,θ)

ρ

sinθ=-p

P(ρ,θ)

ρsinθ=p

ρcosθ=-p

ρcosθ=p

)

sin(

)

sin(

1

θ

?

θ

?-

-

ρ2+ρ02-2ρρ0 cos(θ-?)-r2=0

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

第六章-空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量. 解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k ;(2)AB = ;(3)AB ; (4)AB 382) i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -. 解:()2 220||||||2||||cos60a b a b a b a b += +=++= ( ) 2 220||||||2||||cos60a b a b a b a b -= -=+-=7. 3、已知向量{2,2,1}a =,{8,4,1}b =-,求 (1)平行于向量a 的单位向量; (2)向量b 的方向余弦. 解(1)2223a = +=平行于向量a 的单位向量221 {,,}333±; (2)2849b =+=,向量b 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:In terspace An alytic Geometry (2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向 量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2?教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3?教学难点:求解平面和空间直线的方程。 4.教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。 (二)特殊曲面(8学时)

空间解析几何答案word

第八章 空间解析几何与向量代数 §8.1向量及其线性运算 1.填空题 (1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-). (2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--). 2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角. 解:因为)0,1,1(21=M M ,故2||21= M M ,方向余弦为2 2 cos = α,22cos = β,0cos =γ,方向角为4πα=,4π β=, 2 πγ=. 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则 222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y , 即?????-+-+=-+-+-+=-+2 2222 2) 3()3(9)2()1(4)2(4)1(1z y z y z z ,解得???==33y z ,则该点 为)3,3,0(. 4. 求平行于向量k j i a 432-+=的单位向量的分解式. 解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为 29)4(32||222=-++=a ,所以)432(29 1k j i e a -+± =. 5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量. 解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为 9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为 k k a z 7-=. 6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.

第八章 空间解析几何与向量代数知识点,题库与答案

第八章:空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量); ③几种常见的旋转曲面、柱面、二次曲面; ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角; ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程),两直线的夹角、直线与平面的夹角; 2、难点 ①向量积(方向)、混合积(计算); ②掌握几种常见的旋转曲面、柱面的方程及二次曲面所对应的图形; ③空间曲线在坐标面上的投影; ④特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等;) ⑤平面方程的几种表示方式之间的转化; ⑥直线方程的几种表示方式之间的转化; 二、基本知识 1、向量及其线性运算 ①向量的基本概念: 向量:既有大小又有方向的量; 向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小有向线段的方向表示向量的方向.; 向量的符号:以A为起点、B为终点的有向线段所表示的向量记作向量可用粗体字母表示也可用上加箭头书写体字母表示例如a、r、v、F或、、、; 向量的模:向量的大小叫做向量的模向量a、、的模分别记为|a|、、 单位向量: 模等于1的向量叫做单位向量; 向量的平行: 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a与b平行记作a // b零向量认为是与任何向量都平行;两向量平行又称两向量共线

零向量:模等于0的向量叫做零向量记作0或零向量的起点与终点重合它的方向可以看作是任意的 共面向量:设有k(k3)个向量当把它们的起点放在同一点时如果k个终点和公共起点在一个平面上就称这k个向量共面; 两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超 过的夹角称为向量a与b的夹角记作或如果向量a与b中有一个是零 向量规定它们的夹角可以在0与之间任意取值; ②向量的线性运算 向量的加法(三角形法则):设有两个向量a与b平移向量使b的起点与a的终点重合此时从a的起点到b的终点的向量c称为向量a与b的和记作a+b即ca+b . : 平行四边形法则:向量a与b不平行时平移向量使a与b的起点重合以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和ab 向量的加法的运算规律: (1)交换律abba (2)结合律(ab)ca(bc) 负向量: 设a为一向量与a的模相同而方向相反的向量叫做a的负向量记为a 向量的减法:把向量a与b移到同一起点O则从a的终点A向b的终点B所引向 量便是向量b与a的差ba 向量与数的乘法:向量a与实数的乘积记作规定a是一个向量它的模|a||||a| 它的方向当>0时与a相同当<0时与a相反当0时 |a|0 即a为零向量这时它的方向可以是任意的 运算规律: (1)结合律 (a)(a)()a; (2)分配律 ()aaa;(ab)ab 向量的单位化: 设a0则向量是与a同方向的单位向量记为e a,于是a|a|e a 定理1 设向量a0那么向量b平行于a的充分必要条件是: 存在唯一的实数使b a ③空间直角坐标系 在空间中任意取定一点O和三个两两垂直的单位向量i、j、k就确定了三条都以O为原点的两两垂直的数轴依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴) 统称为坐标轴它们构成一个空间直角坐标系称为Oxyz坐标系 注: (1)通常三个数轴应具有相同的长度单位; (2)通常把x轴和y轴配置在水平面上而z轴则是铅垂线; (3)数轴的的正向通常符合右手规则

