文档库 最新最全的文档下载
当前位置:文档库 › 汽轮机EH油温过高的原因分析及对策

汽轮机EH油温过高的原因分析及对策

汽轮机EH油温过高的原因分析及对策
汽轮机EH油温过高的原因分析及对策

汽轮机EH油温过高的原因分析及对策

(华能伊敏发电厂内蒙古呼伦贝尔021130)

移民

华能伊敏发电厂机组为列宁格勒金属制造厂生产的K-500-240-4型汽轮机,为单轴四缸四排汽凝汽式超临界机组。2001年经哈尔滨汽轮机控制工程有限公司进行改造,将原来的抗燃油系统改为高压抗燃油纯电液调节系统,改进后系统简略如下:

(汽轮机EH油系统简图)

正常运行时防止冷油器漏水污染抗燃油,有压回油不经过冷油器,而直接回到EH油箱,EH 油温由循环冷却泵(齿轮泵)进行控制。当油温高时,启动循环冷却泵,通过调节冷却水进行控制油温,伊敏发电厂经过大修改造调试后温度正常。2006年5月EH油温升高,一度达到60℃,多次进行查找,总查不出原因。EH油温过高危急机组安全运行,不得已用加装风机进行冷却。伊敏发电厂检修部进行如下检查:

(1)检查冷油器,解体后发现冷油器水侧和油侧均比较干净,回装后正常水侧和油侧排空投运后,EH油温没有下降。

(2)对主机油泵溢流阀进行检查,没有发现问题,回油量不大。

(3)对EH油管路进行检查,并没有发现与热体基础,可以去除这一影响。

(4) 2007年#1机组B级检修,将所有的汽门油动机返厂,由哈尔滨汽轮机厂将汽门油缸活塞进行检查,油温并没有降低。

随着时间的推移,2007年11月,EH循环冷却泵泵体温度骤然升高。用测温仪进行测量,温度高达70℃。根据EH油温高及EH油泵本身温度上升这一现象,重点对EH循环冷却泵油侧系统进行检查。首先将#2冷油器油侧出口段不锈钢管路更换为透明的抗燃油塑料管,启动EH循环冷却泵,发现出口测油量较少,而EH循环冷却泵设计流量为40L/min,根据管径计算,可以判断出力不足。EH循环冷却泵泵体在10分钟内温度由35℃升到52℃,,这时可以初步判断由于抗燃油油量不足,齿轮与抗燃油产生摩擦的热量不能及时带走导致泵体温度升高。其次测试什么原因导致油量不足,接下来停止EH循环冷却泵运行,将入口管路更换透明的抗燃油塑料管接到检测合格的EH油桶,启动EH油泵,泵体无异音,振动符合规程,油量较大,出力基本达到要求,可以证明齿轮泵本身没问题。最后将油箱底部手动门至泵入口侧管段拆除后,开启手动门,发现没有流量,最后判断入口滤网堵塞,(以上各项操作注意防止EH油污染)。滤网脏污说明以前EH油温升高是由于冷却油量渐渐不足,最后EH 循环冷却泵泵体温度骤然升高来说明滤网污染严重程度。经过停机清理滤网后,EH油温正常,EH循环冷却泵泵体温度正常。

防范对策:

(1)对EH油系统滤网定时进行清理,防止滤网脏污,必要时进行更换。对EH循环冷却泵运行时注意泵体温度变化。

(2)定期清洗冷油器水侧及油侧,投运时,注意排空,有必要的话安装水侧及油侧流量装置。

(3)定期检查油泵溢流阀胶圈有无损坏,流量是否正常,防止回油量过大造成油温升高。

(4)巡检时注意调门在没有大幅度动作时,用手摸摸回油管是否较热,是否有油流声,可以判断油缸是否存在间隙过大问题。

(5)检查油管路是否接近热体,必要时将热体移走或加装隔热措施。本文在2008年在中国《电力安全技术》第十期发表

变压器的上层油温一般不能超过85度

变压器的上层油温一般不能超过85度,高不能超过95度.P9 变压器过负荷的判断:当变压器发生过负荷时会出现如下现象:1)油温上升。2)变压器声音有变化。3)过负荷信号可能动作。4)冷却装置可能启动。5)电流表,功率表指示将大于额定值。P15-16 保证变,配电所安全运行的“两票三制”,即工作票制度,操作票制度,交接班制度,巡回检查制度,设备定期试验轮换制度。另缺陷管理制度等。P35. 装设接地线应注明需要装设的具体地点,名称。接地线编号由工作许可人填写。P38 确认工作负责人布置的工作任务,安全措施和危险点及防范措施。 工作班成员在明确了工作负责人,专责监护人交代的工作内容,人员分工,带电部位,现场布置的安全措施和工作的危险点及防范措施后,每个工作班成员在工作负责人所持工作票上签名,不得代签。P39 工作结束,工作负责人会同工作许可人进行验收,验收时任何一方不得变动安全措施,验收合格后做好有关记录和有关修试报告,资料,图纸等。P41 除第一种工作票和第二种工作票外,还有带点作业工作票,事故应急枪修单。事故应急抢修可不用工作票,但应使用事故应急抢修单。P46 该制度介绍了操作票使用的规定,填用操作票的要求,操作票的操作,操作的监护和复诵,操作票的管理等。P46 倒闸操作票填写规定:(1)使用操作票的范围:对1000V及以上的电气设备进行正常操作时,均应填写操作票。(2)倒闸操作由操作人员填写操作票。每张操作票只能填写一个操作任务。(3)操作票应填写设备的双重名称,设备的编号与设备的名称。P47-48 同一变电站的操作票应事先连续编号,操作票按编号顺序使用,作废的操作票,应注明“作废”字样,未执行的应注明“未执行”字样,已操作的应注明“已执行”字样。操作票应保存三个月。P48 五清:一是讲清,二是听清,三是问清,四是看清,五是点清。P48 1类缺陷:是紧急缺陷。2类缺陷:是重大缺陷。3类缺陷为一般缺陷。P50 任何缺陷发现和消除后都应及时,正确地记入缺陷记录簿中。P51 任何缺陷发现和消除后后都应及时,正确地记入缺陷纪录簿中。P51 设备一经合闸便带电运行的状态称热备用状态。P52 倒闸操作的五防:倒闸操作必须正确,不准发生误操作事故,否则后果不堪设想,要严格防止“误调度,误操作,误整定事故”发生。道闸操作一定要严格做到“五防”,即防止带负荷拉合隔离刀闸,防止带接地线(接地刀)合闸,防止带电挂接地线(接地刀),防止误拉合开关,防止误入带电间隔。保证操作安全准确。P53 倒闸操作的基本条件:1)有与现场一次设备和实际运行方式相符的一次系统模拟图(包刮各种电子接线图)2)操作设备应具有明显的标志,包刮:命名,编号,分合指示,旋转方向,切换位置的指示及设备相色等。3)高压电气设备都应安装完善的防误操作闭锁装置。4)有值班调度员,远行值班负责人正式发布的指令(规范的操作术语),并使用事先审核合格的操作票。5)下列情况应加挂机械锁。P54· 在操作过程中,发现误合隔离开关时,不允许将误合的隔离开关再拉开;发现误拉隔离开关时,不允许将误拉的隔离开关再重新合上,以防止带负荷拉,合隔离开关。(实操P314) 道闸操作必须由两人执行,其中一人对设备较熟悉者作监护人。P56 严禁带负荷拉,合隔离开关,所装电气和机械闭锁装置不能随意退出。P56-57 停电时,先断开断路器,后拉开负荷侧隔离开关,最后拉开电源侧隔离开关;送电时,先合上电源侧隔离开关,再合上负荷侧隔离开关,最后合上断路器。P57 填写操作票:值班长接受操作任务后,应立即指定监护人和操作人,操作票由操作人填写。

