文档库 最新最全的文档下载
当前位置:文档库 › 三峡工程蓄水运用后水库泥沙淤积及坝下游河道冲刷分析_卢金友

三峡工程蓄水运用后水库泥沙淤积及坝下游河道冲刷分析_卢金友

三峡工程蓄水运用后水库泥沙淤积及坝下游河道冲刷分析_卢金友
三峡工程蓄水运用后水库泥沙淤积及坝下游河道冲刷分析_卢金友

水利水工等级分类,水库等级,河流等级,堤防等级,拦河闸等级,河道等级,渠道等级,降雨量等级

水库等级划分大、中、小型水库的等级是按照库容大小来划分的。 大(一)型水库库容大于10 亿立方米; 大(二)型水库库容大于1 亿立方米而小于10 亿立方米; 中型水库库容大于或等于0.1 亿立方米而小于1 亿立方米;小(一)型水库库容大于或等于100 万立方米而小于1000 万立方米;小(二)型水库库容大于或等于10万立方米而小于100 万立方米。 河流等级划分 大、中、小型河流的等级是按照保护面积大小来划分的。 大型河流保护面积大于30 万亩; 中型河流保护面积在1—30 万亩之间; 小型河流保护面积小于1 万亩。 有众多支流汇入的是上游 水量稳定且较高的是中游水量有所减少或转如地势低平地区的是下游上中游分界线一般是最后一条大支流的汇入地点中下游分界线一般是地势低平地区的边缘 堤防工程等级 依据堤防工程的防洪标准确定,依据堤防工程设计规范(GB50286-1998),堤防工程 分为5 级,详见表2。 按所在位置,堤防可分为河(江)堤、海堤、湖堤、水库堤及渠(沟)堤等五种,详见表1 。

按建筑材料,堤防可分为土堤、砂堤、石堤、混凝土堤等四种。 (1)土堤:由粘土、壤土筑成,主要建在平原地区江河沿岸、海岸、湖泊四周、排灌沟渠沿岸及水库周 边。 (2)砂堤:由沙土或砂砾石筑成,主要建在山区、丘陵区江河沿岸,水库周边、海岸。 (3)石堤:由块石或条石筑成,主要建在海岸、取土困难的江河沿岸及城区河段沿岸。 (4)混凝土堤:由混凝土或钢筋混凝土筑成,主要用于城区河段沿岸。 拦河闸等级划分 拦河闸等级是按照过闸流量大小划分的。 大型拦河闸过闸流量大于1000 立方米/ 秒; 中型拦河闸过闸流量大于100立方米/秒而小于或等于1000立方米/秒; 小型拦河闸过闸流量大于或等于10立方米/秒而小于100立方米/秒; 流域 河流等级一个流域内的水系汇入主流的各级水流。如湘、资、沅、澧四水即为长江的支流。通常把直接汇入干流的支流,叫一级支流,汇入一级支流的支流叫二级支流,以此类推。如汉江是长江的第一级支流,丹江是长江的第二级支流。这种表示法的缺点是会把一些大小不同的河流纳入同一级支流,还有一种是分级法,从源头最小支流开始,称为一级河流,以后把二条一级河流汇合后的河段称为二级河流,以此类推到更高级别的河流,这种分级法确定的各级河流有相近的客观特征。 直接或间接流入干流的河流。在较大的水系中,支流常分为一级、二级、三级等。直接流入干流的称一级支流,直接流入一级支流的称二级支流,以此类推。 支流级别与河道级别支流级别是在同一个水系中,把直接汇入干流的河流称为一级支流,直接汇入一级支流的称为二级支流,依此类推。 河道等级将在水系网中位于顶端,上游无进一步分支的河道称为一级河道,两条一级河道汇合后的河道称为二级河道,依此类推。所以一段支流的支流级别越高,其河道级别 越低。每一级河道与更高一级河道数量之比称为级序分叉比或河系分叉比。一般来说,此比例大的情况相对于河流狭长、水流平稳。

《水工建筑物》教学大纲

《水工建筑物》教学大纲 一、课程编号: 0201085 二、课程名称:水工建筑物 (Hydraulic Structure) 三、学分/学时: 4.0/(课内64学时,课外64学时) 四、教学对象:水利水电工程专业本科生 五、先修课程:理论力学、材料力学、结构力学、土力学、水力学、钢筋混凝土、建筑材 料、工程地质等 六、课程属性:专业必修课 七、开课单位:水利水电工程学院水电系 八、使用教材:《水工建筑物》沈长松王世夏林益才刘晓青编著中国水利水电出版社2008.01 九、教学目标: 水工建筑物是水利水电工程专业的一门重要的专业课,本课程的主要任务是使学生掌握各种水工建筑物的基本原理、设计方法用主要构造等。培养学生掌握专业知识的能力、分析和解决实际工程问题的能力。 十、课程要求: 水工建筑物是水利水电工程专业的一门重要的专业课,要求学生熟练掌握各种水工建筑物的工作原理、设计方法和步骤,具体包括剖面设计、应力分析、稳定分析、地基处理、些水建筑物的水利设计、消能防冲设计等,要求学生掌握和了解输水建筑物的选型、组成和布置、水利枢纽布置等,为使学生更好地掌握本课程的知识要点,配置如下实践性环节: 1、作业4-5次; 2、进行一次期中测验; 3、课内随堂小作业3-4次; 4、课程设计1次(具体内容要求单列)。 十一、教学内容基本要求: 第一章绪论(4学时) ?知识要点:水资源、水利枢纽、水工建筑物、水利枢纽对环境的影响、水利水电工程的建设程 序、水工建筑物的设计方法等。 ?重点难点:水工建筑物的设计方法及研究途径。

