文档库 最新最全的文档下载
当前位置:文档库 › 二次插值法

二次插值法

二次插值法
二次插值法

二次插值法的C语言程序

#include "stdio.h"

#include "math.h"

#include "conio.h"

double * area(double a1,double p,double a[3])

{ double func(double x);

double a2,a3,f2,f3,temp,acc=0.001;

double f1=func(a1);

while(1)

{a2=a1+p;f2=func(a2);

if(f2>=f1)

{ if(fabs(f2-f1)

else p=-p; }

else break;

}

while(1)

{a3=a2+p;f3=func(a3);

if(f2<=f3) break;

p=2*p;

a1=a2;f1=f2;

a2=a3;f2=f3;

}

if(a1>a3) {temp=a1;a1=a3;a3=temp;}

a[0]=a1;a[1]=a2;a[2]=a3;

return a;

}

double func(double x)

{double y;

y=pow(x,4)-5*pow(x,3)-4*pow(x,2)-6*x+60;

return y; }

void main()

{double *area(double a1,double p,double a[3]); double func(double x);

double ar,fr,a2,a3,f1,f2,f3;

double a1=3,p=0.0001,e=0.001;

double pa[3];

area(a1,p,pa);

a1=pa[0];

a2=pa[1];

a3=pa[2];

f1=func(a1);

f2=func(a2);

f3=func(a3);

do

{ar=((a3*a3-a2*a2)*f1+(a1*a1-a3*a3)*f2+(a2*a2-a1*a1)*f3); ar=ar/2/((a3-a2)*f1+(a1-a3)*f2+(a2-a1)*f3);

fr=func(ar);

if(ar>a2)

{if(fr>f2) {a3=ar;f3=fr;}

else if(fr

{a1=a2;f1=f2;

a2=ar;f2=fr;}

else

{a3=ar;a1=a2;a2=(a1+a3)/2;

f1=f2;f3=fr;f2=func(a2);}

}

else if(ar

{ if(fr>f2) {a1=ar;f1=fr;}

else if(fr

{ a3=a2;f3=f2;

a2=ar;f2=fr;}

else

{a1=ar;a3=a2;a2=(a1+a3)/2;

f1=fr;f3=f2;f2=func(a2);}

}

if(fabs(a1-a3)<=e)break;

}while(1);

if(f2

printf("\nThe Optimal Design Result Is :\n");

printf("\nx*=%f\n\f(x*)=%f",ar,fr);

}

二次插值算法

二次插值法亦是用于一元函数在确定的初始区间内搜索极小点的一种方法。它属于曲线拟合方法的范畴。 一、基本原理 在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。 常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。 假定目标函数在初始搜索区间中有三点、和 ,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式 (1) 式中、、为待定系数。

图1 根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得 (2) 为求插值多项式的极小点,可令其一阶导数为零,即 (3) 解式(3)即求得插值函数的极小点(4) 式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得: (5)

(6)将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式: (7)把取作区间内的另一个计算点,比较与两点函数值的大小,在保持两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述 方法进行三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为 的近似极小值点。上述求极值点的方法称为三点二次插值法。 为便于计算,可将式(7)改写为 (8) 式中: (9) (10) 二、迭代过程及算法框图 (1)确定初始插值结点 通常取初始搜索区间的两端点及中点为,, 。计算函数值,,,构成三个初始插值结点、、。

样条插值函数与应用

样条插值函数及应用

摘要 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。 在实际问题中所遇到许多函数往往很复杂,有些甚至是很难找到解析表达式的。根据函数已有的数据来计算函数在一些新的点处的函数值,就是插值法所需要解决的问题。 插值法是数值逼近的重要方法之一,它是根据给定的自变量值和函数值,求取未知函数的近似值。早在一千多年前,我国科学家就在研究历法时就用到了线性插值和二次插值。而在实际问题中,有许多插值函数的曲线要求具有较高的光滑性,在整个曲线中,曲线不但不能有拐点,而且曲率也不能有突变。因此,对于插值函数必须二次连续可微且不变号 ,这就需要用到三次样条插值。 关键词三次样条函数;插值法

目录 引言 0 第一章三次样条插值 (1) 1.1 样条插值函数简介 (1) 1.2 三次样条函数应用 (2) 第二章AMCM91A 估计水塔水流量 (4) 2.1 理论分析及计算 (5) 2.2运用MATLAB软件计算 (8) 参考文献 (13)