汽轮机高压抗燃油系统说明

2 高压抗燃油EH系统 2.1 供油系统 EH供油系统由供油装置、抗燃油再生装置及油管路系统组成。 2.1.1 供油装置(见图1) 供油装置的主要功能是提供控制部分所需要的液压油及压力,同时保持液压油的正常理化特性和运行特性。它由油箱、油泵、控制块、滤油器、磁性过滤器、溢流阀、蓄能器、冷油器。EH端子箱和一些对油压、油温、油位的报警、指示和控制的标准设备以及一套自循环滤油系统和自循环冷却系统所组成。 供油装置的电源要求: 两台主油泵为30KW 380VAG 50HZ三相 一台滤油泵为1KW 380VAG 50Hz、三相 一台冷却油泵为2KW 380VAG 50HZ、三相 一级电加热器为5KW 220VAG 50Hz、单相 2.1.1.1 工作原理 由交流马达驱动高压柱塞泵,通过油泵吸入滤网将油箱中的抗燃油吸入,从油泵出口的油经过压力滤油器通过单向阀流入和高压蓄能器联接的高压油母管将高压抗燃油送到各执行机构和危急遮断系统。 泵输出压力可在0 —21MPa之间任意设置。本系统允许正常工作压力设置在11.0?15.0MPa,本系统额定工作压力为14.5MPa。 油泵启动后,油泵以全流量约85 L/min向系统供油,同时也给蓄能器充油,当油压到达 系统的整定压力14.5MPa时,高压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,使泵的输出流量减少,当泵的输出流量和系统用油流量相等时,泵的变量机构维持在某一位置,当系统需要增加或减少用油量时,泵会自动改变输出流量,维护系统油压在14.5MPa。当系统 瞬间用油量很大时,蓄能器将参与供油。 溢流阀在高压油母管压力达到17± 0.2MPa时动作,起到过压保护作用。 各执行机构的回油通过压力回油管先经过3微米回油滤油器,然后通过冷油器回至油箱。 高压母管上压力开关63/MP以及63/HP、63/LP能为自动启动备用油泵和对油压偏离正 常值时进行报警提供信号。冷油器回水口管道装有电磁水阀,油箱内也装有油温测点的位置孔及提供油作报警和遮断油泵的油压信号,油位指示器按放在油箱的侧面。 2.1.1.2 供油装置的主要部件: 2.1.1.2.1 油箱 设计成能容纳900升液压油的油箱(该油箱的容量设计满足1台大机和2台50 %给水泵 小机的正常控制用油)。考虑抗燃油内少量水份对碳钢有腐蚀作用,设计中油管路全部采用不 锈钢材料,其他部件尽可能采用不锈钢材料。 油箱板上有液位开关(油位报警和遮断信号)、磁性滤油器、空气滤清器、控制块组件 等液压元件。另外,油箱的底部安装有一个加热器,在油温低于20 C时应给加热器通电,提 高EH油温。 2.1.1.2.2 油泵 考虑系统工作的稳定性和特殊性,本系统采用进口高压变量柱塞泵,并采用双泵并联工作系统,当一台泵工作,则另一台泵备用,以提高供油系统的可靠性,二台泵布置在油箱的下方,以保证正的吸入压头。 2.1.1.2.3 控制块(参见图2) 控制块安装在油箱顶部,它加工成能安装下列部件: a.四个10微米的滤芯,每个滤芯均分开安装