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法 总结 在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。要想学好这部分知识,在高考总不丢分,以下几点是很关键的。 突破第一点,夯实基础知识。 对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。 (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。 (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。 (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。 突破第二点,学习基本解题思想。 对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

空间解析几何(下篇)剖析

空解精要(升华部分) 序 这个部分是空解的精华部分,与高代数分都有联系,关键在于你 能否发现其中的玄机。我相信,当你看完以下的知识点时,一切都会 水落石出。这部分的重点有:柱面,锥面,旋转曲面,二次曲面及其 一般线性理论,还有参数方程。 *注意:这部分的知识点如果不涉及度量问题,那么在仿射坐标系 下也成立。 一.最完美二次曲面--球面 1.定义:在三维线性空间中,我们把到定点的距离等于定长的点 的集合叫做球面,这个定点叫球心。球心到球面的任何 点的距离叫做半径。 2.球面的方程: 以点()000,,z y x 为球心,R 为半径的球面标准方程为 ()()()2202020R z z y y x x =-+-+- 这是一个二次曲面,它的一般形式为 0222=++++++D Cz By Ax z y x 命题1:用一个平面去截取球面,得到的截面是一个圆。 命题2:如果一个平面与球面相切,那么切点与球心的连线垂 直于该平面。

3.切面的求法:根据数学分析里面的求偏导数来做,无需刻意记 住二次曲面一般理论中的公式。 二.柱面的锥面 (一).柱面 1.定义:由平行于某一定方向且与一条空间定曲线相交的一 族平行直线所组成的曲面叫做柱面,定曲线叫做准线,平行 直线中的每条都叫(直)母线,定方向是直母线的方向,也叫 柱面方向。 2.柱面方程的构造 从定义中可以看出,柱面的存在由准线和母线族决定,如果 确定了准线的方程和母线的方向,那么就可以得出柱面的方 程。如果已知准线方程为 ()()? ??==0,,0,,z y x G z y x F 母线方向为(l,m,n )

高等数学-向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:? ?? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ ο a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 1 2121z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→a 与→ b 夹角为3 π ,求||→ →+b a 。 解 22 ||cos ||||2||2)()(||→ →→→ →→→→→→→→→→→ →++=?+?+?=+?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222=+???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

必修二平面解析几何初步知识点及练习带答案

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截.距相等...?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),2212212 1)()(y y x x P P -+-=.x 轴上两点间距离:

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ → -AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.332212--=+=-x y x ; 10.曲线 1422 =+z y 绕z 轴

高考数学:平面解析几何知识点

高考数学:平面解析几何知识点 1.数量积表示两个向量的夹角 【知识点的知识】 我们知道向量是有方向的,也知道向量是可以平行的或者共线的,那么,当两条向量与不平行时,那么它们就会有一个夹角θ,并且还有这样的公式:cosθ=.通过这公式,我们就可以求出两向量之间的夹角了. 【典型例题分析】 例:复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 解:=====cos60°+i sin60°. ∴复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 故答案为:60°. 点评:这是个向量与复数相结合的题,本题其实可以换成是用向量(,1)与向量(,﹣1)的夹角. 【考点点评】 这是向量里面非常重要的一个公式,也是一个常考点,出题方式一般喜欢与其他的考点结合起来,比方说复数、三角函数等,希望大家认真掌握. 2.直线的一般式方程与直线的性质 【直线的一般式方程】 直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0. 【知识点的知识】 1、两条直线平行与垂直的判定 对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有: (1)l1∥l2?k1=k2;(2)l1⊥l2?k1?k2=﹣1. 2、直线的一般式方程: (1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)

化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线. (2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C =0垂直的直线,可设所求方程为Bx﹣Ay+C1=0. (3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别: ①l1⊥l2?A1A2+B1B2=0; ②l1∥l2?A1B2﹣A2B1=0,A1C2﹣A2B1≠0; ③l1与l2重合?A1B2﹣A2B1=0,A1C2﹣A2B1=0; ④l1与l2相交?A1B2﹣A2B1≠0. 如果A2B2C2≠0时,则l1∥l2?;l1与l2重合?;l1与l2相交?. 3.圆的标准方程 【知识点的认识】 1.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.定点叫做圆心,定长就是半径. 2.圆的标准方程: (x﹣a)2+(y﹣b)2=r2(r>0), 其中圆心C(a,b),半径为r. 特别地,当圆心为坐标原点时,半径为r的圆的方程为: x2+y2=r2. 其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件. 【解题思路点拨】 已知圆心坐标和半径,可以直接带入方程写出,在所给条件不是特别直接的情况下,关键是求出a,b,r的值再代入.一般求圆的标准方程主要使用待定系数法.步骤如下: (1)根据题意设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2; (2)根据已知条件,列出关于a,b,r的方程组; (3)求出a,b,r的值,代入所设方程中即可.