?教学方法:课堂讲授,利用大量工程图片介绍我国水利建设成就。 第二章岩基上的重力坝(16学时) ?知识要点:重力坝的工作原理和特点、重力坝的稳定分析、重力坝的应力分析、非溢流重力坝 的剖面设计、溢流重力坝和坝身泄水孔、重力坝的材料与构造、重力坝的基础处理、宽缝重力坝与空腹重力坝及碾压混凝土重力坝等。 ?重点难点:安全系数法、极限状态法、增稳措施、材料力学法、垂直正应力呈线性分布、坝顶 溢流、大孔口、坝身泄水孔、四种消能方式、横缝、止水、纵缝、帷幕灌浆等。 ?教学方法:讲授、自学、讨论相结合。 第三章拱坝(10学时) ?知识要点:拱坝的工作原理和特点、拱坝布置、拱坝应力分析、拱座稳定分析、拱坝的构造及 地基处理等。 ?重点难点:拱梁交点变位一致、拱梁应力自行调整、应力分析方法、温度对稳定应力的影响等。 ?教学方法:讲授、自学、讨论相结合。 第四章支墩坝(2学时) ?知识要点:支墩坝的工作原理和特点、平板坝、连拱坝、大头坝及支墩坝坝身过水设施等。 ?重点难点:结构计算分析。 ?教学方法:课堂讲授。 第五章土石坝(10学时) ?知识要点:土石坝的特点、土石坝的剖面和基本构造、土石坝的筑坝材料、土石坝的渗流分析、 土石坝的稳定分析、土石坝应力应变分析、土石坝的裂缝及其控制、土石坝的地基处理、混凝土面板堆石坝等。 ?重点难点:土石坝的类型、坝顶不能过水、坝身不宜埋管、渗流分析的水力学方法、坝坡失稳 的几种破坏型式及相应的稳定分析方法、排水设备的型式及对浸润线和坝坡稳定的影响、渗流破坏的类型及发生部位、防止渗透破坏的措施、地基处理措施。 ?教学方法:讲授、自学、讨论相结合。 第六章河岸溢洪道(4学时) ?知识要点:正槽溢洪道、侧槽溢洪道及其它形式的溢洪道。 ?重点难点:收缩段、弯曲段设计。 ?教学方法:课堂讲授、自学。 第七章水工隧洞(4学时)

论水库大坝漫坝风险分析理论及模型的建立

论水库大坝漫坝风险分析理论及模型的建立 发表时间:2010-11-24T09:47:05.980Z 来源:《中小企业管理与科技》2010年7月下旬刊供稿作者:李智红付君 [导读] 漫坝是指坝前水位超过坝顶、水流漫过坝顶溢流而下。风险是指水库发生漫坝的概率 李智红付君(尚志市马延灌区管理站) 摘要:漫坝风险分析理论采用随机数学、随机水文学和随机水力学方法,综合考虑影响漫坝的洪水、库容、风浪和泄水能力四方面的随机性,然后研制出水库大坝在洪水系列与风浪系列联合作用下的漫坝风险模型,并在确保大坝的漫坝安全可靠度高达99.999%以上的前提下,优选水库的汛限水位,从而为提高水库汛限水位打下理论基础。本文正是利用这一理论,分析研究了水库的漫坝风险,综合应用随机水文学、随机水力学等学科知识,全面考虑洪水、风浪、库容和泄水能力的不确定性,建立了土坝对抗洪水和风浪联合作用下的漫坝风险理论,并提出了风险取值标准。 关键词:漫坝风险分析理论模型应用 0 引言 我国北方大多数水库设计汛限水位普遍偏低,严重影响了水库兴利效益的发挥,造成水库管理单位普遍贫困,防汛和水毁工程费用少,工程老化失修,险情不断,无法保证水库的正常、安全运行。 漫坝风险分析理论采用的是一种非工程措施,不需任何工程投资,即可达到提高汛限水位,提高水库的兴利效益的目的。该理论在我国北方地区,对工程状况完好,水资源紧张,供需矛盾突出的水库,特别是有工业供水任务的水库,对挖掘水库的潜力,增加兴利水量,提高供水保证率,有重要意义。 1 漫坝风险分析理论 漫坝是指坝前水位超过坝顶、水流漫过坝顶溢流而下。风险是指水库发生漫坝的概率。漫坝风险就是指在分析期内,坝前水位超过坝顶的概率。引起漫坝的主要风险因素来自入库洪水、风浪、库容和泄水能力四个方面的不确定性。对于入库洪水,大家都承认它有随机性,不再赘述。对于泄水能力,尽管在传统的水库设计中,把泄水建筑物包括溢洪道和泄水孔的泄水能力,当作确定量来处理,但严格地讲,泄水能力是具有不确定性的。其不确定性源于对真实的三维水流简化为一维水流模型而致的不确定性、糙率取值的不确定性、模型试验的缩尺效应以及各种几何尺寸在施工方面的容许误差,等等。所有这些影响泄流能力的随机因素,可以通过把泄水建筑物的流量系数视为一定范围内的随机变量加以处理。在传统的水库计算中,是把库容或库面积视为确定性的。但事实上,它们是有不确定性的。人们测出的库区等高线图,存在着测量的随机误差;利用等高线图计算库容按梯形法或辛普森法时,存在着计算简化误差;库区每年要经受洪水,不可避免地产生冲淤,而限于人力、物力条件不能每年都对库区进行水下地形的精确测量,因此冲淤也会引起库容的不确定性。风,在什么时间刮,从什么方向刮,风速多大,风力多少级,仍是随机的。对于土坝来说,因风引起的水面壅高e和风浪沿斜坡坝面的爬高Rp,自然也是随机的。应予指出,在一般库水位情况下,一般的风所引起的水面壅高和风浪爬高是不会引起漫坝的。只有当洪水来临,使库水位升到一定值时,风浪的作用才有可能配合洪水推波助澜而导致漫坝风险。因此,统计风系列的前提,本应是统计各场洪水发生时的风,但因当前往往缺乏这方面的资料,为安全起见,一般采用汛期最大风系列。对漫坝风险而言,只有吹向坝体的风才对漫坝失事起作用,故而对漫坝风险而言,其有效风应为汛期吹向坝体的最大风系列。 严格地讲,坝顶高程也存在不确定性。它来源于测量误差和坝顶的沉降,但对于已建成的工程,其离散性微乎其微,可以把它视为常数,这并不影响计算精度。 2 漫坝风险分析模型及方法 漫坝风险分析理论采用随机数学、随机水文学和随机水力学方法,综合考虑影响漫坝的洪水、库容、风浪和泄水能力四方面的随机性,然后研制水库大坝在洪水系列与风浪系列联合作用下的漫坝风险模型,并在确保大坝的漫坝安全可靠度高达99.999%以上的前提下,优选水库的汛限水位,从而为提高水库汛限水位打下理论基础。 2.1 基本理论 漫坝风险分析基本理论涉及到两个基本概念:漫坝和风险。漫坝是指坝前水位超过坝顶、水流漫过坝顶溢流而下。风险是指水库发生漫坝的概率。漫坝风险就是指在分析期内,坝前水位超过坝顶的概率。漫坝风险分析理论认为引起漫坝的主要风险因素来自入库洪水、风浪、库容和泄水能力四个方面的不确定性。在传统的水库设计及计算中,把泄水建筑物及库容或库面积视为确定性的,但严格的讲,它们是不确定的。风也是随机的,对漫坝风险而言,其有效风应为汛期吹向坝体的最大风系列。这样一来,在全面考虑入库洪水、风浪、库容和泄水能力四个方面的不确定性,水库调洪过程是一随机过程,其调洪演算方程,是随机微分方程。在以校核或设计洪水为其上限的洪水系列与汛期吹向坝体的有效风系列联合作用下,土石坝漫坝风险须逐时段进行数值积分来求得。计算时,控制高程取在坝顶和防浪墙高程时,针对不同的迎汛水位,将分别得出相应的漫坝风险值。目前,尚缺乏漫坝安全可靠度方面的国家或行业标准,经过分析认为,可接受的漫坝风险为10-6数量级,这相当于人力无法抗拒的地震风险数量级,即可接受漫坝的安全可靠度达在99.999%以上。 2.2 模型及方法 漫坝风险模型可表示为下式: Z(t)——坝前水位 Zo——迎汛库水位 e——水面风壅高度 Hmax——由于洪水产生的库水位增加值 Rp——沿坝坡的波浪爬高 Zc——临界高程 当洪水事件[Qi-1,Qi]和风事件〖Wj-1,Wj〗同时出现时,风险Pij为: 通过编制相应的电算程序,求解上述方程,可得到预先规定的临界模式的漫坝风险模型。 在传统水库调度计算中,除了洪水是具有某种频率性质的随机事件外,把水库库容、库面积、汛期的风情和泄水建筑物的泄流能力等都当作确定量处理,且洪水频率一经给定,洪水过程线也成为确定量。在此条件下,人们采用安全超高,即在水库演算中最高水位上再加