变压器几种常见故障产生的原因及其处理方法

自爱迪生发明了电灯以后,电在人们生产、生活中的作用越来越重要。为满足人们各种用电需要,作为发电厂和变电站主要设备之一的变压器,不但能把电压降低为各级标准,而且能把电压升高为各级标准,进而将电能输送到各个不同的用电地区,这样有助于减少送电损失。 变压器几种常见故障产生的原因及其处理方法 袁世豪 (湛江中粤能源有限公司 广东 湛江 524099) 力运行人员应具备的基本技能,同时亦是其重点关注、研究的问题。 二、变压器故障产生的原因 1、自身原因 变压器在制造时,由于工艺不佳或者人为因素影响,而使得设备本身就存在着诸如焊接不良、端头松动、垫块松动、抗短路强度不足、铁心绝缘不良等问题。 2、运行原因 首先,变压器的超常负荷。变压器的长期超负荷工作,必然会使其内部零部件及连接件有着过高的温度,进而导致冷却装置不能正常运行,零部件受损。其次,变压器的使用不当。工作人员使用方式、方法不当,或者当设备出现问题时没有进行及时、正确维护,这必然加快变压器绝缘老化的速度。 3、线路干扰 线路干扰在致使变压器产生故障的所有因素中,它是最为重要的,其所引起的故障在所有故障中占有很大的比例。主要包括:在低负荷阶段出现的电压峰值、线路故障,合闸时产生的过电压,以及其他方面的异常现象 一、加强变压器故障及时、准确检修的必要性 在电力系统中占有至关重要地位的变压器,是电网传输电能的枢纽,它由油箱、油枕、铁心、线圈、绝缘导管、分接开关、散热器、防暴管、瓦斯继电器,以及热虹吸、温度计等附件组成,变压器运行、检修,及维护质量的高低,将直接影响电力生产安全和经济效益。 虽然变压器较于其他电力设备的故障率低,但据运行经验表明、相关数据显示,近几年电力系统变压器故障呈现出不断上升的趋势。按照故障发生的程度不同,故障有轻有重,当故障较轻时,虽然变压器能够继续运行,但若不及时处理,将会进一步损害其内部零部件或者外部辅助设备;当故障较重时,则直接影响变压器的正常运行,若不及时处理,将会损害设备的使用寿命,甚至发生安全事故。总之,变压器一旦发生故障,轻则影响电力系统的正常运作,并直接或间接地影响人民群众正常的生产、生活;重则带来较大的安全隐患及经济损失。因此,对变压器运行或停运后异常、故障问题的检修、确认与维护,是电 DOI :10.3969/j.issn.1001-8972.2011.03.032

汽轮机润滑油系统说明

1.1概述 配本机组的润滑油系统与给水泵汽轮机的润滑油系统分开,主要供给氢密封油系统的两路密封油源(适用于氢冷发电机);供给机械超速遮断装置动作的工作介质和供给汽轮机轴承、发电机轴承、推力轴承和盘车装置的润滑油。该系统设有可靠的主供油设备及辅助供油设备,在盘车、起动、停机、正常运行和事故工况下,满足汽轮机发电机组的所有用油量。润滑油系统是一个封闭的系统,油贮存在油箱内,由主轴驱动的主油泵或由马达驱动的辅助油泵将润滑油供给到各个使用点,当机组在额定或接近额定转速运行时,由装在前轴承座的主油泵和装在油箱内的注油器联合运行,满足机组用油。在机组启动或停机运行时,则由辅助油泵提供机组所有用油。 系统的主要功能是给汽轮发电机主轴承、推力轴承和盘车装置提供润滑油,为密封氢气的密封油系统供油(适用于氢冷发电机),以及为操纵机械超速脱扣装置供油作为工质。它主要由润滑油箱、主油泵、注油器、辅助油泵、冷油器、滤油器、除油雾装置、顶轴油系统、净油系统(根据用户的要求,也可用户自备)、危急遮断功能、液位开关等以及各种脱扣、控制装置和连接它们的管道及附件组成。 1.2主要设备及功能 1.2.1油 润滑系统中使用的油必须是高质量、均质的防锈精炼矿物油,并且必须添加防腐蚀和防氧化的成份。此外,它不得含有任何影响润滑性能或与之接触的油和金属有害的物质。 为了保持润滑油的完好,也即保持润滑系统部件和被润滑的汽轮机部 件的完好,润滑油的特性需要作一些特殊考虑。最基本的是: 油的清洁度,物理和化学特性、恰当的贮存和管理,以及恰当的加油方法。应该有一个全面的计划来确保油和系统的正确保养,避免一切有害的杂质。这是使部件寿命达到最长和保证不发生故障的基本要求。有害杂质会导致轴承密封和其它重要部件的损坏。如果油箱中油温低于10℃,油不能在系统中