引言 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。上世纪四十年代,在研究数据处理的问题中引出了样条函数,例如,在1946年Schoenberg将样条引入数学,即所谓的样条函数,直到五十年代,还多应用于统计数据的处理方面,从六十年代起,在航空、造船、汽车等行业中,开始大量采用样条函数。 在我国,从六十年代末开始,从船体数学放样到飞机外形设计,逐渐出现了一个使用样,逐渐出现了一个使用样条函数的热潮,并推广到数据处理的许多问题中。 在实际生活中有许多计算问题对插值函数的光滑性有较高的要求,例如飞机机翼外形、发动机进、排气口都要求有连续的二阶导数,用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时其函数值整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数值,不会发生“龙格现象”。 现在国内外学者对这方面的研究也越来越重视,根据我们的需要来解决不同的问题,而且函数的形式也在不断地改进,长期以来很多学者致力于样条插值的研究,对三次样条的研究已相当成熟。

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

黄金分割法、二次插值法C语言编程

已知:F(x)=x4-4x3-6x2-16x+4,求极小值,极小值点,区间,迭代次数?用进退法确定区间,用黄金分割法求极值。 #include #include #define e 0.001 #define tt 0.01 float f(double x) { float y=pow(x,4)-4*pow(x,3)-6*pow(x,2)-16*x+4; return(y); } finding(float *p1,float*p2) { float x1=0,x2,x3,t,f1,f2,f3,h=tt; int n=0; x2=x1+h;f1=f(x1);f2=f(x2); if(f2>f1) {h=-h;t=x2;x2=x1;x1=t;} do { x3=x2+h;h=2*h;f3=f(x3);n=n+1;} while(f3x3) {t=x1;x1=x3;x3=t;} *p1=x1;*p2=x3; return(n); } gold(float *p) { float a,b,x1,x2,f1,f2; int n=0; finding(&a,&b); do {x1=a+0.382*(b-a); x2=a+0.618*(b-a);f1=f(x1);f2=f(x2);n=n+1; if(f1>f2) a=x1; else b=x2;} while((b-a)>e); *p=(x1+x2)/2;return(n); } main() { float a,b,x,min;int n1,n2; n1=finding(&a,&b); n2=gold(&x); min=f(x); printf("\n The area is %f to %f.",a,b); printf("\n The nunmber 1 is %d.",n1); printf("\n The min is %f and the result is %f.",x,min);

二次插值算法

二次插值法亦是用于一元函数在确定的初始区间搜索极小点的一种方法。它属于曲线拟合方法的畴。 一、基本原理 在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数, 然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数 的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。 常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。 假定目标函数在初始搜索区间中有三点、和 ,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式 (1) 式中、、为待定系数。

图1 根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得 (2) 为求插值多项式的极小点,可令其一阶导数为零,即 (3) 解式(3)即求得插值函数的极小点(4) 式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得: (5)

(6) 将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式: (7) 把取作区间的另一个计算点,比较与两点函数值的大小,在保持 两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述方法进行 三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为的近似极小值点。上述求极值点的方法称为三点二次插值法。 为便于计算,可将式(7)改写为 (8) 式中: (9) (10) 二、迭代过程及算法框图 (1)确定初始插值结点 通常取初始搜索区间的两端点及中点为,,。计算函数值,,,构成三个初始插值结点、、。

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

优化设计VC6.0二次插值法

题目:利用二次插值法求()f sin αα=在4≤α≤5上的极小点。 利用VC++6.0进行编程,求得极小点。具体程序如下说明。 一、 二次插值法 求解原理:在求解一元函数的极小点时,常常利用一个低次插值多项式 来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。二次差值的程序流程图

程序如下: #include "stdio.h" #include "math.h" #define f(x) sin(x)//宏定义函数f(x) int main() { //////////////////////////////////////////////////////////////////////////二次插值法 printf("*************************************二次插值法************************************\n"); float m1=4,m2=4.5,m3=5,w=1,s; float h1,h2,h3,hp,c1,c2,mp; s=1e-5; int i=0; h1=f(m1); h2=f(m2); h3=f(m3); c1=(h3-h1)/(m3-m1); c2=((h2-h1)/(m2-m1)-c1)/(m2-m3); mp=(m1+m3-(c1/c2))/2; hp=f(mp); while (fabs((m2-mp)/m2)>=s) { i++; if ((mp-m2)*w>0) { if (h2>=hp) { m1=m2; h1=h2; m2=mp; h2=hp; } else { m3=mp; h3=hp; } } else { if (h2>=hp) { m3=m2;