水利水工等级分类水库等级河流等级堤防等级拦河闸等级河道等级渠道等级降雨量等级

精心整理水库等级划分 大、中、小型水库的等级是按照库容大小来划分的。 大(一)型水库库容大于10亿立方米; 大(二)型水库库容大于1亿立方米而小于10亿立方米; 中型水库库容大于或等于0.1亿立方米而小于1亿立方米; 小(一)型水库库容大于或等于100万立方米而小于1000万立方米; 小(二)型水库库容大于或等于10万立方米而小于100万立方米。 河流等级划分 大、中、小型河流的等级是按照保护面积大小来划分的。 2。 堤防分类 按所在位置,堤防可分为河(江)堤、海堤、湖堤、水库堤及渠(沟)堤等五种,详见表1。 表1堤防分类表(按所在位置分)

按建筑材料,堤防可分为土堤、砂堤、石堤、混凝土堤等四种。 (1)土堤:由粘土、壤土筑成,主要建在平原地区江河沿岸、海岸、湖泊四周、排灌沟渠沿岸及水库周边。 (2)砂堤:由沙土或砂砾石筑成,主要建在山区、丘陵区江河沿岸,水库周边、海岸。 (3)石堤:由块石或条石筑成,主要建在海岸、取土困难的江河沿岸及城区河段沿岸。 (4 流域 河道等级 干渠:从灌溉水源取水或从总干渠分水,向支渠供水的渠道。 支渠:从干渠取水,担负配水任务的二级或三级渠道。 斗渠:灌溉系统中,由支渠引水到毛渠或灌区的渠道。从支渠取水,担负配水任务的三级或四级渠道。 农渠:从斗渠取水并分配到田间的最末一级固定渠道。 毛渠:从农渠取水并向畦、沟供水的田间临时渠道; 渠道通常指水渠、沟渠,是水流的通道。 渡槽:渠道跨越其他水道、洼地、道路和铁路等修建的桥式交叉建筑物。输送渠道水流跨越河渠、溪谷、洼地和道路的架空水槽。普遍用于灌溉输水,也用于排洪、排沙等,大型渡槽还可以通航。渡槽主要用砌石、混凝土及钢筋混凝土等材料建成。 渡槽又称高架渠、输水桥,是一组由桥梁,隧道或沟渠构成的输水系统。通常架设于山谷、洼地、河流之上,用于通水、通行和通航。用来把远处的水引到水量不足的城镇、农村以供饮用和灌溉。降水量

水库泥沙冲淤分析计算

水库泥沙冲淤分析计算 抽水蓄能电站初步设计阶段 水库泥沙冲淤分析计算大纲范本 水利水电勘测设计标准化信息网 1996年10月 抽水蓄能电站初步设计阶段 水库泥沙冲淤分析计算大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 1