变压器夏季高温时段运行温度过高现象的研究

变压器夏季高温时段运行温度过高现象的研究 发表时间:2018-06-06T10:41:10.420Z 来源:《电力设备》2018年第2期作者:徐添羽宋新微沈丁丁潘国华倪鹏飞 [导读] 摘要:在变压器的实际运行过程中,由于电磁场的存在,以及变压器中线圈内部电流的流动,不可避免的会出现电能的损耗,损耗的电能转化成热能进行扩散,最终引起变压器温度上升。 (国网浙江桐乡市区供电有限公司 314503) 摘要:在变压器的实际运行过程中,由于电磁场的存在,以及变压器中线圈内部电流的流动,不可避免的会出现电能的损耗,损耗的电能转化成热能进行扩散,最终引起变压器温度上升。由于电力变压器中存在电磁场和各线圈电流的流动而形成了电能损耗,进而转化为热能不断扩散,导致变压器各个部位的温度升高。本文主要从夏季高温时段变压器温度过高现状出发,分析可能引起变压器运行温度过高的原因,探究如何有效进行降温处理。 关键字:变压器;高温时段;温度过高 根据《运行规程》要求,油浸自冷变压器顶层油温超过80℃时,温度每增加6℃,变压器老化加倍,使用寿命缩短一半。主变运行温度超过80℃会加速主变老化,损害变压器使用寿命,故超温报警设置为80℃。变压器的构成材料中有铜与铁,在运行过程中必然会出现铜损和铁损,损耗最终都会转化成热能,因此变压器的铁芯和烧组在长时间使用后会出现温度上升的现象。加上烧组中有电流通过,也会引起发热。为了实现热平衡,变压器会向外界自发的进行散热,保持变压器各个部门的温度稳定。一旦变压器的各个部件长期处在高温状态,并且温度超出规定的限值,尤其是变压器中的油温,如果比超温报警温度80℃高,还在不断升温时,变压器的绝缘很容易出现损坏,一旦遇到高电压就可能会被击穿,最终造成电路故障,甚至引发安全事故。因此在变压器运行过程中,要做好散热工作,确保其温度不超过限定温度。在夏季高温时段,变压器的温度如果出现过高现象,除了与外部环境有关,还可能与变压器的散热装置、运行电压、负荷等因素有关联,需要有针对性的开展降温工作,确保变压器安全运行。 一、变压器夏季高温时段运行现状和存在问题 据统计在夏季高温期间,110kV变压器在高负荷情况下,存在主变超温运行的问题,从2015年至2017年,52台主变压器超温报警共计158次,这在一定程度上影响了主变压器的安全可靠运行,并且影响设备使用寿命,增加电网运行风险。 据现场调查结果,全年电网供电高负荷运行时间集中在夏季7-9月,伴随而来的是变压器高负载率运行,进而变压器运行温度升高,导致超温报警发生。因为每天不同时间段的供电负荷和天气温度的双重影响,所以超温报警天的时间段主要集中在上午10点-下午3点。 二、变压器温度升高的原因 (一)内部原因 (1)自然的内部损耗 变压器在运行过程中会出现自然的内部消耗,最终都会转化成热量,并且通过热辐射、热传导等方式向外部进行散热,如果散热与发热处于平衡时,温度一旦散热与发热出现不平衡,那么温度将会上升,出现温度过高现象,在夏季高温时间段受外部环境的影响,更加明显。 (2)分接开关接触不良 在变压器运行中,如果分解开关存在开关弹簧压力不够,造成接点接触面小过小,或者接触点存在积尘、油膜等造成接触电阻过大,引起接点过热,都会使得变压器温度上升,这种情况尤其容易发生在倒换分接开关或变压器过负荷运行状态下。 (3)绕组匝间出现短路 如果在变压器的绕组匝中存在某几匝绝缘老化或者受外力受损,那么将会形成闭合的短路环流,并且匝数月少,闭合短路环流中产生的温度就越高,情况严重的时候还可能会将变压器烧毁,还有可能出现弧光,冷却油受此影响受热,影响整个变压器的温度。 (4)铁芯局部过热 变压器中的铁芯主要是具有绝缘性能的硅钢片,如果受到外力损伤,或者长期使用中铁芯的绝缘性能出现老化,那么铁芯中的涡流会变大,造成铁芯局部发热,情况严重的话会出现温度过热,影响油温温度,造成温度过高。 (5)变压器内油过少或者散热管出现阻塞 变油是变压器内部的主要绝缘体,不仅能够起到灭孤、绝缘的作用,还在很大程度上起到自我冷却的作用,当变压器内部的油过少时,发生在油中的热循环受阻,冷却速度达不到正常的速度,油温上升,造成变压器运行温度过高。 (二)外部原因 (1)变压器散热系统故障 一般来说,变压器除了配备有散热管,还配置有强迫风冷散热与水循环散热等散热系统,一旦散热系统出现故障,尤其是在夏季高温时间段,变压器将会因为散热条件过差而出现运行温度过高。 (2)变压器进出风口出现严重积尘甚至阻塞 变压器主要通过进出风口来实现空气对流,当过多的灰尘沉淀在出风口,空气对流受阻,变压器在同样的发热条件下无法通过对流有效向空气进行散热,散热条件变差,将会引起变压器运行温度上升。 三、预防变压器温度异常的具体措施 夏季高温时段遇到变压器温度过高的现象,需要及时做好降温处理,根据温度过高的原因进行细分,可以分为两个处理方向:(一)变压器运行出现异常造成高温 如果是因为运行异常造成高温,可以从以下四个方面进行处理: 1、根据变电站的实际情况选择合适容量与型号的变压器,尽可能的避免使用损耗参数低的变压器,在选择容量时要留有一定的余地。在多个变压器并列运行的情况下要做好环流的防范工作。 2、对变压器的温度要保持关注,一旦发现温度不对就需要采取有效的措施进行快速降温的同时,检测负载、油温、油位等是否正常,逐一进行故障排查。 3、借助红外线开展监测,对于漏磁造成的涡流、套管出口部分导体接触不良问问题都是肉眼看不到,需要借助相关的设备进行检

变压器温度计相关知识

变压器温度计相关知识 由于变压器的使用寿命取决于它的绕组温度,绕组温度对绝缘材料起着决定性的作用。DL/T 572—1995《电力变压器运行规程》规定变压器的上层油温,一般不得超过95℃。上层油温如果超过95℃,变压器绕组的温度就要超过绕组绝缘物的耐热强度,从而加速绝缘物的老化。故变压器运行中,一般规定了85℃这个上层油温的界限。 为防止变压器油温过高,加速变压器的老化。故变压器一般安装温度计,油面温度计用来测量变压器油箱上层油温,监视变压器运行状态是否正常。 早期变压器一般只安装一只温度计,最近几年变压器油面温度计一般安装两只,主要对于容量较大的变压器,油箱内空间较大,变压器的发热和散热也是不均匀的,在变压器内不同的区域,温度相差可能较大,为了安全起见,需要较准确地测出变压器的油温,所以有时在变压器的长轴两端各设个信号温度计来检测其油温,以确保变压器更安全地运行。这样也可当其中一只温度计故障,由于一时无法安排停电处理,而无法监测变压器的油面温度。 这一年随着绕组温度计技术成熟,更在在1110kV安装绕组温度计,直接监测绕组温度计。 一、温度计的原理 变压器温度计是用来测量油箱里面上层油温的,起到监视电力变压器是否正常运行的作用。温度计按变压器容量大小可分为水银温度计、压力式(信号)温度计、电阻温度计三种测温方法。 通常800kVA以下的电力变压器箱盖上设有水银温度计座。当欲以水银温度计测量油面温度时,旋开水银温度计水银温度计是膨胀式温度计的一种,水银的冰点是:-38.87℃,沸点是:356.7℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。使用水银温度计时应注意以下几点:座上的盖子(运输时防雨用的)在座内注满变压器油,将水银温度计插入进行测量。