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

插值法的原理

《财务管理》教学中插值法的快速理解和掌握 摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种情况介绍其原理。 一、已知系数F和计息期n。求利息率i

这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F略小的系数记作F,其对应的利息率为i。

数值分析作业-三次样条插值

数值计算方法作业 实验4.3 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- = 2 221)(π 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线 比较插值结果。 实验4.5 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。 实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子,考

虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一 算法描述: 拉格朗日插值: 错误!未找到引用源。 其中错误!未找到引用源。是拉格朗日基函数,其表达式为:() ∏ ≠=--=n i j j j i j i x x x x x l 0) ()( 牛顿插值: ) )...()(](,...,,[.... ))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N 其中????? ?? ?? ?????? --=--= --= -)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[01102110x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i j i j i j i 三样条插值: 所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

插值法-第二次程序题

插值法 题目1:对Runge 函数2 2511 )(x x R += 在区间[-1,1]作下列插值逼近, 并和R(x)的图像进行比较,并对结果进行分析。 (1)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的20次Newton 插值多项式的图像。 (2)用节点)20,,2,1,0(,)42 1 2cos( ???=+=i i x i π,绘出它的20次Lagrange 插值多项式的图像。 (3)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的分段线性插 值函数的图像。 (4)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的三次自然样 条插值函数的图像。 程序及分析: (1)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的20次Newton 插值多项式的图像。 Matlab 程序如下: %计算均差 x=[-1::1];

n=length(x); syms z for i=1:n y(i)=1/(1+25*x(i)*x(i)); end N=zeros(n,n); N(:,1)=y'; for j=2:n for k=j:n N(k,j)=(N(k,j-1)-N(k-1,j-1))/(x(k)-x(k-j+1)); end end for t=1:n c(t)=N(t,t) end

%构造插值多项式 f=N(1,1); for k=2:n a=1; for r=1:(k-1) a=a*(z-x(r)); end f=f+N(k,k)*a; end %作图 a=[-1::1]; n=length(a); for i=1:n b(i)=1/(1+25*a(i)*a(i)); end

拉格朗日插值法理论及误差分析

目录: 一、 引言 二、 插值及多项式插值的介绍 三、 拉格朗日插值的理论及实验 四、 拉格朗日插值多项式的截断误差及实用估计式 五、 参考文献 一、引言 插值在数学发展史上是个古老问题。插值是和拉格朗日(Lagrange )、牛顿(Newton )、高斯(Gauss )等著名数学家的名字连在一起的。在科学研究和日常生活中,常常会遇到计算函数值等一类问题。插值法有很丰富的历史渊源,它最初来源人们对天体研究——有若干观测点(我们称为节点)计算任意时刻星球的位置(插值点和插值)。现在,人们在诸如机械加工等工程技术和数据处理等科研都有很好的应用,最常见的应用就是气象预报。插值理论和方法能解决在实际中当许多函数表达式未知或形式复杂,如何去构造近似表达式及求得在其他节点处的值的问题。 二、插值及多项式插值 1、插值问题的描述 设已知某函数关系()y f x =在某些离散点上的函数值: 插值问题:根据这些已知数据来构造函数()y f x =的一种简单的近似表达式,以便于计算点,0,1,,i x x i n ≠=的函数值()f x ,或计算函数的一阶、二阶导数 值。 2、插值的几何意义 x x 0 y y 1 y 1 n y -n y 1 x 1 n x -n x

插值的几何意义如图1所示: 图1 3、多项式插值 基本概念 假设()y f x =是定义在区间,a b ????上的未知或复杂函数,但一直该函数在点01n a x x x b ≤<< <≤处的函数值01,,n y y y 。找一个简单的函数,例如函数 ()P x ,使之满足条件 (),0,1,2, ,,i P x y i n == () 通常把上述01n x x x << < 称为插值节点,把()P x 称为()f x 的插值多项 式,条件()称为插值条件,并把求()P x 的过程称为插值法。 插值多项式的存在性和唯一性 如果插值函数是如下m 次的多项式: 1011()m m m m m P x a x a x a x a --=++ + 那么插值函数的构造就是要确定()m P x 表达式中的m+1个系数 011,, ,m m a a a a -。由于插值条件包含n+1独立式,只要m=n 就可证明插值函数多 项式是唯一存在。 实际上,由n+1个插值条件可得