年月 目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 水库泥沙冲淤计算 (6) 5. 专题研究 (9) 6. 应提供的设计成果 (9) 附件A (10) 附件B (11) 附件C (14) 1 前言 项目概况 抽水蓄能电站位于省县乡境内,总装机 MW。抽水蓄能电站由上水库、水道系统、厂房及下水库组成。水库泥沙冲淤分析计算 2 设计依据文件和规范 2.1 有关本工程(或专业)的文件 (1) 可行性研究报告; (2) 可行性研究报告审批文件; (3) 初步设计任务书和项目卷册任务书,以及其它专业对本专业的要求; (4) 泥沙专题报告。 2.2 设计规范 (1) DL 5021-93 水利水电工程初步设计报告编制规程; (2) SDJ 11-77 水利水电工程水利动能设计规范(试行); (3) SDJ 214-83 水利水电工程水文计算规范(试行); (4) SL 104-95 水利工程水利计算规范; (5) 水库水文泥沙观测试行办法。 2.3 主要参考资料 (1) 水利水电工程泥沙设计规范(报批稿)[echidi1][1]; (2) 《泥沙手册》(中国水利学会泥沙专业委员会主编); 2

(3) 《水库泥沙》(陕西省水利科学研究所河渠研究室、清华大学水利工程系泥沙研究室合编); (4) 《河流泥沙工程学》(武汉水利电力学院)。 3 基本资料 3.1 水库概况 (1) 水库地形图,施测时间; (2) 库区纵、横断面表,需要时给出横断面特征线; (3) 水库水位容积、面积曲线图及表(包括总库容与干支流库容)。 表 1 水库水位容积、面积表 抽水蓄能电站装机容量 MW(共台),一般每日发电 h( 点至点);每日抽水 h( 点至点)。水泵最大扬程抽水流量 m3/s,最小扬程抽水流量 m3/s;水轮机额定水头发电流量 m3/s。 3.4.1 水库水位、库容特征值,见表2。 表 2 库水位、库容特征值 (1) 各设计频率洪水的坝前水位 表 3 各设计频率洪水的坝前水位 3

水库对河流径流过程的影响分析

水库对河流径流过程的影响分析 ——以故县水库为例 史艳华 邹鹰丰华丽 (南京水利科学研究院水文水资源与水利工程科学国家重点实验室,江苏南京 210029) 摘要:水流情势是河流生境的主要决定因素之一,影响水生生物群落的组成和多样性。水利工程会改变河流的天然水流情势。本文基于Richter提出的生态水文指标体系,分析了洛河流域长水站的生态水文特征变化。结果显示总体上故县水利枢纽对河流天然径流的影响程度较大。 关键词:水利工程;IHA 法;水文特征值 近几十年来,随着河流开发利用程度的不断加大,河流的自然水文情势由于人类活动的干扰或调节,面临不同程度改变,并影响到河流生态系统,致使河流生态系统退化。如何保护和修复河流生态系统成为被关注的焦点与研究的热点。研究表明,河流水文过程与生态系统之间有着十分密切的关系,Leroy Poff等阐述水流情势在支撑河流生物多样性和生态系统完整性方面起着决 定性的作用[1];Stanford等认为水流是河流生态的驱动力[2],控制着生物栖息的关键因素如水深、流速和栖息空间等。因此,可以借助传统的水文分析方法,通过研究与生物习性相关的河流生态水文因子(要素)的变动,来确定河流生态保护与修复的目标。 Brian D Richter 等于1997 年提出IHA [3]( Indicators of Hydrologic Alteration) 法用于评价人类活动对河流径流过程的影响,分析河流在人类活动干扰前后与生态相关的水文因 子过程变化。国际上许多研究成果采用该方法评价了河流修建大坝、分取水对河流生态水文特性的改变,确定相关河流的生态水文保护目标[4~6]。本文主要应用IHA 法对故县水库的河流径流过程影响进行评价。 故县水库位于黄河支流洛河中游河南省洛宁县境内,水库的开发目标是以防洪为主,兼顾灌溉、供水、发电等综合利用。水库的调蓄作用改变了大坝上下游水文情势,影响了洛河中下游的水生态系统。研究洛河生态水文特征变化,确定并量化生态水文保护目标,可为故县水库的生态调度提供依据。因此,本研究在收集整理长水站1971~2005年共29年的日径流资料的基础上,基于Richter提出的生态水文变动指标体系(IHA),分析了洛河流域长水站的生态水文特征变化。 1 IHA IHA指标体系采用32个水文指标变量来评价生态水文状态改变,并将这些指标划归为流量 大小、发生时间、频率、持续时间和变化率等具有生态意义的五大类(表1)。 表1 IHA 法的水文参数及其生态影响 基金项目:国家自然科学基金面上项目--科学基金项目(50509017) 第一作者简介:史艳华(1981—),女(汉族),河南焦作人,硕士研究生,主要从事水文水资源及生态水利研究。 E-mail:yhshi @https://www.wendangku.net/doc/ea1995027.html,

《水工建筑物》教学大纲

水利水电建筑工程专业专业核心技能课程《水工建筑物》教学大纲 二〇一二年七月

目录 1.课程的教学目的.................................................................................................................... - 1 - 2.课程教学任务 ....................................................................................................................... - 3 - 3. 教学内容 ............................................................................................................................. - 5 - 4. 教学目标及教学活动........................................................................................................ - 11 - 5. 教学方法、手段................................................................................................................ - 68 - 6. 重力坝设计教学大纲........................................................................................................ - 72 - 7. 土坝课程设计大纲............................................................................................................ - 74 - 8. 水闸课程设计大纲............................................................................................................ - 76 - 9. 隧洞课程设计大纲............................................................................................................ - 78 - 10. 认识实习教学大纲.......................................................................................................... - 81 - 11. 顶岗实习教学大纲.......................................................................................................... - 84 -

水利水工等级分类,水库等级,河流等级,堤防等级,拦河闸等级,河道等级,渠道等级,降雨量等级

水库等级划分 大、中、小型水库的等级是按照库容大小来划分的。 大(一)型水库库容大于10亿立方米; 大(二)型水库库容大于1亿立方米而小于10亿立方米; 中型水库库容大于或等于0.1亿立方米而小于1亿立方米; 小(一)型水库库容大于或等于100万立方米而小于1000万立方米; 小(二)型水库库容大于或等于10万立方米而小于100万立方米。 河流等级划分 大、中、小型河流的等级是按照保护面积大小来划分的。 大型河流保护面积大于30万亩; 中型河流保护面积在1—30万亩之间; 小型河流保护面积小于1万亩。 有众多支流汇入的是上游 水量稳定且较高的是中游 水量有所减少或转如地势低平地区的是下游 上中游分界线一般是最后一条大支流的汇入地点 中下游分界线一般是地势低平地区的边缘 堤防工程等级 依据堤防工程的防洪标准确定,依据堤防工程设计规范(GB50286-1998),堤防工程分为5级,详见表2。 表2堤防工程的级别