汽轮机高压抗燃油系统说明

汽轮机高压抗燃油系统 说明 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

2 高压抗燃油EH系统 2.1 供油系统 EH供油系统由供油装置、抗燃油再生装置及油管路系统组成。 2.1.1 供油装置(见图1) 供油装置的主要功能是提供控制部分所需要的液压油及压力,同时保持液压油的正常理化特性和运行特性。它由油箱、油泵、控制块、滤油器、磁性过滤器、溢流阀、蓄能器、冷油器。EH端子箱和一些对油压、油温、油位的报警、指示和控制的标准设备以及一套自循环滤油系统和自循环冷却系统所组成。 供油装置的电源要求: 两台主油泵为30KW、380VAC、50HZ三相 一台滤油泵为1KW、380VAC、50Hz、三相 一台冷却油泵为2KW、380VAC、50HZ、三相 一级电加热器为5KW、220VAC、50Hz、单相 2.1.1.1工作原理 由交流马达驱动高压柱塞泵,通过油泵吸入滤网将油箱中的抗燃油吸入,从油泵出口的油经过压力滤油器通过单向阀流入和高压蓄能器联接的高压油母管将高压抗燃油送到各执行机构和危急遮断系统。 泵输出压力可在0-21MPa之间任意设置。本系统允许正常工作压力设置在~,本系统额定工作压力为。 油泵启动后,油泵以全流量约85 L/min向系统供油,同时也给蓄能器充油,当油压到达系统的整定压力时,高压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,使泵的输出流量减少,当泵的输出流量和系统用油流量相等时,泵的

变量机构维持在某一位置,当系统需要增加或减少用油量时,泵会自动改变输出流量,维护系统油压在。当系统瞬间用油量很大时,蓄能器将参与供油。 溢流阀在高压油母管压力达到17±时动作,起到过压保护作用。 各执行机构的回油通过压力回油管先经过3微米回油滤油器,然后通过冷油器回至油箱。 高压母管上压力开关 63/MP以及 63/HP、63/LP能为自动启动备用油泵和对油压偏离正常值时进行报警提供信号。冷油器回水口管道装有电磁水阀,油箱内也装有油温测点的位置孔及提供油作报警和遮断油泵的油压信号,油位指示器按放在油箱的侧面。 2.1.1.2供油装置的主要部件: 2.1.1.2.1油箱 设计成能容纳 900升液压油的油箱(该油箱的容量设计满足1台大机和2台50%给水泵小机的正常控制用油)。考虑抗燃油内少量水份对碳钢有腐蚀作用,设计中油管路全部采用不锈钢材料,其他部件尽可能采用不锈钢材料。 油箱板上有液位开关(油位报警和遮断信号)、磁性滤油器、空气滤清器、控制块组件等液压元件。另外,油箱的底部安装有一个加热器,在油温低于20℃时应给加热器通电,提高EH油温。 2.1.1.2.2油泵 考虑系统工作的稳定性和特殊性,本系统采用进口高压变量柱塞泵,并采用双泵并联工作系统,当一台泵工作,则另一台泵备用,以提高供油系统的可靠性,二台泵布置在油箱的下方,以保证正的吸入压头。 2.1.1.2.3控制块(参见图2)

汽轮机的供油系统介绍讲解

供油装置 1.性能简介: 1.1供油装置为集中油站。 1.2供油装置供汽轮机润滑油,调节油。 1.3本供油装置的设计和制造,按照标准: ZBK54036-89 《工业汽轮机润滑和调节供油系统技术条件》。带单独的溢流底盘。 1.4本供油装置的使用环境为: 电气防爆等级为:不防爆 2技术参数: 3.外型简图(见图2.8)

图2.8 外型简图 4.工作原理

采用润滑和调节油合在一起的油系统来供油。当供油装置工作时,主泵或辅助油泵的吸油管将润滑油从油箱内吸出,一路经调节滤油器,直接去调节系统,一路送入双联冷油器进行冷却,再送入清除机械杂质的双联过滤器,经过滤后,进入汽轮机供油总管,被送到各润滑部位。 润滑油在摩擦表面形成一层油膜,使相对运动副得到润滑,并带走运行副间磨损的金属微粒和热量后,流入回油总管再回到油箱,经过油箱的过滤、沉淀、散热后再由主油泵或辅助油泵吸出,就这样形成油循环系统。 5.主要组成部套(设备)和结构特征 本装置是有一台汽轮机驱动的离心泵作为主油泵,一台离心泵作为辅泵,一台直流电机驱动的事故泵,一台润滑油双联滤油器,一台调节油双联滤油器,一台双联冷油器,一台排烟风机,一只油箱,一只底盘,以及管道,阀门仪表组成。 5.1油箱 5.1.1简述: 油箱的作用是储存油、分离油中的水分、蒸汽,以及沉淀杂物。 油箱顶上装辅助油泵、事故油泵、排烟风机、液位计、吸油喷射管等。回油经滤网流至油箱内最低油位以下,油面以上留有≥100mm的空间,排烟风机的作用,使得油箱上部有一定的真空度,油中的泡沫自行上浮至油液表面后破裂,消除了泡沫,油箱内部有隔板,增加了流程,有利于杂物沉淀。 5.1.2油箱简图(见图2.9) 油箱视图中各件号说明如下 1 油过滤机进出口 2滤网 3隔板 4回油口 5人孔盖 6吸油喷射管 7加油漏气滤网

变压器过热故障原因分析及处理对策

变压器过热故障原因分析及处理对策 一、变压器绕组过热分析 近十几年来,为降低变压器损耗,各制造厂先后采用了带有统包绝缘的换位导线绕制变压器绕组。由于早期国内对换位导线生产技术尚未全面掌握,使之采用换位导线的变压器在运行十年左右出现了统包绝缘膨胀。段间油道堵塞、油流不畅,匝绝缘得不到充分冷却,使之严重老化,以致发糊、变脆,在长期电磁振动下,绝缘脱落,局部露铜,形成匝间(段间)短路,导致变压器烧损事故。 另外,绕组本身的质量不良也会导致过热现象。 二、分接开关动、静触头接触不良引起的过热 在有载调压变压器中,特别是调压频繁、负荷电流较大的变压器,在频繁的调动中会造成触头之间的机械磨损、电腐蚀和触头污染,电流的热效应会使弹簧的弹性变弱,从而使动、静触头之间的接触压力下降。接触压力减小,会使触头之间的接触电阻增大,从而导致触头之间的发热量增大,由于发热又加速触头表面的氧化腐蚀和机械变形,形成恶行循环,如不及时处理,往往会使变压器发生损坏事故。 在无载调压变压器中,分接开关接触不良,也会使其表面腐蚀、氧化,或触头之间的接触压力下降使接触电阻增大,而形成变压器的过热性故障。 三、引线故障引起的过热故障 (1)引线接头过热:

引线接头(将军冒)过热也是多发性故障。例如,东北电网某局的一台主变压器,总烃为455.9ppm,乙炔为4.23ppm。吊检发现66KV A相套管穿缆引线过热,焊锡流出到夹件和压件上;有如,某台主变压器,B相套管头部发热,经检查,将军冒螺扣匹配不良,将螺扣烧坏5~6扣,造成过热。 (2)引线断股 某台DFL-6000/220型单相变压器,1990年5月开始发现色谱分析结果异常,热点温度可能高压1000℃,直到1993年5月进行大修时才发现,该变压器中性点套管内的引线有两股烧断、三股烧伤(共35股,240mm2),其原因是在1989年5月检修中,更新该中性点套管时引线(铜辫子)向上拉比较别劲,使引线外层半迭绕白布带脱落,裸辫子引线与套管内的铜管内壁相碰,发生分流、放电、过热。四、冷却装置异常引起变压器过热 (1)冷却装置风路堵塞 冷却装置风路堵塞引起的过热现象也时有报道。例如,某台OSFPSL-120000/220型变压器,运行11年均正常。1992年8月28日油温突然上升,由原来的42℃左右增加到90℃左右。与同容量的变压器比较温升相差很大,但电气试验结果正常。通过对外观检查发现,风冷却器散热管的翅片间积满了灰尘(长期运行从未清洗过),已将间隙堵死,电风扇的风已无法吹到散热管上,致使变压器的温度不断升高。经冲洗后油温一直在40℃左右。有如,某台DSFPSL-90000/220型变压器,上层油温偏高,曾达80~90℃,检查发现散热器风道缝隙

变压器油面绕组温度计的基本知识

1、这里着重介绍油面温度计,因为绕组温度计的温度指示并非真实绕组温度体征,而是通过油顶层温度与电流互感器小信号叠加而成的模拟信号。 2、绕组温度计的信号介绍: B W Y -80 4 A J (TH) 湿热带防护 J、机电一体化、输出(4-20)mA A、铂电阻 开关数量 线性刻度 油面 温度计 变压器 BWY-804AJ(TH)油面温度计:仪表内装有四组可调控制开关,可分别用于变压器冷却系统控制及讯号报警。同时能输出与温度值对应的(4-20)mA电流信号和Pt100铂电阻值,供计算机系统和二次仪表使用。 组成:主要由弹性元件、传感导管、感温部件、温度变送器、数字式温度显示仪组成。由弹性元件、传感导管和感温部件构成的密封系统内充满感温介质,当被测温度变化时,感温部件内的感温介质的体积随之变化,这个体积增量通过传感导管传递到仪表内弹性元件,使之产生一个相对应的位移,这个位移经机构放大后便可指示被测温度,并驱动微动开关,输出开、关控制信号以驱动冷却系统,达到控制变压器温升的目的。通过嵌装在一次仪表内的变送器,输出(4-20)m A标准信号,输入计算机系统和二次仪表,实现无人电站管理使用说明: 1、仪表在运行中必须垂直安放。 2温包安装:使用前必须确认温度计座内注满了油且油面能够完全浸没PT100。 3、温包与表头间的软管必须有相应的固定,间距在300mm为宜。弯曲半径不得小于R100mm。多余的软管应按大于直径Φ200mm盘成圆,固定在变压器本体上。(毛细管内为惰性液体) 4、调整温度表必须在专用设备特定温度下进行。 5、切忌用手随意拨动表指针动作。 常见故障: 1、表盘指针不动作且回零---毛细管内液体泄露,该故障为不可修复故障。 2、数显显示异常:极性接反,变送器故障 绕组温度计的工作原理: 变压器绕组温度计的温包插在变压器油箱顶层的油孔内,当变压器负荷为零时,绕组温度计的读数为变压器油的温度。当变压器带上负荷后,通过变压器电流互感器取出的与负荷成正比的电流,经变流器调整后流经嵌装在波纹管内的电热元件。电热元件产生的热量,使弹性元件的位移量增大。因此在变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。变压器绕组温度计指示的温度是变压器顶层油温与线圈对油的温升之和,反映了被测变压器线圈的最热部位温度。 绕组温度计的档位选定: 1、选定档位需要的几个参数:变压器一次额定电流、CT变比、铜油温差 2、计算公式:IP=I*/CT变比,得出二次互感器额定电流.根据铜油温差查曲线得到IS

变压器油温测量及检查处理

关于变压器的油温测量及检查处理法则 曾振华 华东交通大学电气与电子工程学院南昌330013 摘要:变压器的绝缘老化,主要是由于温度、湿度、氧化和油中分解的劣化物质的影响所致。但老化的速度主要由温度决定,绝缘的工作温度愈高,化学反应进行的愈快,绝缘的机械强度和电气强度丧失的愈快,绝缘老化速度愈快,变压器使用年限也愈短。实际上绕组温度受负荷波动和气温变化的影响,变化范围很大。为保证变压器的连续安全供电,变压器必须保证在一定温度下进行因此,对变压器的温度进行实时采集及检查处理,使其维持在一定的范围内,对变压器的寿命有重要的意义。 关键字:变压器温度铂电阻检查处理 1 变压器散热原理分析 变压器在运行时产生的损耗以热的形式通过油、油箱壁和散热器散发到周围的空气中。热量的散发通过导热、对流和辐射三种形式。从绕组和铁心的内部到其表面热量主要靠导热形式散发,从绕组和铁心表面到变压器油中热量主要靠对流的形式散发。散发到变压器油中的热量使油箱中的变压器油温度上升、密度下降、产生热浮力,而变压器油在热浮力的推动下,从油箱上部进人连接油管,通过油管进人散热器。变压器油在散热器中经过和外面空气的热交换,使散热器中的变压器油温度降低,从油箱下部进人连接油管,通过油管重新进入变压器油箱,形成自然循环。变压器的散热量可由式(1)确定: 式中,Ql为单位热负荷;Q为变压器的损耗;F变压器的总散热面积;C1与变压器性本身参数有关的常数;ty即变压器温升。 2 系统硬件设计 电力变压器运行中,对其油温的测量是维护电力变压器安全运行的基础和关键。电力变压器冷却系统的投退和超温报警等都由其安装的温度控制器来实现。 本变压器油温测量系统以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机。MSP430单片机内部具有高、中、低速多个时钟源,可以灵活的配置给各模块使用以及工作于多种低功耗模式,大大降低控制电路的功耗提高整体效率。首先,电力变压器油温经过传感器和信号调理电路采集放大为适合A/D转换的电压值。A /D转换器对模拟信号进行采样并转换位数字信号后经MSP430作预处理。借助MSP430 单片机和主机(上位机)之间的串行通信完成人机交互监测,系统框图如图1