机械优化设计外推法,黄金分割法,二次插值法

机械优化设计课程作业 外推法 #include #include #define R 0.01 double fun(double t) { double m; m=t*t-10*t+36; return m; } void main() { double h0=R,y1,y2,y3,t1,t2,t3,h; t1=0;h=h0;t2=h; y1=fun(t1);y2=fun(t2); if(y2>y1) { h=-h; t3=t1; y3=y1; t1=t2; y1=y2; t2=t3; y2=y3; } t3=t2+h; y3=fun(t3); while(y3

黄金分割法 #include #include #define f(x) x*x*x*x-5*x*x*x+4*x*x-6*x+60 double hj(double *a,double *b,double e,int *n) { double x1,x2,s; if(fabs((*b-*a)/(*b))<=e) s=f((*b+*a)/2); else { x1=*b-0.618*(*b-*a); x2=*a+0.618*(*b-*a); if(f(x1)>f(x2)) *a=x1; else *b=x2; *n=*n+1; s=hj(a,b,e,n); } return s; } void main() { double s,a,b,e,m; int n=0; printf("输入a,b值和精度e值\n"); scanf("%lf %lf %lf",&a,&b,&e); s=hj(&a,&b,e,&n); m=(a+b)/2; printf("a=%lf,b=%lf,s=%lf,m=%lf,n=%d\n",a,b,s,m,n); }

三次样条插值法与最小二值 法的分析及比较

数值计算方法期末论文 ————同等要求下三次样条插值法与最小二值法的分析及比较。

引言 在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合程度.如果要求这个近似函数(曲线或曲面)经过已知的所有数据点,则称此类问题为插值问题。 当所给的数据较多时,用插值方法所得到的插值函数会很复杂,所以,通常插值方法用于数据较少的情况.但数据一般都是由观测或试验得到的,往往会带有一定的随机误差,因而,要求近似函数通过所有的数据点也是不必要的.如果不要求近似函数通过所有数据点,而是要求它能较好地反应数据的整体变化趋势,则解决这类问题的方法称为数据拟合. 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。 本文由具体题目为基础,主要论述了在同等要求下三次样条插值法与最小二值法的分析及比较。 关键词:数值计算方法、三次样条插值法、最小二值法

目录 引言--------------------------------------------------- 2 第一章三次样条插值------------------------------------ 4 1.1三次样条插值函数--------------------------------- 4 1.2 分段线性插值------------------------------------ 5 1.3插值理论----------------------------------------- 6 第二章最小二乘法--------------------------------------- 7 2.1 线性最小二乘拟合法------------------------------ 7 2.2 一般线性最小二乘拟合法--------------------------- 8 2.3非线性最小二乘拟合法------------------------------ 9 第三章算法对比与实现------------------------------------ 10 3.1对比实例一---------------------------------------- 10 3.2对比实例二---------------------------------------- 11 3.3结果及分析---------------------------------------- 15 第四章总结---------------------------------------------- 16

试求三次样条插值S(X)

给定数据表如下: 试求三次样条插值S(X),并满足条件: i)S’(0.25)=1.0000, S’(0.53)-0.6868; ii) S”(0.25)= S”(0.53)=0; 解: 由给定数据知: h0 =0.3-0.25 - 0.05 , h 1=0.39-0.30-0.09 h 2=0.45-0.39-0.06, h 3=0.53-0.45-0.08 由μ i=h i/(h i1+h i), λ i= h i/(h i1+h i) 得: μ1= 5/14 ; λ 1= 9/14 μ2= 3/5 ; λ 2= 2/5 μ3= 3/7 ; λ 3=4/7 0.25 0.5000 ﹨ ﹨ 1.0000 ∕﹨ 0.25 0.5000 ∕ -0.9200-f[x 0,x 0, x 1 ] ﹨∕ 0.9540 ∕﹨ 0.30 0.5477 -0.7193-f[x 0,x 1,x 2 ] ﹨∕