堤防分类 堤防按其所在位置及建筑材料进行分类。 按所在位置,堤防可分为河(江)堤、海堤、湖堤、水库堤及渠(沟)堤等五种,详见表1 。 表1 堤防分类表(按所在位置分) 按建筑材料,堤防可分为土堤、砂堤、石堤、混凝土堤等四种。 (1)土堤:由粘土、壤土筑成,主要建在平原地区江河沿岸、海岸、湖泊四周、排灌 沟渠沿岸及水库周边。 (2)砂堤:由沙土或砂砾石筑成,主要建在山区、丘陵区江河沿岸,水库周边、海岸。 (3)石堤:由块石或条石筑成,主要建在海岸、取土困难的江河沿岸及城区河段沿岸。 (4)混凝土堤:由混凝土或钢筋混凝土筑成,主要用于城区河段沿岸。 拦河闸等级划分 拦河闸等级是按照过闸流量大小划分的。 大型拦河闸过闸流量大于1000立方米/秒; 中型拦河闸过闸流量大于100立方米/秒而小于或等于1000立方米/秒; 小型拦河闸过闸流量大于或等于10立方米/秒而小于100立方米/秒; 流域

浅谈水库泥沙淤积计算方法在工程中的应用

浅谈水库泥沙淤积计算方法在工程中的应用 摘要:某水电站为旬河梯级开发中的一级,该工程为小型水电站工程,水库回 水与上游水电站尾水衔接,二级公路沿库区右岸通过。计算水库泥沙淤积和回水 高度,确定库区淹没范围,是主要设计内容,因此泥沙淤积计算是该电站设计的 重点之一。本次对水库淤积的纵、横剖面形态进行了计算,并采用美国陆军兵团 水面线计算软件HEC-RAS推算了水库回水曲线。 关键词:泥沙淤积平衡比降水电站应用 一、工程概况 本工程水库正常蓄水位331.00m,总库容436.9万m3,电站装机容量 9000kW,多年平均发电量2293万kWh。大坝坝顶总长度124.50m,坝顶高程335.10m,最大坝高30.60m。溢流坝段长64.50m,布置在主河床,堰高16.50m;左岸挡水坝长11.00m,坝高16.60m;右岸厂房坝段长49.00m,布置在主河床右侧,其中机组段长29.00cm,安装间段长12.00m。水库采取“蓄清排浑”的运行方式,即当汛期入库流量大于分界流量182m3/s,小于造床流量729 m3/s时,水库 降低至排沙水位329.00m运行,多余水量通过泄水闸门控制泄流。水电站库区为 山区型河道,多为“U”型,两岸大部分为岩质岸坡,库区河段天然平均比降 J0=1.8‰。河谷宽窄相间,库面平均宽度88m,回水长度4.1km。水库悬移质多 年平均输沙量111万t,推移质按悬移质的20%估算,为22.2万t,共计输沙量133.2万t。 二、水库泥沙冲淤分析及计算 1. 水库泥沙淤积形态判别 水库泥沙淤积形态判别采用《泥沙计算手册》中清华大学水利系及西北水利 科学研究院公式: α= V / WS / J0 式中:α—判别系数;V—水库正常蓄水位331.0m以下的库容(万m3),V= 265;WS—多年平均输沙量(万m3),WS =133.2;J0—水库库区原河床平均比降(?),J0=18.0。 计算得α=0.11<2.2,库区纵向淤积形态为锥体淤积。水库库容很小,水库在很短时间即可 达到淤积平衡状态,泥沙淤积厚度自上而下沿程递减至坝前,淤积面比降近乎一个比降,一 次洪水的淤积就可能达到坝前。 2.水库淤积形态计算 2.1纵向形态计算 天然河道比降是水沙过程和和床之间的长期作用的结果,而建库后的平衡比降只是在造 床水沙条件改变之后,同是两者相互作用的产物,因此本工程采用倍比法计算水库平衡比降。考虑本工程取水枢纽布置形式为闸坝式,侵蚀基准面抬高值较小,确定水库淤积平衡比降为 原河道比降的0.8倍。原河道河床比降为i0=1.8‰,淤积平衡比降为i=1.44‰。根据水库统计 资料,水库滩地淤积纵剖面比降与原河槽比降的关系为1:10,即滩地淤积纵剖面比降i滩 =0.18‰。 2.2.横向淤积形态计算 从造床流量相当于平滩(河漫滩)流量这个概念出发,按照《泥沙设计手册》中钱意颖公式 计算确定造床流量。 式中:—汛期平均流量,取 =84.5 m3/s(取主汛期7~9月)。 计算得Q造=729 m3/s。根据水文资料分析,水库坝址处2年一遇洪峰流量为870 m3/s, 多年平均洪峰流量为1250 m3/s。根据上述计算及经验,造床流量采用钱意颖公式计算结果。

水工建筑物课程设计(土石坝设计)