汽轮机高压抗燃油系统培训教材

汽轮机高压抗燃油系统培训教材 22.1系统介绍 随着机组的容量的增大、参数的提高,汽轮机的主汽门及调门均向大型化发展,迫切要求增大开启主汽门及调门的驱动力以及提高高压控制部件的动态灵敏性。如果发生液压油系统内漏外泄、油质不合格等情况,将会导致调节系统的运行不稳定,严重时还有可能造成对机组负荷或转速的影响、发生火灾等,这将影响到机组的安全经济运行。所以,采用具有高品质、良好抗燃性能的液压油以及减小各液压部件间的动、静间隙等方法来保证整个机组的安全运行。 EH供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,该执行机构响应从DEH控制器来的电指令信号,以调节汽机各蒸汽阀开度。机组采用高压抗燃油是一种三芳基磷酸脂化学合成油,密度略大于水,它具有良好的抗燃性能和流体稳定性,明火试验不闪光温度高于538℃。此种油略具有毒性,常温下粘度略大于汽机透平油。 机组电液控制的供油系统由安装在座架上的不锈钢油箱、有关的管道、蓄压器、控制件、两台EH油泵、两台EH油循环泵、滤油器以及热交换器等组成。一台EH油泵投运时,另一套即可作为备用,如果需要即可自动投入。当汽轮机正

常运行时,一台EH油泵足以满足系统所需的用油量,如果在控制系统调节时间较长时(如甩负荷)、部分蓄压器损坏等原因导致EH系统油压降低的情况下,第二套油泵(备用油泵)可以立即投入,以保证机组EH油系统压力正常。 系统工作时由马达驱动高压柱塞泵,油泵将油箱中的抗燃油吸入,供出的抗燃油经过EH控制块、滤油器、逆止阀和安全溢流阀,进入高压集管和蓄能器,建立14.2±0.2MPa 的压力油直接供给各执行机构以及高压遮断系统以及小汽机的执行机构,各执行机构的回油通过压力回油管先经过回油滤油器然后回至油箱。安全溢流阀是防止EH系统油压过高而设置的,当油泵上的调压阀失灵等原因发生油系统超压时,溢流阀将动作以维持系统油压。 高压母管上的压力开关PSC4能对油压偏离正常值时提供报警信号并提供备用泵自动启动的开关信号,压力开关PSC1、PSC2 、PSC3是送出遮断停机信号(三取二逻辑)。泵出口的压力开关PSC5、PSC6和20YV、21YV用于主油泵联动试验。油箱内装有温度开关及压力开关,用于油箱油温过高及油位报警和加热器及泵的连锁控制。油位指示器安放在油箱的侧面。 为了维持正常的抗燃油温度及油质,系统除了正常的回油冷却以外,还装设了一套独立的自循环冷却及自净化系统,以确保在系统非正常运行情况下工作时,油温及油质能保证

电机运行时温度过高的原因

电机运行时温度过高的 原因 Hessen was revised in January 2021

电机运行时温度过高的原因,大致归纳为如下几个方面: (1)修过程中身故障引起的原因 ①定子绕组匝间或相间有短路故障,电流增大而发热。个别线圈局部有故障可以重新包扎绝缘,如果绕组整体绝缘老化发黑,必须重绕大修。 ②定子绕组有短路或并联绕组中某支路短线,泰州电机维修过程中引起三相电流不平衡增大损耗造成绕组过热。 ③将Δ形接成Y形,或Y形接成Δ形,在额定负载运行时,会使电机过热,要改正过来。 ④笼型转子段条引起电流过大而发热,建议改为铜笼或补焊。 ⑤定、转子扫膛、相擦,引起电机发热,因扫膛或相擦等于增加点击负载。解决办法是检查轴承,损坏的轴承要更新,另外检查电机装配质量,必要时要重新进行装配 (2)电方面引起的原因 ①电源电压高,超过电机额定电压的10%以上,引起电机铁损耗增加,使电机发热。 ②电源电压过低,低于电机额定电压的5%以上,电机在额定负载运行时会发热。泰兴电机维修解决办法是调整变压器分接开关的档次,把电源电压调整到正常的范围内。 ③过程中三相电源电压不平衡,相间电压不平衡度超过5%,引起三相电流不平衡而使电机发热。 ④缺相运行。 (3)负载方面 ①如果因为负载过大,泰州电机维修提醒应减轻负载或更换容量合适的电机。 ②启动过于频繁。 ③机械负载有故障。 (4)通风散热不良方面 ①电机通风道堵塞,应及时清扫。 ②绕组表面有灰尘和油污,影响散热,应及时清理。 ③风机故障。 ④环境温度过高,应采取降温措施。 电机过热处理办法: 1、负载过重。减轻负载或更换大的电机。 2、电机风扇损坏。更换。 3、电机轴承缺油或损坏,造成阻力增大或转子扫堂。加油或更换。