空间解析几何习题答案解析(20210120005111)

WORD 格式整理 . 2 30 x 3 3) 10 、计算题与证明题 1.已知 |a| 1, |b| 4, |c| 5, 并且 a b c 0. 计算 a b b c c a . 解:因为 |a| 1, |b| 4, |c| 5, 并且 a b c 0 所以 a 与 b 同向,且 a b 与 c 反向 因此 a b 0 , b c 0 , c a 0 所以 a b b c c a 0 2.已知 |a b| 3, |a b| 4, 求 |a| |b|. 解: |a b| a b cos 3 (1) |a b| a bsin 4 ( 2) (1)2 2 2 得 a b 2 25 所以 a b 5 4.已知向量 x 与 a (,1,5, 2) 共线 , 且满足 a x 3, 求向量 x 的坐标. 解:设 x 的坐标为 x,y,z ,又 a 1,5, 2 则 a x x 5y 2z 3 又 x 与 a 共线,则 x a 0 ij xy 15 2y 5zi z 2x j 5x y k 0 所以 2y 5z 2 z 2x 2 5x y 2 0 即 29x 2 5y 2 26z 2 20yz 4xz 10xy 0 (2) 又 x 与 a 共线, x 与 a 夹角为 0或 22 yz cos0 1 xa x 2 y 2 z 2 12 52 2 2 1) xy 15 整理得

WORD 格式整理 . 2 30 x 3 3) 10 联立 1、2 、3 解出向量 x 的坐标为 1 ,1, 1 10,2, 5

6.已知点 A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程. 解:因为 A 3,8,7 ,B( 1,2, 3) AB 中垂面上的点到 A 、B 的距离相等,设动点坐标为 M x,y,z ,则由 MA MB 得 x 3 2 y 8 2 z 7 2 x 1 2 y 2 2 z 3 2 化简得 2x 3y 5z 27 0 这就是线段 AB 的中垂面的方程。 7. 向量 a , b , c 具有 相 同的 模 , 且两 两 所成 的角 相 等 , 若 a , b 的 坐 标分 别 为 (1,1,0)和(0,1,1), 求向量 c 的坐标. 解: abc r 且它们两两所成的角相等,设为 则有 a b 1 0 1 1 0 1 1 则 cos 设向量 c 的坐标为 x, y,z c x 2 y 2 z 2 r 12 12 02 2 所以 x 2 y 2 z 2 2 3 8.已知点 A(3,6,1) , B(2, 4,1) , C(0, 2,3), D( 2,0, 3), (1) 求以 AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥 A BCD 的体积. x1 联立( 1)、(2)、(3)求出 y 0 或 z1 则 a c 1 x 1 y 0 z x y a bcos r r 12 1 r b c 0 x 1 y 1 z y z b c cos r 1 r 2 r 1) 2) 所以向量 c 的坐标为 1,0,1 或 1 4 1 ,, 3,3, 3 3)

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

解析几何知识点总结

解析几何知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

解析几何知识点总结 第一部分:直线 一、直线的倾斜角与斜率 1.倾斜角α (1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。 (2)范围:(0,180) 2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. k=tan α (1).倾斜角为90°的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。 (3)设经过A (x1,y1)和B (x2,y2)两点的直线的斜率为K , 则当X1≠X2时,k=tan α=Y1-Y2/X1-X2;当X1=X2时,α=90°;斜率不存在; 二、直线的方程 1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x=x0; 2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:y=kx+b ;特别地,斜率存在且经过坐标原点的直线方程为:y=kx 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。 3.两点式:若已知直线经过(x1,y1)和(x2,y2)两点,且(X1≠X2,y1≠y2)则直线的方 程:1 21 121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。 4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (a ≠0,b ≠0)则直线方程: 1=+b y a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。 2).横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直线方程可设为x-y=a 5一般式:任何一条直线方程均可写成一般式:Ax+By+C=0;(A,B 不同时为零);反之,任何一个二元一次方程都表示一条直线。 位置关系 2 22111::b x k y l b x k y l +=+= 0 :0:22221111=++=++C y B x A l C y B x A l

相关文档
相关文档 最新文档