水工建筑物课程设计任务书(Ⅱ)学院名称:能源与环境学院专业:水利水电工程年级:2008级 1 设计题目 黑河水利枢纽土石坝设计 2 主要内容 本工程采用混合式开发,开发任务为发电,兼顾下游环境与生态用水。该枢纽挡水建筑物为土石坝,坝体防渗体材料采用粘土;泄洪建筑物为布置在右岸的水工隧洞;引水发电隧洞亦布置在右岸。 枢纽主要工程参数: (一)发电及水库特征 (1)、本电站装机容量_________万千瓦。 (2)、水库校核洪水位:_________m; 水库设计洪水位:_________m; 水库正常蓄水位:_________m,设计死水位:_________m; 正常蓄水位以下相应水库库容________m3。 (3)、厂房型式为引水式发电厂房。 (4)、坝底高程为 ______ ___m。 (5)、多年平均最大风速__ ___m/s,库面吹程__ ___k m,风向与坝轴线垂直。 (6)、土石坝坝型为粘土__ ___堆石坝。 (二)地震设计烈度为度。 (三)河床处坝基相对不透水层埋深_____ ___m。 (四)其他 ___ __。 黑河水利枢纽设计资料说明: 黑河水利枢纽位于四川省阿坝藏族羌族自治州九寨沟县境内,是白水江河干流水电规划“一库七级”开发方案的龙头水库梯级电站。首部枢纽距九寨沟县县城约74km,厂区距九寨沟县县城约54km,若尔盖—九寨沟公路从工程区通过,对外交通方便。 (一)水文 (1)流域概况 白水江系白龙江的一级支流,发源于岷山山脉东麓,分为黑河和白河两源,两源于黑河桥汇合后始称白水江,自西北向东南流,流经九寨沟县白河乡、安乐乡、城关、双河乡,自柴门关出四川境,流入甘肃省文县,于碧口汇入嘉陵江一级支流白龙江。白水江九寨沟县境内河道长约50km。该河段南部与平武县境内的火溪河为界;西南部与松潘县岷江源头分水;西北毗邻黄河的黑河流域;北接白龙江。

大坝风险分析 -

小议大坝风险分析 [摘要]:大坝风险分析可以有效地提高和加强大坝安全及管理水平。本文简要地介绍了大坝风险分析的基本理论、方法以及目前的一些研究现状,简要总结了我国大坝风险分析的主要内容和方法,在介绍与总结过程中就相关问题提出了作者的一些认识和看法。 [关键词]:大坝;风险分析;实施内容;评价方法;展望 1.引言 将风险概念引入到大坝安全评价领域始于上世纪 50、 60 年代的西方发达国家, 如美国、加拿大、澳大利亚等。我国开展这方面的研究较晚, 始于上世纪 80 年代末, 可见大坝风险的研究与应用在国内外都是一门新学科。十几年来, 我国学者一方面吸收和借鉴国外先进的大坝风险理论与方法, 同时研究和探索适合我国国情的大坝风险分析新理论、新技术, 并取得了不少成绩。 我国是筑坝大国, 遍布全国各地的大坝在国民经济发展过程中扮演着重要的角色。然而, 大坝的潜在威胁也是巨大的, 一旦失事就会给下游地区带来严重灾害, 并且随着老坝、病险坝数量日益增加,大坝的安全问题越来越引起人们的关注, 与此相应,大坝风险分析也在世界范围内迅速展开。大坝的风险分析是评价和改进大坝安全度的有效工具, 它能结合工程判断深入地研究大坝的弱点或缺陷, 提高对失事原因和溃坝或漫坝后果的认识, 为决策提供依据。 2.国内外研究进程 风险分析技术的发展,最早起源于美国,首先使用于军事工业方面,1974年美国原子能委员会发表了商用核电站风险评价报告网,引起了世界各国的普遍重视,推动了风险分析技术在各个领域的研究与应用。 在美国,由于1976年Teton坝和1977年TaccoaFall坝的相继失事,美国政府于1979年颁布了联邦大坝安全导则(FccST),其中有关安全评价、大坝设计、坝址选择的不确定性的风险决策分析引人注目"同时,联邦紧急管理机构和斯坦福大学、垦务局、曼切斯特研究院等开展合作,重点研究大坝安全问题的风险分析方法。 其后,美国土木工程师协会(1988年)发表了一篇关于“大坝水文安全评估程序”的报告,提出利用赔偿费用进行损失补偿,但没有解决如何考虑生命损失的问题。二十世纪80年代,DavidS.Bowles运用了风险分析方法为美国西部几个大坝业主进行了大坝风险评价"其中两例使用了“每挽救一人的成本费用”作为“减少生命安全风险的成本效益”的衡量尺度,以考虑生命方面的损失。

水库的修建对河流有什么影

水库的修建对河流有什么影响 在一条河流上筑坝修建水库,水库的形成会对河流地质作用产生怎样的影响? 大坝的建立能破坏河流在演化中力求建立起来的平衡状态。因为河流的搬运物在水库里发生堆积,使水坝以上河段的侵蚀基准面提高。而水坝以下的河段,由于大量搬运物被水库所截,河流的侵蚀能力增强,下游的冲积平原和三角洲可能遭受破坏。 简单来说就是: 上游地区:增加了地震、塌方等地壳运动的爆发机率;流水侵蚀作用、搬运减弱,但堆积作用加强。 下游地区:搬运作用减弱、堆积作用加强 河流泥沙多淤积在上游水库,导致入海泥沙量减少,造成河口三角洲由以前的沉积作用转为海岸侵蚀作用,岸滩及岸外沙坝被侵蚀后退。最终导致河口三角洲及海岸带的侵蚀后退。河流上修建水库,势必造成河流上游储水量增加,河流对地下水的补给量增多。这样就增加了库区河段的承重量,这种重量一方面来自库区水的压力,另一方面由于河流对地下水的补给量增多就导致地下水位上升,从而也会增加一部分重量。同时这种结果也会增加库区发生滑坡、泥石流等灾害的发生概率。而下游则会因上游储水的流量前少,这样部分河床就会裸露出来,更容易遭受风化侵蚀,而在丰水期又会被淹没,可能会引发更强的水土流失。 在河流上修建水库,势必造成河流上游储水量增加,河流对地下水的补给量增多。这样就增加了库区河段的承重量,这种重量一方面来自库区水的压力,另一方面由于河流对地下水的补给量增多就导致地下水位上升,从而也会增加一部分重量。同时这种结果也会增加库区发生滑坡、泥石流等灾害的发生概率。而下游则会因上游储水的流量前少,这样部分河床就会裸露出来,更容易遭受风化侵蚀,而在丰水期又会被淹没,可能会引发更强的水土流失。