变压器油温异常的故障分析及处理方法

变压器油温异常的故障分析及处理方法 xhf0293创建于2007-7-10 17:05:25 阅读次数:138 标签:变压器油温异常 摘要:发现在正常条件下,油温比平时高出10摄氏度以上或负载不变而温度不断上升(在冷却装置运行正常的情况下)测可判断为变压器内部出现异常。主要为: 内部故障引起温度异常。其内部故障,如绕组匝 变压器气味、颜色异常的故障分析及处理方法 xhf0293创建于2007-7-10 17:04:50 阅读次数:76 标签:变压器气味、颜色异常 摘要:防爆管防爆膜破裂:防爆管防爆膜破裂会引起水和潮气进入变压器内,导致绝缘油乳化及变压器的绝缘强度降低。 套管闪络放电:营管闪络放电会造成发热导致老化,绝缘受损甚至引起爆炸。 变压器声音异常的故障分析及处理方法 xhf0293创建于2007-7-10 17:04:20 阅读次数:172 标签:变压器声音异常 摘要:变压器在正常运行时,会发出连续均匀的“嗡嗡”声。如果产生的声音不均匀或有其它特殊的响声,就应视为变压器运行不正常,并可根据声音

的不同查找出故障,进行及时处理。主要有以下几方面故障: 电力系统变压器调压方式及调压范围的选择规定 xhf0293创建于2007-6-25 16:57:26 阅读次数:457 标签:变压器调压方式调压范围 摘要: 1 各级变压器的额定变压比、调压方式、调压范围及每档调压值,应满足发电厂、变电所母线和用户受电端电压质量的要求,并考虑电力系统10~15 年发展的需要。 2 升压变压器高压侧的额定电 震级烈度为七级以上地区的变压器防震措施规定 xhf0293创建于2007-6-21 10:16:10 阅读次数:81 标签:变压器防震措施 摘要: a.电力变压器应有固定措施,对大、中型变压器应在上部拉线,有滚轮的可将滚轮拆除,还应将底盘固定于轨道上; b.电力变压器套管用软导线连接时,应适当放松;用硬导线连接时,应将软连接过渡 强迫冷却变压器的运行条件 xhf0293创建于2007-6-11 8:45:26 阅读次数:75 标签:变压器

汽轮机EH抗燃油

汽轮机EH抗燃油 汽轮机控制系统采用高压纯电调系统(DEH),由上海新华控制工程有限公司生产,是在美国西屋公司产品基础上优化设计的。抗燃油使用的是美国AKZO化学公司的Fyrquel磷酸酯型抗燃油,其系统油压正常控制值为12.7MPa~14.7M Pa。该系统能进行汽轮机的自动调节,有较完备的汽轮机超速保护,能进行汽轮机运行和启停时的监控等,通过计算机对应转速和负荷所需要的指令后将要求的主汽门、调门位置信号送至伺服阀、伺服油动机,由此来实现调节和控制,并且通过这套高压的油系统来实现紧急情况下关闭各汽门的保安功能。 高压EH油系统由供油装置、抗燃油再生装置及油管路部件组成。供油装置提供控制部分所需要的油及压力,其主要部件有:油箱、油泵、油压控制块、储能器、冷油器和再生装置。在抗燃油再生装置中的硅藻土接近失效或未调整的情况下,由于空气湿度大及昼夜温差等缘故,水分将会通过呼吸器侵入油箱,使水分逐渐升高。另外,由于EH油的密度1.13g/cm 3(20℃)大于水的密度,故进入油箱的水分难以排出,加速了油品的劣化,酸值也逐渐升高。因此,必须经常更换呼吸过滤器中的干燥剂硅胶(氧化铝)或选择更有效的防潮填充剂。 净化系统由油路中的精密过滤器及旁路再生装置组成。精密过滤器可截除抗燃油中的颗粒杂质及污染物,抗燃油再生装置是一种用来储存吸附剂和使抗燃油得到再生的装置(使油保持中性、去除水份),该装置主要由硅藻土过滤器和精密滤器(波纹纤维滤器)等组成,见图1。

再生装置的进油口接在滤油管路上。滤油泵出口油分作二路:一路经截止阀1到滤油系统的过滤器去;另一路就是再生装置。到再生装置的油亦分作两路进入滤器,一路经过Φ2.5的节流孔、截止阀2进入到硅藻土过滤器,再经过波纹纤维过滤器回到油箱,油的流量为每分钟1加仑。另一路经过截止阀3后直接进入波纹纤维过滤器,再回到油箱,管道中不需要有节流孔。 每个滤器上面都装有一个压力表,如果任一个滤器的油温在43~54℃之间,压力高达0.21MPa时,就需要调换滤芯。将管路上的截阀关闭,滤器上盖打开,就可以调换滤芯。 使用时考虑到抗燃油的粘度受温度影响很大,再生装置要求在油温高于40℃时使用。首先将通往波纹纤维过滤器的截止阀3打开,将滤油系统的截止阀1关闭,此时滤油泵的排出油全部流经波纹纤维过滤器,待该过滤器及回油管路全部充满40℃以上的热油以后,将截止阀2打开,截止阀3逐渐关小,注意保持硅藻土滤器上压力表指示不超过0.21MPa。待硅藻土滤器内全部充满热油以后,将截止阀3全部关闭,此时滤油泵出口压力为0.5MPa左右。 在机组投运的第一个月,再生装置每周应连续运行八小时,在以后的日子里,则根据油的化验结果,决定是否需要投入该装置。

变压器温升太高解决方法

变压器温升太高解决方法 开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。不同器件有不同的控制发热量的方法。功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。 高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有送功率的差别,工作频率不同档次的电源变压器设计方法不一样. 高频电源变压器的设计原则 高频电源变压器的设计原则,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。所以高频电源变压器的“设计要点”,性能,成本,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。要“节能又节钱”.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。因此,为了节约时间,根据经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,不要按步就班地来回进行推算和仿真。设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好。检验设计的唯一标准是设计出的产品能否实应住市场. 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。 1 使用条件 使用条件包括两方面内容:可靠性和电磁兼容性。可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止。一般使用条件对高频电源变压器影响最大的是环境温度。有些软磁材料,居里点比较低,对温度敏感。例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃,80℃,100℃时的各种参考数据。因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于A级绝缘材料温度。与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,成本增加,是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3。电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括音频噪声和高频噪声。高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。磁致伸缩大的软磁材料,产生的电磁干扰大。例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。因此锰锌软磁铁氧体磁芯产生的电磁干扰大。

相关文档
相关文档 最新文档