0.8533 ∕﹨ 0.39 0.6245 -0.5440-f[x1,x2,x 3 ] ﹨∕ 0.7717 ∕﹨ 0.45 0.6708 -0.4050-f[x 2,x 3,x 4 ] ﹨∕ 0.7150 ∕﹨ 0.53 0.7280 -0.3525-f[x 3,x 4,x 5 ] ﹨∕ 0.6868 ∕ 0.53 0.7280 i)已知一节导数边界条件,弯矩方程组 ┌┐┌┐ │ 2 1 │┌M 0 ┐│-0.9200 ︳ ︳5/14 2 9/14 ︳︳M ︳︳-0.7193 ︳ 1 ︳3/5 2 2/5 ︳︳M 2 ︳_6 ︳-0.5440︳ ︳ 3/7 2 4/7 ︳︳M ︳︳-0.4050 ︳ 3

二次插值法无约束最优化

Matlab 实践 1、 二次插值法无约束最优化 算法说明:在包含f (x )极小值x0的区间【a b 】,给定三点x1、x2、x3,其对应的函数值分别为 f1、f2、f3,且满足x1x2,转步骤二;否则转步骤三; 步骤二:如果f0

算法举例: f (x )=(x 2-2)2/2-1,x ∈[0,5] 2、拉压杆系的静不定问题。求各杆的轴力Ni 及节点C 的位移,已知桁架结构如图所示,各杆横截面积分别为Ai ,材料的弹性模量为E 。 算法说明:假设各杆均受拉力,C 点因各杆变形而引起的x 方向位移△x ,y 方向位移△y ,由几何 关系,的变形方程: i i i i i i y x EA L N L ααsin cos ?+?== ? i=1,……,n 令K i = i i EA L , 故 0sin cos =?-?-i i i i y x N K αα,

最优化课程论文-三点二次插值法

四川理工学院 《最优化方法》课程论文 姓名:陈晓容 专业:统计 班级:1班 学号:11071050130 完成日期:2014-6-25

无约束最优化方法——三点二次插值法 摘要 在生产过程、科学实验以及日常生活中,人们总希望用最少的人力、物力、财力和时间去办更多的事,获得最大的效益,在管理学中被看作是生产者的利润最大化和消费者的效用最大化,如果从数学的角度来看就被看作是“最优化问题”。最优化问题分为无约束最优化和约束最优化,本文主要拟就无约束最优化进行分析。 无约束最优化计算方法是数值计算领域中十分活跃的研究课题之一,快速的求解无约束最优化问题,除了自身的重要性以外,还体现在它也构成一些约束最优化问题的子问题。因此,对于无约束最优化问题,如何快速有效的求解一直是优化工作者十分关心的事。本文研究求解无约束最优化问题的精确线性搜索方法——三点二次插值法,并且讨论了这种方法的优缺点以及适用范围,同时论文中对这种方法给出了具体实例,并对例子进行了matlab软件实现。 关键词:三点二次插值法、插值多项式、目标函数 目录 一、问题的提出 (3) 二、设计思路和步骤 (3) 3.1设计思路 (3) 3.2 设计步骤 (3) 三、程序设计 (5) 3.1问题分析 (5) 3.2 算法设计 (5) 3.3 算法框图 (5) 3.4 程序编制 (7) 四、结果分析 (8)

四、结果分析 3.1理论结果 .......................................................... 8 3.2 编程结果 .......................................................... 9 五、收获提高 (11) 5.1设计的优缺点 ..................................................... 11 5.2收获与启发 ....................................................... 11 参考文献 . (11) 一、问题的提出 用精确线性搜索方法求 ()23m i n 30 +-=≥ααα?α 的近似最优解(精确极小点为*α=1)。设已确定其初始搜索区间为[0,3],取初始插值点为0α=2,终止误差ε=0.05。 二、设计思路和步骤 2.1设计思路 在求解一元函数()α?的极小点时,在搜索区间中用低次(通常不超过三次)插值多项式()αq 来近似目标函数,后求该多项式的极小点(比较容易计算),并以此作为目标函数()α?的近似极小点。如果其近似的程度尚未达到所要求的精度时,反复使用此法,逐次拟合,直到满足给定的精度时为止。 2.2设计步骤 考虑二次多项式 ()c b a q ++=ααα2 则 b a q +='αα2)(

相关文档