水工建筑物

《水工建筑物》课程设计 土石坝设计指导书 一、目的 通过这次设计,综合运用工程制图、工程地质、水力学、土力学等课程知识,进一步掌握〈〈水工建筑物〉〉课程中“土石坝”的总体布置、土料设计、剖面拟定、渗流及坝坡稳定计算等内容。 二、资料及工程任务 工程设计资料包括地形、地质资料,水文、水利计算资料、筑坝材料资料等。 三、设计要求和设计步骤 1、考虑泄洪和输水要求进行总体枢纽布置,其建筑物包括土石坝、溢洪道、输 水洞等。 2、综合分析比较确定土石坝坝型。 3、根据提供的料场资料,确定防渗料及坝壳堆石料填筑标准。防渗粘土料按压 实度98%控制,堆石料按孔隙率20%~28%控制。 4、利用已给的水库特征水位,考虑风浪及安全加高因素,按正常运行和非常运 行情况中的最大值确定坝顶或防浪墙顶高程。地震作用引起的沉降和涌浪综合考虑可取2.0m。 5、按使用要求及工程经验确定坝顶宽度、上下游坝坡坡比,初步拟定大坝剖面 尺寸。 6、选择最大横剖面进行渗流计算,确定单宽渗流量并绘制浸润线,同时进行渗 透稳定性校核。这部分可只进行正常蓄水位稳定渗流计算。 7、以渗流计算剖面和相应工况为基准,进行下游坝坡稳定校核。计算采用计及 条块间作用力的简化毕肖普法,抗剪强度指标按表4-8选用。注意为计算简便,堆石料强度指标不需按非线性强度包线修正;下游可按无水情况考虑。 8、进行细部构造设计:坝顶、护坡、反滤过渡层。 9、坝基防渗处理,帷幕灌浆深度及灌浆孔距、排距确定。 10、由于设计时间有限,初拟尺寸无论合适与否,均不需再做调整。但要对结果 加以评述。

四、设计成果 需提交的最终设计成果包括: ●平面布置A1图; ●坝纵横剖面图,包括帷幕灌浆深度、标准横剖面、坝顶及护坡大样A1图; ●设计计算说明书; 图纸用AutoCAD绘制或手绘均可。 五、进度计划 本课程设计为2周,全天设计,具体安排: ●第1~3天熟悉资料、枢纽布置、建筑物级别,坝顶高程及初始剖面确定; ●第4~5天渗流分析计算; ●第6~8天坝坡稳定计算; ●第9天坝基防渗及坝体细剖设计。 ●第10~12天绘图 ●第13~14天整理设计计算说明书 六、参考资料 [1] 中华人民共和国水利部. 碾压式土石坝设计规范SL274-2001. 北京:中国水 利水电出版社,2002. [2] 中华人民共和国建设部. 土工试验方法标准GB/T50123-1999. 北京:中国计 划出版社,1999. [3] 顾慰慈. 土石(堤)坝的设计与计算. 北京:中国建筑工业出版社,2006. [4] 华东水利学院. 水工设计手册·第四卷·土石坝. 北京:水利电力出版社, 1984.

大坝防洪安全的评估和校核

大坝防洪安全的评估和校核 摘要:洪水漫坝风险失事,是影响大坝安全的主要原因之一。本文寻求一种既能反映大坝防洪系统随机性和模糊性,又能合理描述大坝防洪能力的风险模型,以实现对大坝防洪能力的定量化,进而为已建大坝和待建大坝的防洪安全评估和校核创造条件. 关键词:大坝防洪安全洪水漫坝失事随机微分方程风险分析 目前我国和世界上约三分之一的大坝失事,是洪水漫坝所造成的.因此,正确地对大坝防洪安全进行评估和校核,具有十分重要的意义.洪水漫坝风险是和大坝洪水设计标准紧密联系的.按我国现行的洪水设计标准对大坝的防洪安全进行分析,从水文角度估算的理论漫坝风险率远大于实际漫坝失事率.这说明现有大坝通常具有一定的抗洪潜力.这一抗洪潜力主要来源于两个方面:由于水文、水力等随机不确定性的影响,导致了设计者在调洪演算过程和泄洪建筑物设计规模、坝顶高程的决策中,留有一定的安全系数;由于工程、管理等模糊不确定性的影响,导致了洪水漫坝风险失事临界限值的模糊化,常使洪水位略超坝顶高程而不发生失事事故。 目前,国内外对大坝防洪安全的分析主要从洪水设计标准的选择

出发,仅能考察大坝防洪的水文风险,带有一定的片面性和局限性.诸多随机不确定性和模糊不确定性因素均未能定量引入对大坝防洪安全的分析中,致使这一问题迄今未能解决。 1现有大坝防洪安全分析 1.1 已建大坝防洪安全水准评估通过分析国内外大坝洪水漫坝风险失事的统计资料,可以了解已建大坝的总体防洪安全水准及趋势。 据九十年代初统计[1]我国共建有大坝83000余座,其中土坝占90%以上,运行多达30—40年. 表1我国各类大坝的漫顶失事率 类型 座数n 漫坝失事座数np 漫坝失事率Rp(N=30~40年) 漫坝失事率(预测) Rp(N=50年)

河湖大典——万安水库

《河湖大典》选登——万安水库 赣江中游的大(一)型水库,又名万安湖。位于江西省中部万安县中南部、赣县中北部。1958年7月1日动工兴建,几经停工又多次复工。1990年8月24日建成下闸蓄水,同年11月11日第一台10万千瓦机组并网发电。 1.概述 1.1.水库范围 坝址位于江西省万安县城芙蓉镇上游2千米处土桥头,地处东经114°41′,北纬26°33′,上游距赣州市、下游距吉安市各90千米,控制流域面积36 900平方千米。水库回水长度90千米,回水涉及吉安市万安县、赣州市赣县和章贡区。 1.2.自然环境 地质地貌水库坐落在低山丘陵地带,库周低山丘陵连绵起伏,坝址地处低山丘陵边缘,河谷宽阔,复式河槽左半部为河床段,宽450米,右半部由漫滩和Ⅰ、Ⅱ级阶地组成,宽500米,覆盖层厚13米,左

侧山坡35°~50°,右侧山坡25°。地处华南地层区,构造单元为赣中南褶隆,赣州—吉安拗陷,大湖山—芙蓉山隆断束。地质年代属中生代侏罗纪,新生代第四纪。岩层分中上统罗凹群,岩性为浅变质白色石英砂岩、粉砂岩和砂质页岩,断层发育,较大断层7条,断距0.2米~8米。地震烈度小于Ⅵ度。 主要支流库区水系发达,赣江在库尾赣州市八境台于左岸纳章水后入库,另有6条流域面积大于100平方千米的支流入库:左侧长村河、攸镇河、皂口水,右侧湖江河、良口水、武术水。 气候水文库区属中亚热带季风湿润气候区,多年平均:气温18.5摄氏度、年降水量1 560毫米(4~9月占68.7%)、年水面蒸发量893毫米。 水土流失治理库区森林曾遭受1958年大炼钢铁、“文革”、1980年分山到户3次较大范围砍伐。20世纪90年代起,采取封山育林、栽种经济果林等措施加强治理,水土流失得到有效遏制,植被覆盖率88%。库水清澈,2006年12月,水质达Ⅱ类地表水标准,已划定水功能保留区2个,饮用水源区1个。 1.3.水库来水来沙特征

水库泥沙淤积综述

水库泥沙淤积研究综述 (邓山2008150122 三峡大学) 摘要: 由于我国有许多河流是含沙量高、输沙量大的多泥沙河流, 水库泥沙淤积问题异常严重。所以对水库泥沙淤积的研究具有重要的现实意义。前人对水库泥沙淤积问题做了大量研究探讨,本文对我国水库泥沙淤积研究的状况和成果进行了全面的综述。内容包括、水库泥沙淤积的形态、入库水沙条件变化引起的问题、水库变动回水区泥沙问题研究三个方面。 关键词:水库;泥沙;淤积;回水区 1 引言 水库泥沙淤积主要是河水挟带的泥沙在水库回水末端至拦河建筑物之间库区的堆积。拦河筑坝后抬高了水位, 形成了在建筑物前近似水平、而在上游末端与天然河流原水面线相切的水面曲线。水流进入库区后, 由于水深沿流程增加, 水面坡度和流速沿流程减小, 因而水流挟沙能力沿流程降低, 出现泥沙淤积。水库淤积是水库设计和管理中的一个难题。在河道上兴建水库会改变河流的水流条件和泥沙运动状态, 使泥沙在水库库区内淤积, 从而降低水库的使用效益, 甚至导致水库失效报废, 所以, 对水库泥沙淤积问题的研究就显得尤为重要。 2 水库淤积观测和资料分析 水库淤积的观测和资料收集是水库淤积研究的基础。我国最早开展的系统性泥沙淤积观测是对20 世纪50 年代建成的永定河官厅水库、60 年代初建成的黄河三门峡水库和汉江丹江口水库的泥沙观测, 从中积累了大量的资料。从60 年代开始, 水利部科技司针对黄河流域和北方多沙河流的水库淤积, 选择了官厅、三门峡等12 座大型水库作为重点淤积观测的水库, 并建立了“黄河泥沙研究协调小组”, 组织了攻关研究和成果交流。后来又将其扩展到包括南方水库在内的20 个大型水库, 其成果见表1 。以这20个水库为骨干, 我国已有一支数量较大的水库淤积观测队伍, 收集了大量第一手资料。不论从收集资料的数量、内容、深度和可靠性看, 在世界上都是首屈一指的。

《水利工程施工》课程设计

《水利工程施工》课程设计 ——松涛水利枢纽工程施工总进度网络计划编制一、课设目的: 在巩固所学基础知识和专业知识的前提下,运用现代组织管理工具——网络计划技术,对松涛水利枢纽的施工进度进行安排,从而进一步了解水利水电工程各项目之间的项目关系,综合掌握水利水电工程施工的全貌,培养统筹全局的观念,为今后的施工组织设计工作打下良好的基础。 二、课设任务及步骤: 编制松涛水利枢纽工程施工总进度网络计划 (一)收集基本资料 包括:工程概况、水文、气象、建材、地质等资料。 本次课设该步骤已经不必了,见大家手里的课设基本资料。 (二)列工程项目 松涛水利枢纽系一级建筑物,由河床重力坝、右岸砼重力坝、溢洪道、右岸土坝、坝后式厂房等建筑物组成。平面布置见所给结构图。 对于这种堤坝式水利水电枢纽,其关键工程一般位于河床,这时施工总进度的安排应以导流程序为主线,即以施工导截流、大坝岩基开挖及处理、砼浇筑、拦洪渡讯、封堵蓄水、发电为主线,列工程项目表。 1.准备工程 2.施工导截流工程 采用全段围堰,全年挡水,隧洞导流 2.1 导流隧洞开挖和衬砌 2.2 图示戗堤预进占(利用隧洞开挖料) 2.3 截流(指合龙、闭气) 2.4 土石围堰加高培厚 2.5 基坑排水 2.6 隧洞封堵 2.7 蓄水 2.8 围堰拆除 3.大坝工程 3.1 河床重力坝坝基(肩)土方开挖 3.2 河床重力坝坝基(肩)石方开挖 3.3 河床重力坝基础帷幕灌浆 3.4 河床重力坝砼浇筑 3.5 河床重力坝接缝灌浆 3.6 右岸砼重力坝土方开挖 3.7 右岸砼重力坝石方开挖 3.8 右岸砼重力坝砼浇筑 3.9 右岸砼重力坝帷幕灌浆 3.10 右岸砼重力坝接缝灌浆 3.11 溢洪道土方开挖 3.12 溢洪道石方开挖

相关文档
相关文档 最新文档